-
Significant progress has been made in atom-based measurements of length, time, gravity and electromagnetic fields in recently years. Rydberg atom-based microwave electric field measurement, using electromagnetically induced transparency (EIT) in room temperature alkali-metal vapors, has been extensively investigated and aroused the broad interest. This approach may establish a new standard for the measurements of microwave (MW) and radio frequency (RF) electric fields.In this review, we describe the work on a new method of measuring electric fields based on quantum interference by using either cesium or rubidium atoms contained in a dielectric vapor cell. Rydberg atoms with principal quantum number n >>1 have large direct current (DC) polarizabilities and microwave transition dipole moments, thereby making them extremely sensitive to external electric fields. Using the Rydberg three-level EIT to detect the level splitting and shift that is induced by the external field, we can realize a rapid and robust self-calibration method of measuring the electric field in a frequency range from 0.01 GHz to 1000 GHz. For the MW electric field (frequency range > 1 GHz), the MW field causes the Rydberg states to split, known as an Autler-Townes splitting (A-T) effect when the applied microwave can resonate with adjacent Rydberg states. The MW coupled A-T splitting is proportional to the applied electric field strength, from which the field strength is measured. Using the EIT window, a high sensitivity of 3 μV·cm-1·Hz-1/2 and small electric field of 1 μV/cm are expected to be achieved with a modest setup, and the limitations of the sensitivity are also addressed in the review. For the RF field at frequency mj EIT lines, and avoided crossings formed with the fine-structure levels of equal mj and different J's, which is used to calibrate and measure the RF field amplitude. On the other hand, the dependence of the EIT-line strength on the RF field polarization provides a fast and robust polarization measurement of RF fields based on matching experimental data with a theoretical simulation. The measurements of minimum strengths and sensitivity of RF fields based on Rydberg atoms are one order magnitude below the values obtained by traditional antenna methods. The atom-based field measurement paves the way for determining fields through calibration-free, invariable atomic properties and miniaturization. We also propose its various potential applications in the future.
-
Keywords:
- Rydberg atoms /
- MW/RF electrometry /
- quantum coherent effect
[1] Kanda M, Orr R D 1986 IEEE Trans. Antenn. Propag. 35 33
[2] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antenn. Propag. 62 6169
[3] Kanda M 1993 IEEE Trans. Antenn. Propag. 41 1349
[4] Sriram S, Kingsley S A, Boyd J T 1993 US patent 5 267 336 [1993-11-30]
[5] Kanda M 1994 IEEE Trans. Electromagn. Compat. 36 261
[6] Hall J L 2006 Rev. Mod. Phys. 78 1279
[7] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nat. 506 71
[8] Savukov I M, Seltzer S J, Romalis M V, Sauer K L 2005 Phys. Rev. Lett. 95 063004
[9] Patton B, Versolato O O, Hovde D C, Corsini E, Higbie J M, Budker D 2012 Appl. Phys. Lett. 101 083502
[10] Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702 (in Chinese) [黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮 2015 物理学报 64 160702]
[11] Fan H, Kumar S, Sedlacek J, Kubler H, Karimkash S, Shaffer J P 2015 J. Phys. B: At. Mol. Opt. Phys. 48 202001
[12] Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003
[13] Zhang H, Zhang L, Wang L, Bao S, Zhao J, Jia S 2014 Phys. Rev. A 90 043849
[14] Sedlacek J A, Schwettmann A, Kbler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819
[15] Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201 (in Chinese) [李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 物理学报 64 163201]
[16] Anderson D A, Schwarzkopf A, Miller S A, Thaicharoen N, Raithel G 2014 Phys. Rev. A 90 043419
[17] Kumar S, Fan H, Kbler H, Sheng J T, Shaffer J P 2017 Sci. Rep. 7 42981
[18] Kumar S, Fan H, Kbler H, Jahangiri A J, Shaffer J P 2017 Opt. Exp. 25 8625
[19] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithe G 2017 J. Appl. Phys. 121 233106
[20] Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102
[21] Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104
[22] Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A, Raithel G 2016 Appl. Phys. Lett. 108 174101
[23] Anderson D A, Raithel G 2017 Appl. Phys. Lett. 111 053504
[24] Sedlacek J, Schwettmann A, Kbler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001
[25] Fan H Q, Kumar S, Sheng J T, Shaffer J P 2015 Phys. Rev. Appl. 4 044015
[26] Zhu X B, Zhang H, Feng Z G, Zhang L J, Li C Y, Zhao J M, Jia S T 2010 Acta Phys. Sin. 59 2401 (in Chinese) [朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂 2010 物理学报 59 2401]
[27] Bason M G, Tanasittikoso M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015
[28] Veit C, Epple G, Kbler H, Euser T G, Russell P St J, Lw R 2016 J. Phys. B: At. Mol. Opt. Phys. 49 134005
[29] Yoshida S, Reinhold C O, Burgdörfer J, Ye S, Dunning F B 2012 Phys. Rev. A 86 043415
[30] Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017
[31] Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M, Jia S T 2016 Phys. Rev. A 94 023832
[32] Yang Z W, Jiao Y C, Han X X, Zhao J M, Jia S T 2017 Acta Phys. Sin. 66 093202 (in Chinese) [杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂 2017 物理学报 66 093202]
[33] Jiao Y C, Hao L P, Han X X, Bai S Y, Raithel G, Zhao J M, Jia S T 2017 Phys. Rev. Appl. 8 014028
[34] Kitching J, Knappe S, Donley E A 2011 IEEE Sens. J. 11 1749
[35] Kbler H, Shaffer J P, Baluksian T, Lw R, Pfau T 2010 Nat. Photon. 4 112
[36] Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp38-49
[37] Osterwalder A, Merkt F 1999 Phys. Rev. Lett. 82 1831
[38] Mack M, Karlewski F, Hattermann H, Hockh S, Jessen F, Cano D, Fortagh J 2011 Phys. Rev. A 83 052515
-
[1] Kanda M, Orr R D 1986 IEEE Trans. Antenn. Propag. 35 33
[2] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antenn. Propag. 62 6169
[3] Kanda M 1993 IEEE Trans. Antenn. Propag. 41 1349
[4] Sriram S, Kingsley S A, Boyd J T 1993 US patent 5 267 336 [1993-11-30]
[5] Kanda M 1994 IEEE Trans. Electromagn. Compat. 36 261
[6] Hall J L 2006 Rev. Mod. Phys. 78 1279
[7] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nat. 506 71
[8] Savukov I M, Seltzer S J, Romalis M V, Sauer K L 2005 Phys. Rev. Lett. 95 063004
[9] Patton B, Versolato O O, Hovde D C, Corsini E, Higbie J M, Budker D 2012 Appl. Phys. Lett. 101 083502
[10] Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702 (in Chinese) [黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮 2015 物理学报 64 160702]
[11] Fan H, Kumar S, Sedlacek J, Kubler H, Karimkash S, Shaffer J P 2015 J. Phys. B: At. Mol. Opt. Phys. 48 202001
[12] Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003
[13] Zhang H, Zhang L, Wang L, Bao S, Zhao J, Jia S 2014 Phys. Rev. A 90 043849
[14] Sedlacek J A, Schwettmann A, Kbler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819
[15] Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201 (in Chinese) [李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 物理学报 64 163201]
[16] Anderson D A, Schwarzkopf A, Miller S A, Thaicharoen N, Raithel G 2014 Phys. Rev. A 90 043419
[17] Kumar S, Fan H, Kbler H, Sheng J T, Shaffer J P 2017 Sci. Rep. 7 42981
[18] Kumar S, Fan H, Kbler H, Jahangiri A J, Shaffer J P 2017 Opt. Exp. 25 8625
[19] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithe G 2017 J. Appl. Phys. 121 233106
[20] Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102
[21] Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104
[22] Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A, Raithel G 2016 Appl. Phys. Lett. 108 174101
[23] Anderson D A, Raithel G 2017 Appl. Phys. Lett. 111 053504
[24] Sedlacek J, Schwettmann A, Kbler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001
[25] Fan H Q, Kumar S, Sheng J T, Shaffer J P 2015 Phys. Rev. Appl. 4 044015
[26] Zhu X B, Zhang H, Feng Z G, Zhang L J, Li C Y, Zhao J M, Jia S T 2010 Acta Phys. Sin. 59 2401 (in Chinese) [朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂 2010 物理学报 59 2401]
[27] Bason M G, Tanasittikoso M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015
[28] Veit C, Epple G, Kbler H, Euser T G, Russell P St J, Lw R 2016 J. Phys. B: At. Mol. Opt. Phys. 49 134005
[29] Yoshida S, Reinhold C O, Burgdörfer J, Ye S, Dunning F B 2012 Phys. Rev. A 86 043415
[30] Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017
[31] Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M, Jia S T 2016 Phys. Rev. A 94 023832
[32] Yang Z W, Jiao Y C, Han X X, Zhao J M, Jia S T 2017 Acta Phys. Sin. 66 093202 (in Chinese) [杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂 2017 物理学报 66 093202]
[33] Jiao Y C, Hao L P, Han X X, Bai S Y, Raithel G, Zhao J M, Jia S T 2017 Phys. Rev. Appl. 8 014028
[34] Kitching J, Knappe S, Donley E A 2011 IEEE Sens. J. 11 1749
[35] Kbler H, Shaffer J P, Baluksian T, Lw R, Pfau T 2010 Nat. Photon. 4 112
[36] Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp38-49
[37] Osterwalder A, Merkt F 1999 Phys. Rev. Lett. 82 1831
[38] Mack M, Karlewski F, Hattermann H, Hockh S, Jessen F, Cano D, Fortagh J 2011 Phys. Rev. A 83 052515
Catalog
Metrics
- Abstract views: 8091
- PDF Downloads: 334
- Cited By: 0