Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Initiation of nanosecond-pulsed discharge in water: Electrostriction effect

Li Yuan Li Lin-Bo Wen Jia-Ye Ni Zheng-Quan Zhang Guan-Jun

Citation:

Initiation of nanosecond-pulsed discharge in water: Electrostriction effect

Li Yuan, Li Lin-Bo, Wen Jia-Ye, Ni Zheng-Quan, Zhang Guan-Jun
PDF
HTML
Get Citation
  • Underwater nanosecond-pulsed discharges have been widely utilized in numerous industrial applications. The initial stage of nanosecond-pulsed discharge in water contains extremely abundant physical processes, however, it is still difficult to reveal the details of charge transportation and multiplicative process in liquid within several nanoseconds by currently existing experimental diagnostic techniques. Up to now, the initiation mechanism of underwater nanosecond discharge has been still a puzzle. In this paper, we develop a two-dimensional axially symmetric underwater discharge model of pin-to-plane, and numerically investigate the electrostriction process, cavitation process, and ionization process in water, induced by nanosecond-pulsed voltage. The negative pressure in water caused by tensile ponderomotive force is calculated. The creation of nanoscale cavities (so-called nanopores) in liquid due to negative pressure is modeled by classical nucleation theory with modified nucleation energy barrier. When estimating the temporal development of nanopore radius, a varying hydrostatic pressure is considered to restrain the unlimited expansion of nanopores. We estimate the electron generation rate by the product of the generation rate of incident electrons and the number density of nanopores. The simulation results show that cavitation occurs in liquid within several microns from pin electrode due to the electrostriction, which results in the formation of a large number of nanopores. The expansion of nanopore, caused by electrostrictive pressure on nanopore surface, provides a sufficient acceleration distance for electrons. The impact ionization of water molecules can be triggered by energetic electrons, leading the local liquid to be ionized rapidly. The effects of nanopores on rapid electron generation in water are discussed. Once nanopores are formed, the electrons can be generated in the following ways: 1) Field ionization of water molecules on the nanopore wall continuously provides seed electrons; 2) the seed electrons accelerated in nanopores enter into the liquid and collide with water molecules, resulting in the rapid increase of electrons. It can be inferred that the randomly scattered nanopores act as micro-sources of charges that contribute to the continuing ionization of liquid water in cavitation region near pin electrode. Electrostriction mechanism provides a new perspective for understanding the initiation of nanosecond-pulsed discharge in water.
      Corresponding author: Li Yuan, liyuan8490@xjtu.edu.cn ; Zhang Guan-Jun, gjzhang@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51607139)
    [1]

    尤特金 1962 液电效应 (北京: 科学出版社) 第45−50页

    Yutkin 1962 Electro-hydraulic Effect (Beijing: Science Press) pp45−50 (in Chinese)

    [2]

    Torres L, Yadav O P, Khan E 2016 Sci. Total Environ. 539 478Google Scholar

    [3]

    刘毅, 李志远, 李显东, 林福昌, 潘垣 2016 电工技术学报 31 71Google Scholar

    Liu Y, Li Z Y, Li X D, Lin F C, Pan Y 2016 Transactions of China Electrotechnical Society 31 71Google Scholar

    [4]

    付荣耀, 孙鹞鸿, 刘坤, 高迎慧, 徐旭哲, 严萍 2018 强激光与粒子束 30 131Google Scholar

    Fu R Y, Sun Y H, Liu K, Gao Y H, Xu X Z, Yan P 2018 High Power Laser and Particle Beams 30 131Google Scholar

    [5]

    Bluhm H, Frey W, Giese H, Hoppe P, Schultheiss C, Strassner R 2000 IEEE Trans. Dielect. Electr. Insul. 7 625Google Scholar

    [6]

    卢新培, 潘垣, 张寒虹 2002 物理学报 51 1768Google Scholar

    Lu X P, Pan Y, Zhang H H 2002 Acta Phys. Sin. 51 1768Google Scholar

    [7]

    程虎, 叶齐政, 覃世勋, 李劲 2007 高电压技术 2 150Google Scholar

    Cheng H, Ye Q Z, Qin S X, Li J 2007 High Voltage Engineering 2 150Google Scholar

    [8]

    陈银生, 张新胜, 常胜, 戴迎春, 袁渭康 2005 环境科学学报 25 113Google Scholar

    Chen Y S, Zhang X S, Chang S, Dai Y C, Yuan W K 2005 Acta Scientiae Circumstantiae 25 113Google Scholar

    [9]

    曹颖, 姜楠, 段丽娟, 郭贺, 任景俞, 王璞, 周集体, 李杰, 吴彦 2018 环境工程学报 12 956Google Scholar

    Cao Y, Jiang N, Duan L J, Guo H, Ren J Y, Wang P, Zhou J T, Li J, Wu Y 2018 Chinese Journal of Environmental Engineering 12 956Google Scholar

    [10]

    张梦瑶, 温嘉烨, 李元, 宋佰鹏, 张冠军 2019 高电压技术 45 4130Google Scholar

    Zhang M Y, Wen J Y, Li Y, Song B P, Zhang G J 2019 High Voltage Engineering 45 4130Google Scholar

    [11]

    Sato M, Ohgiyama T, Clements J S 1996 IEEE Trans. Ind. Appl. 32 106Google Scholar

    [12]

    李显东 2018 博士学位论文 (武汉: 华中科技大学)

    Li X D 2018 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [13]

    Fujita H, Kanazawa S, Ohtani K, Komiya A, Kaneko T, Sato T 2014 J. Appl. Phys. 116 213301Google Scholar

    [14]

    Jones H M, Kunhardt E E 1995 J. Phys. D: Appl. Phys. 28 178Google Scholar

    [15]

    李显东, 刘毅, 周古月, 刘思维, 李志远, 林福昌, 潘垣 2018 中国电机工程学报 38 1562Google Scholar

    Li X D, Liu Y, Zhou G Y, Liu S W, Li Z Y, Lin F C, Pan Y 2018 Proceeding of the CSEE 38 1562Google Scholar

    [16]

    童得恩, 朱鑫磊, 邹晓兵, 王新新 2019 高电压技术 45 1461Google Scholar

    Dong D E, Zhu X L, Zou X B, Wang X X 2019 High Voltage Engineering 45 1461Google Scholar

    [17]

    Marinov I, Starikovskaia S, Rousseau A 2014 J. Phys. D: Appl. Phys. 47 224017Google Scholar

    [18]

    Šimek M, Hoffer P, Tungli J, Prukner V, Schmidt J, Bílek P, Bonaventura Z 2020 Plasma Sources Sci. Technol. 29Google Scholar

    [19]

    Shneider M, Pekker M, Fridman A 2012 IEEE Trans. Dielect. Electr. Insul. 19 1579Google Scholar

    [20]

    Shneider M N, Pekker M 2013 J. Appl. Phys. 114 214906Google Scholar

    [21]

    Pekker M, Seepersad Y, Shneider M N, Fridman A, Dobrynin D 2014 J. Phys. D: Appl. Phys. 47 025502Google Scholar

    [22]

    Starikovskiy A 2013 Plasma Sources Sci. Technol. 22 012001Google Scholar

    [23]

    Pekker M, Shneider M N 2017 Fluid Dyn. Res. 49 035503Google Scholar

    [24]

    涂婧怡, 陈赦, 汪沨 2019 物理学报 68 095202Google Scholar

    Tu J Y, Chen S, Wang F 2019 Acta Phys. Sin. 68 095202Google Scholar

    [25]

    章程, 邵涛, 龙凯华, 王珏, 张东东, 严萍 2010 强激光与粒子束 22 479Google Scholar

    Zhang C, Shao T, Long K H, Wang Y, Zhang D D, Yan P 2010 High Power Laser and Particle Beams 22 479Google Scholar

    [26]

    周中升, 章程, 邵涛, 杨文晋, 方志, 张东东 2014 高电压技术 40 3290Google Scholar

    Zhou Z S, Zhang C, Shao T, Yang W J, Fang Z, Zhang D D 2014 High Voltage Engineering 40 3290Google Scholar

    [27]

    Li Y, Li L, Wen J, Zhang J, Wang L, Zhang G J 2020 Plasma Sources Sci. Technol. 29 075005Google Scholar

    [28]

    Li Y H 1967 J. Geophys. Res. 72 2665Google Scholar

    [29]

    Fisher J C 1948 J. Appl. Phys. 19 1062Google Scholar

    [30]

    Caupin F, Arvengas A, Davitt K, Azouzi M E M, Shmulovich K, Ramboz C, Sessoms D, Stroock A D 2012 J. Phys. Condens. Matter 24 284110Google Scholar

    [31]

    Shneider M N, Pekker M 2015 J. Appl. Phys. 117 224902Google Scholar

    [32]

    Delale C F, Hruby J, Marsik F 2003 J. Chem. Phys. 118 792Google Scholar

    [33]

    Pekker M, Shneider M N 2015 J. Phys. D: Appl. Phys. 48 424009Google Scholar

    [34]

    Grosse K, Held J, Kai M, von Keudell A 2019 Plasma Sources Sci. Technol. 28 085003Google Scholar

    [35]

    Davitt K, Arvengas A, Caupin F 2010 Europhys. Lett. 90 16002Google Scholar

    [36]

    Babaeva N Y, Tereshonok D V, Naidis G V 2015 J. Phys. D: Appl. Phys. 48 355201Google Scholar

    [37]

    Zener C, Fowler R H 1934 Proc. Trans. R. Soc. A 145 523Google Scholar

    [38]

    Qian J, Joshi R P, Schamiloglu E, Gaudet J, Woodworth J R, Lehr J 2006 J. Phys. D: Appl. Phys. 39 359Google Scholar

    [39]

    Bordage M C, Bordes J, Edel S, Terrissol M, Franceries X, Bardiès M, Lampe N, Incerti S 2016 Phys. Med. 32 1833Google Scholar

    [40]

    王琪, 王萌, 王珏, 严萍 2020 强激光与粒子束 32 63Google Scholar

    Wang Q, Wang M, Wang Y, Yan P 2020 High Power Laser and Particle Beams 32 63Google Scholar

    [41]

    Pontiga F, Castellanos A 1996 IEEE Trans. Dielect. Electr. Insul. 3 792Google Scholar

    [42]

    Hernandez J P 1991 Rev. Mod. Phys. 63 675Google Scholar

    [43]

    Barnett R N, Landman U, Nitzan A 1990 J. Chem. Phys. 93 8187Google Scholar

    [44]

    Seepersad Y, Pekker M, Shneider M N, Fridman A, Dobrynin D 2013 J. Phys. D: Appl. Phys. 46 355201Google Scholar

    [45]

    Shneider M N, Pekker M 2013 Phys. Rev. E 87 043004Google Scholar

    [46]

    Dobrynin D, Seepersad Y, Pekker M, Shneider M, Friedman G, Fridman A 2013 J. Phys. D: Appl. Phys. 46 105201Google Scholar

    [47]

    Meesungnoen J, Jay Gerin J P, Filali Mouhim A, Mankhetkorn S 2002 Radiat. Res. 158 657Google Scholar

    [48]

    Qian J, Joshi R P, Kolb J, Schoenbach K H, Dickens J, Neuber A, Butcher M, Cevallos M, Krompholz H, Schamiloglu E, Gaudet J 2005 J. Appl. Phys. 97 113304Google Scholar

    [49]

    Seepersad Y, Fridman A, Dobrynin D 2015 J. Phys. D: Appl. Phys. 48 424012Google Scholar

    [50]

    李元, 穆海宝, 邓军波, 张冠军, 王曙鸿 2013 物理学报 62 124703Google Scholar

    Li Y, Mu H B, Den J B, Zhang G J, Wang S H 2013 Acta Phys. Sin. 62 124703Google Scholar

    [51]

    Aghdam A C, Farouk T 2020 Plasma Sources Sci. Technol. 29 025011Google Scholar

  • 图 1  水中纳秒放电起始阶段各物理过程的关系

    Figure 1.  Correlations between the processes during the nanosecond discharge initiation in water.

    图 2  数值模拟流程

    Figure 2.  Flow chart of simulation.

    图 3  脉冲电压施加后水的流速与压强分布 (a) t = 2 ns; (b) t = 3 ns

    Figure 3.  Distribution of liquid velocity and pressures: (a) t = 2 ns; (b) t = 3 ns.

    图 4  脉冲电压施加后针板电极对称轴上压强分布 (a) t = 2 ns; (b) t = 3 ns

    Figure 4.  Pressures along the symmetric axis since the start of pulsed voltage: (a) t = 2 ns; (b) t = 3 ns.

    图 5  不同时刻针板电极对称轴上空腔数密度分布

    Figure 5.  Temporal evolution of number density of nanopores along the symmetric axis.

    图 6  不同时刻针板电极对称轴上空腔半径

    Figure 6.  Temporal evolution of nanopore radii along the symmetric axis.

    图 7  针板电极对称轴上电子能量分布的时空演化

    Figure 7.  Temporal evolution of electron energy along the symmetric axis.

    图 8  不同时刻水中电离过程 (a) 电子生成速率; (b) 电子数密度

    Figure 8.  Temporal evolution of ionization process in water: (a) Electron generation rate; (b) electron density.

    图 9  空腔导致液体电离的机制

    Figure 9.  Schematic of nanopore-induced liquid ionization.

    图 10  由水中电致伸缩和场致电离机制得到的电离速率 (t = 5 ns)

    Figure 10.  Ionization rate induced by electrostriction and field ionization mechanisms (t = 5 ns).

  • [1]

    尤特金 1962 液电效应 (北京: 科学出版社) 第45−50页

    Yutkin 1962 Electro-hydraulic Effect (Beijing: Science Press) pp45−50 (in Chinese)

    [2]

    Torres L, Yadav O P, Khan E 2016 Sci. Total Environ. 539 478Google Scholar

    [3]

    刘毅, 李志远, 李显东, 林福昌, 潘垣 2016 电工技术学报 31 71Google Scholar

    Liu Y, Li Z Y, Li X D, Lin F C, Pan Y 2016 Transactions of China Electrotechnical Society 31 71Google Scholar

    [4]

    付荣耀, 孙鹞鸿, 刘坤, 高迎慧, 徐旭哲, 严萍 2018 强激光与粒子束 30 131Google Scholar

    Fu R Y, Sun Y H, Liu K, Gao Y H, Xu X Z, Yan P 2018 High Power Laser and Particle Beams 30 131Google Scholar

    [5]

    Bluhm H, Frey W, Giese H, Hoppe P, Schultheiss C, Strassner R 2000 IEEE Trans. Dielect. Electr. Insul. 7 625Google Scholar

    [6]

    卢新培, 潘垣, 张寒虹 2002 物理学报 51 1768Google Scholar

    Lu X P, Pan Y, Zhang H H 2002 Acta Phys. Sin. 51 1768Google Scholar

    [7]

    程虎, 叶齐政, 覃世勋, 李劲 2007 高电压技术 2 150Google Scholar

    Cheng H, Ye Q Z, Qin S X, Li J 2007 High Voltage Engineering 2 150Google Scholar

    [8]

    陈银生, 张新胜, 常胜, 戴迎春, 袁渭康 2005 环境科学学报 25 113Google Scholar

    Chen Y S, Zhang X S, Chang S, Dai Y C, Yuan W K 2005 Acta Scientiae Circumstantiae 25 113Google Scholar

    [9]

    曹颖, 姜楠, 段丽娟, 郭贺, 任景俞, 王璞, 周集体, 李杰, 吴彦 2018 环境工程学报 12 956Google Scholar

    Cao Y, Jiang N, Duan L J, Guo H, Ren J Y, Wang P, Zhou J T, Li J, Wu Y 2018 Chinese Journal of Environmental Engineering 12 956Google Scholar

    [10]

    张梦瑶, 温嘉烨, 李元, 宋佰鹏, 张冠军 2019 高电压技术 45 4130Google Scholar

    Zhang M Y, Wen J Y, Li Y, Song B P, Zhang G J 2019 High Voltage Engineering 45 4130Google Scholar

    [11]

    Sato M, Ohgiyama T, Clements J S 1996 IEEE Trans. Ind. Appl. 32 106Google Scholar

    [12]

    李显东 2018 博士学位论文 (武汉: 华中科技大学)

    Li X D 2018 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [13]

    Fujita H, Kanazawa S, Ohtani K, Komiya A, Kaneko T, Sato T 2014 J. Appl. Phys. 116 213301Google Scholar

    [14]

    Jones H M, Kunhardt E E 1995 J. Phys. D: Appl. Phys. 28 178Google Scholar

    [15]

    李显东, 刘毅, 周古月, 刘思维, 李志远, 林福昌, 潘垣 2018 中国电机工程学报 38 1562Google Scholar

    Li X D, Liu Y, Zhou G Y, Liu S W, Li Z Y, Lin F C, Pan Y 2018 Proceeding of the CSEE 38 1562Google Scholar

    [16]

    童得恩, 朱鑫磊, 邹晓兵, 王新新 2019 高电压技术 45 1461Google Scholar

    Dong D E, Zhu X L, Zou X B, Wang X X 2019 High Voltage Engineering 45 1461Google Scholar

    [17]

    Marinov I, Starikovskaia S, Rousseau A 2014 J. Phys. D: Appl. Phys. 47 224017Google Scholar

    [18]

    Šimek M, Hoffer P, Tungli J, Prukner V, Schmidt J, Bílek P, Bonaventura Z 2020 Plasma Sources Sci. Technol. 29Google Scholar

    [19]

    Shneider M, Pekker M, Fridman A 2012 IEEE Trans. Dielect. Electr. Insul. 19 1579Google Scholar

    [20]

    Shneider M N, Pekker M 2013 J. Appl. Phys. 114 214906Google Scholar

    [21]

    Pekker M, Seepersad Y, Shneider M N, Fridman A, Dobrynin D 2014 J. Phys. D: Appl. Phys. 47 025502Google Scholar

    [22]

    Starikovskiy A 2013 Plasma Sources Sci. Technol. 22 012001Google Scholar

    [23]

    Pekker M, Shneider M N 2017 Fluid Dyn. Res. 49 035503Google Scholar

    [24]

    涂婧怡, 陈赦, 汪沨 2019 物理学报 68 095202Google Scholar

    Tu J Y, Chen S, Wang F 2019 Acta Phys. Sin. 68 095202Google Scholar

    [25]

    章程, 邵涛, 龙凯华, 王珏, 张东东, 严萍 2010 强激光与粒子束 22 479Google Scholar

    Zhang C, Shao T, Long K H, Wang Y, Zhang D D, Yan P 2010 High Power Laser and Particle Beams 22 479Google Scholar

    [26]

    周中升, 章程, 邵涛, 杨文晋, 方志, 张东东 2014 高电压技术 40 3290Google Scholar

    Zhou Z S, Zhang C, Shao T, Yang W J, Fang Z, Zhang D D 2014 High Voltage Engineering 40 3290Google Scholar

    [27]

    Li Y, Li L, Wen J, Zhang J, Wang L, Zhang G J 2020 Plasma Sources Sci. Technol. 29 075005Google Scholar

    [28]

    Li Y H 1967 J. Geophys. Res. 72 2665Google Scholar

    [29]

    Fisher J C 1948 J. Appl. Phys. 19 1062Google Scholar

    [30]

    Caupin F, Arvengas A, Davitt K, Azouzi M E M, Shmulovich K, Ramboz C, Sessoms D, Stroock A D 2012 J. Phys. Condens. Matter 24 284110Google Scholar

    [31]

    Shneider M N, Pekker M 2015 J. Appl. Phys. 117 224902Google Scholar

    [32]

    Delale C F, Hruby J, Marsik F 2003 J. Chem. Phys. 118 792Google Scholar

    [33]

    Pekker M, Shneider M N 2015 J. Phys. D: Appl. Phys. 48 424009Google Scholar

    [34]

    Grosse K, Held J, Kai M, von Keudell A 2019 Plasma Sources Sci. Technol. 28 085003Google Scholar

    [35]

    Davitt K, Arvengas A, Caupin F 2010 Europhys. Lett. 90 16002Google Scholar

    [36]

    Babaeva N Y, Tereshonok D V, Naidis G V 2015 J. Phys. D: Appl. Phys. 48 355201Google Scholar

    [37]

    Zener C, Fowler R H 1934 Proc. Trans. R. Soc. A 145 523Google Scholar

    [38]

    Qian J, Joshi R P, Schamiloglu E, Gaudet J, Woodworth J R, Lehr J 2006 J. Phys. D: Appl. Phys. 39 359Google Scholar

    [39]

    Bordage M C, Bordes J, Edel S, Terrissol M, Franceries X, Bardiès M, Lampe N, Incerti S 2016 Phys. Med. 32 1833Google Scholar

    [40]

    王琪, 王萌, 王珏, 严萍 2020 强激光与粒子束 32 63Google Scholar

    Wang Q, Wang M, Wang Y, Yan P 2020 High Power Laser and Particle Beams 32 63Google Scholar

    [41]

    Pontiga F, Castellanos A 1996 IEEE Trans. Dielect. Electr. Insul. 3 792Google Scholar

    [42]

    Hernandez J P 1991 Rev. Mod. Phys. 63 675Google Scholar

    [43]

    Barnett R N, Landman U, Nitzan A 1990 J. Chem. Phys. 93 8187Google Scholar

    [44]

    Seepersad Y, Pekker M, Shneider M N, Fridman A, Dobrynin D 2013 J. Phys. D: Appl. Phys. 46 355201Google Scholar

    [45]

    Shneider M N, Pekker M 2013 Phys. Rev. E 87 043004Google Scholar

    [46]

    Dobrynin D, Seepersad Y, Pekker M, Shneider M, Friedman G, Fridman A 2013 J. Phys. D: Appl. Phys. 46 105201Google Scholar

    [47]

    Meesungnoen J, Jay Gerin J P, Filali Mouhim A, Mankhetkorn S 2002 Radiat. Res. 158 657Google Scholar

    [48]

    Qian J, Joshi R P, Kolb J, Schoenbach K H, Dickens J, Neuber A, Butcher M, Cevallos M, Krompholz H, Schamiloglu E, Gaudet J 2005 J. Appl. Phys. 97 113304Google Scholar

    [49]

    Seepersad Y, Fridman A, Dobrynin D 2015 J. Phys. D: Appl. Phys. 48 424012Google Scholar

    [50]

    李元, 穆海宝, 邓军波, 张冠军, 王曙鸿 2013 物理学报 62 124703Google Scholar

    Li Y, Mu H B, Den J B, Zhang G J, Wang S H 2013 Acta Phys. Sin. 62 124703Google Scholar

    [51]

    Aghdam A C, Farouk T 2020 Plasma Sources Sci. Technol. 29 025011Google Scholar

  • [1] Bao Xi-Cheng, Xing Yao-Wen, Zhang Fan-Fan, Zhang De-Ke, Liu Qin-Shan, Yang Hai-Chang, Gui Xia-Hui. Mechanism of long-range hydrophobic force based on cavitation of metastable liquid film. Acta Physica Sinica, 2024, 73(3): 036801. doi: 10.7498/aps.73.20231109
    [2] Li Yuan, Li Chun-Peng, Li Lin-Bo, Yuan Lei, Wang Ya-Zhen, Shi Ya-Xuan, Zhang Guan-Jun. Electron transport characteristics in water under electrostrictive effect. Acta Physica Sinica, 2024, 73(11): 114701. doi: 10.7498/aps.73.20231893
    [3] Xiao Jiang-Ping, Dai Dong, Victor F. Tarasenko, Shao Tao. Mechanism of runaway electron generation in nanosecond pulsed plate-plate discharge at atmospheric-pressure air. Acta Physica Sinica, 2023, 72(10): 105201. doi: 10.7498/aps.72.20222409
    [4] Hou Xing-Min, Zhang Cheng, Qiu Jin-Tao, Gu Jian-Wei, Wang Rui-Xue, Shao Tao. Properties of temporal X-ray in nanosecond-pulse discharges with a tube-to-plane gap at atmospheric pressure. Acta Physica Sinica, 2017, 66(10): 105204. doi: 10.7498/aps.66.105204
    [5] Qiu Chao, Zhang Hui-Chen. Molecular dynamics simulation on cavitation bubble formation in canonical ensemble. Acta Physica Sinica, 2015, 64(3): 033401. doi: 10.7498/aps.64.033401
    [6] Zhang Cheng, Ma Hao, Shao Tao, Xie Qing, Yang Wen-Jin, Yan Ping. Runaway electron beams in nanosecond-pulse discharges. Acta Physica Sinica, 2014, 63(8): 085208. doi: 10.7498/aps.63.085208
    [7] Qu Shao-Hua, Cao Wan-Qiang. Research on polarization effect for relaxor ferroelectrics by spherical random bond-random field model. Acta Physica Sinica, 2014, 63(4): 047701. doi: 10.7498/aps.63.047701
    [8] Ren Sheng, Zhang Jia-Zhong, Zhang Ya-Miao, Wei Ding. Phase transition in liquid due to zero-net-mass-flux jet and its numerical simulation using lattice Boltzmann method. Acta Physica Sinica, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [9] Li Yuan, Mu Hai-Bao, Deng Jun-Bo, Zhang Guan-Jun, Wang Shu-Hong. Simulational study on streamer discharge in transformer oil under positive nanosecond pulse voltage. Acta Physica Sinica, 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [10] Zhang Cheng, Shao Tao, Niu Zheng, Zhang Dong-Dong, Wang Jue, Yan Ping. X-ray generation in repetitive pulsed discharge in atmospheric air with a point-to-plane gap. Acta Physica Sinica, 2012, 61(3): 035202. doi: 10.7498/aps.61.035202
    [11] Shen Zhuang-Zhi, Wu Sheng-Ju. Dynamic behavior of a cavitation bubble in acoustic field and electric field. Acta Physica Sinica, 2012, 61(12): 124301. doi: 10.7498/aps.61.124301
    [12] Dong Li-Fang, Yang Yu-Jie, Fan Wei-Li, Yue Han, Wang Shuai, Xiao Hong. Study on the phase transition of the filaments structure in dielectric barrier discharge. Acta Physica Sinica, 2010, 59(3): 1917-1922. doi: 10.7498/aps.59.1917
    [13] Zhou Ke-Yu, Ye Hui, Zhen Hong-Yu, Yin Yi, Shen Wei-Dong. Study of tunable Fabry-Perot filter based on piezoelectric polymer film. Acta Physica Sinica, 2010, 59(1): 365-369. doi: 10.7498/aps.59.365
    [14] Lü Xiao-Gui, Ren Chun-Sheng, Ma Teng-Cai, Zhu Hai-Long, Qian Mu-Yang, Wang De-Zhen. Influence of quartz tube on the nanosecond pulsed discharge in a cone-to-plane air gap. Acta Physica Sinica, 2010, 59(11): 7917-7921. doi: 10.7498/aps.59.7917
    [15] Gao Jian-Sen, Zhang Ning. Electric field-controlled permeability and impedance in a heterotypic composite of ferroelectrics/magnet with high permeability. Acta Physica Sinica, 2009, 58(12): 8607-8611. doi: 10.7498/aps.58.8607
    [16] Zhang Peng-Li, Lin Shu-Yu. Two-bubble interaction under the sound field. Acta Physica Sinica, 2009, 58(11): 7797-7801. doi: 10.7498/aps.58.7797
    [17] Dong Li-Fang, Gao Rui-Ling, He Ya-Feng, Fan Wei-Li, Li Xue-Chen, Liu Shu-Hua, Liu Wei-Li. Study on the interaction of microdischarge channels in dielectric barrier discharge pattern. Acta Physica Sinica, 2007, 56(3): 1471-1475. doi: 10.7498/aps.56.1471
    [18] Liu Xiu-Mei, Zhao Rui, He Jie, Lu Jian, Ni Xiao-Wu. Mechanical effects during interaction of pulsed laser and metal in fluids in viscosity range of 10-6 to 10-4m2/s. Acta Physica Sinica, 2007, 56(11): 6508-6513. doi: 10.7498/aps.56.6508
    [19] Lu Xin-Pei, Pan Huan, Zhang Han-Hong. . Acta Physica Sinica, 2002, 51(7): 1549-1553. doi: 10.7498/aps.51.1549
    [20] Lu Xin-Pei, Pan Yuan, Zhang Han-Hong. . Acta Physica Sinica, 2002, 51(8): 1768-1772. doi: 10.7498/aps.51.1768
Metrics
  • Abstract views:  9024
  • PDF Downloads:  117
  • Cited By: 0
Publishing process
  • Received Date:  02 July 2020
  • Accepted Date:  04 August 2020
  • Available Online:  07 January 2021
  • Published Online:  20 January 2021

/

返回文章
返回