Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhanced sensing of 3.4 GHz microwave in multi-level Rydberg atomic system

XUE Jingjing LI Ruonan HU Xuesong SUN Peisheng ZHOU Haitao ZHANG Junxiang

Citation:

Enhanced sensing of 3.4 GHz microwave in multi-level Rydberg atomic system

XUE Jingjing, LI Ruonan, HU Xuesong, SUN Peisheng, ZHOU Haitao, ZHANG Junxiang
cstr: 32037.14.aps.74.20250081
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The Rydberg-based microwave detection is an all-optical technology that uses the strong coherent interaction between Rydberg atoms and microwave field. Different from the traditional microwave meter, the Rydberg atomic sensing is a new-type microwave detector that transforms the microwave spectrum into a coherent optical spectrum, and arouses increasingly the interests due to its high sensibility. For this kind of sensor, the coherence effect induced by coupling atoms with microwave plays a key role, and the decoherence may reduce the sensitivity. A multi-level Rydberg atomic scheme with optimized quantum coherence, which enhances both the bandwidth and the sensitivity for 4 GHz microwave sensing, is demonstrated experimentally in this work. The enhanced quantum coherence of Rydberg electromagnetically induced transparency (EIT) and microwave induced Autler-Townes (AT) splitting in EIT windows are shown using optical pumping at D1 line. The enhanced sensitivity at 3.4 GHz with 0.3 GHz bandwidth can be realized, based on the enhanced EIT-AT spectrum. The experimental results show that in the stepped Rydberg EIT system, the spectral width of EIT and microwave field EIT-AT can be narrowed by optical pumping (OP), so the sensitivity of microwave electric field measurement can be improved. After optimizing the EIT amplitude and adding single-frequency microwaves, the sensitivity of the microwave electric field measurement observed by the AT splitting interval is improved by 1.3 times. This work provides a reference for utilizing atomic microwave detection.
      Corresponding author: ZHOU Haitao, zht007@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 92476114, 61975102, 11704235), the Natural Science Foundation of Shanxi Province, China (Grant No. 20210302123437), the Natural Science Foundation for Youth Scientists of Shanxi Province, China (Grant No. 201901D211166), and the Shanxi Provincial Science and Technology Innovation Project of Colleges and Universities, China (Grant No. 2020L0038).
    [1]

    Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar

    [2]

    Holloway C, Simons M, Haddab A H, Gordon J A, Anderson D A, Raithel G 2021 IEEE Antennas Propag. Mag. 63 63Google Scholar

    [3]

    Holloway C L, Simons M T, Gordon J A, Novotny D 2019 IEEE Antennas Wirel Propag. Lett. 18 1853Google Scholar

    [4]

    Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. A 15 014053

    [5]

    Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 Appl. Phys. 129 154503

    [6]

    Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455Google Scholar

    [7]

    Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001Google Scholar

    [8]

    A. Gürtler; A. S. Meijer; W. J. van der Zande 2003 Appl. Phys. Lett. 014053

    [9]

    Holloway C L, Prajapati N, Artusio-Glimpse A B, et al. 2022 Appl. Phys. Lett. 120 204001Google Scholar

    [10]

    Fan H Q, Kumar S, Sedlacek J, Kübler H, Karimkashi S, Shaffer J P 2015 J. Phys. B: At. Mol. Opt. Phys. 48 202001Google Scholar

    [11]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [12]

    Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A, Raithel G 2016 Appl. Phys. Lett. 108 174101Google Scholar

    [13]

    Jia F D, Yu Y H, Liu X B, Zhang X, Zhang L, Wang F, Mei J, Zhang J, Xie F, Zhong Z P 2020 Appl. Opt. 59 8253Google Scholar

    [14]

    Liu X B, Jia F D, Zhang H Y, Mei J, Yu Y H, Liang W C, Zhang J, Xie F, Zhong Z P 2021 Appl. Phys. Lett. 11 085127

    [15]

    Li S H, Yuan J P, Wang L R 2020 Appl. Sci. 10 8110

    [16]

    Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432

    [17]

    Chopinaud A, Pritchard J D 2021 Phys. Rev. Appl. 16 024008Google Scholar

    [18]

    Meyer D H, O'Brien C, Fahey D P, Cox K C, Kunz P D 2021 Phys. Rev. A 104 043103

    [19]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911

    [20]

    Hu J L, Li H Q, Song R, Bai J X, Jiao Y C, Zhao J M, Jia S T 2022 Appl. Phys. Lett. 121 011101

    [21]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [22]

    Zhao J M, Zhu X B, Zhang L J, Feng Z G, Li C Y, Jia S T 2009 Opt. Express 17 15821Google Scholar

    [23]

    Kumar S, Fan H, Kübler H, Sheng J, Shaffer J P 2017 Sci. Rep. 7 42981Google Scholar

    [24]

    Simons M T, Gordon J A, Holloway C L 2018 Appl. Opt. 57 6456

    [25]

    Jia F D, Zhang J, Zhang L, Wang F, Mei J, Yu Y H, Zhong Z P, Xie F 2020 Appl. Opt. 59 2108Google Scholar

    [26]

    Fancher C T, Scherer D R, St. John M C, Marlow B L S 2021 IEEE Trans. Quantum Eng. 2 1Google Scholar

    [27]

    李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 物理学报 64 163201Google Scholar

    Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201Google Scholar

    [28]

    Wu B H, Chuang Y W, Chen Y H, Yu J C, Chang M S, Yu I A 2017 Sci. Rep. 7 9726Google Scholar

    [29]

    Su H J, Liou J Y, Lin I C, Chen Y H 2022 Opt. Express 30 1499Google Scholar

    [30]

    He Z S, Tsai J H, Chang Y Y, Liao C C, Tsai C C 2013 Phys. Rev. A 87 033402

    [31]

    Moon H S, Lee L, Kim J B 2008 Opt. Express 16 12163Google Scholar

    [32]

    Yang B D, Liang Q B, He J, Zhang T C, Wang J M 2010 Phys. Rev. A 81 043803

    [33]

    Zhang L J, Bao S X, Zhang H, Raithel G, Zhao J M, Xiao L T, Jia S T 2018 Opt. Express 26 29931

    [34]

    Prajapati N, Robinson A K, Berweger S, et al. 2021 Appl. Phys. Lett. 119 214001Google Scholar

    [35]

    Prajapati N, Akulshin A M, Novikova I 2018 J. Opt. Soc. Am. B: Opt. Phys. 35 1133Google Scholar

    [36]

    Akulshin A M, Orel A A, McLean R J 2012 J. Phys. B: At. Mol. Phys. 45 015401Google Scholar

    [37]

    Yang A H, Zhou W P, Zhao S C, Xu Y, Fedor J , Li Y X, Peng Y D 2020 J. Opt. Soc. Am. B: Opt. Phys. 37 1664

    [38]

    Li S H, Yuan J P, Wang L R, Xiao L T, Jia S T 2022 Front. Phys. 10 846687Google Scholar

    [39]

    Wang Q X, Wang Z H, Liu Y X, Guan S J, He J, Zhang P F, Li G, Zhang T C 2023 Acta Phys. Sin. 72 087801 [王勤霞, 王志辉, 刘岩鑫, 管世军, 何军, 张鹏飞, 李刚, 张天才 2023 物理学报 72 087801]Google Scholar

    Wang Q X, Wang Z H, Liu Y X, Guan S J, He J, Zhang P F, Li G, Zhang T C 2023 Acta Phys. Sin. 72 087801Google Scholar

    [40]

    Moon H S, Lee W K, Lee L, Kim J B 2004 IEEE Conf. Publ. 85 3965

  • 图 1  里德伯原子微波测量实验 (a)里德伯133Cs原子能级图; (b)实验装置示意图

    Figure 1.  Rydberg atomic microwave measurement experiment: (a) Rydberg 133Cs atomic energy level diagram; (b) schematic diagram of the experimental setup.

    图 2  微波探测实验结果 (a)四能级EIT-AT分裂谱, 黑线为微波与里德伯态共振耦合的EIT-AT谱(3.4 GHz), 红线和蓝线分别为微波频率发生红移或蓝移的耦合谱(3.276—3.516 GHz); (b) OP效应增强的EIT和EIT-AT谱; (c)不同再泵浦光频率失谐对EIT峰增强特性; (d) OP效应和无OP效应时EIT-AT谱宽的对比

    Figure 2.  Experimental results of microwave detection: (a) Four-level EIT-AT fission spectra; the black line is the EIT-AT spectrum (3.4 GHz) of microwave and Rydberg state resonance coupling, the red line and blue line are the coupling spectrum of microwave frequency with red shift or blue shift (3.276–3.516 GHz); (b) EIT and EIT-AT spectra with enhanced OP effect; (c) the enhancement characteristics of EIT peak by different repump optical frequency detuning; (d) the comparison of EIT-AT spectral width between OP effect and no OP effect.

    图 3  不同微波频率失谐和微波功率对EIT-AT分裂谱的影响

    Figure 3.  Effects of different microwave frequencies and microwave power on EIT-AT splitting spectrum.

  • [1]

    Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar

    [2]

    Holloway C, Simons M, Haddab A H, Gordon J A, Anderson D A, Raithel G 2021 IEEE Antennas Propag. Mag. 63 63Google Scholar

    [3]

    Holloway C L, Simons M T, Gordon J A, Novotny D 2019 IEEE Antennas Wirel Propag. Lett. 18 1853Google Scholar

    [4]

    Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. A 15 014053

    [5]

    Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 Appl. Phys. 129 154503

    [6]

    Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455Google Scholar

    [7]

    Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001Google Scholar

    [8]

    A. Gürtler; A. S. Meijer; W. J. van der Zande 2003 Appl. Phys. Lett. 014053

    [9]

    Holloway C L, Prajapati N, Artusio-Glimpse A B, et al. 2022 Appl. Phys. Lett. 120 204001Google Scholar

    [10]

    Fan H Q, Kumar S, Sedlacek J, Kübler H, Karimkashi S, Shaffer J P 2015 J. Phys. B: At. Mol. Opt. Phys. 48 202001Google Scholar

    [11]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [12]

    Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A, Raithel G 2016 Appl. Phys. Lett. 108 174101Google Scholar

    [13]

    Jia F D, Yu Y H, Liu X B, Zhang X, Zhang L, Wang F, Mei J, Zhang J, Xie F, Zhong Z P 2020 Appl. Opt. 59 8253Google Scholar

    [14]

    Liu X B, Jia F D, Zhang H Y, Mei J, Yu Y H, Liang W C, Zhang J, Xie F, Zhong Z P 2021 Appl. Phys. Lett. 11 085127

    [15]

    Li S H, Yuan J P, Wang L R 2020 Appl. Sci. 10 8110

    [16]

    Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432

    [17]

    Chopinaud A, Pritchard J D 2021 Phys. Rev. Appl. 16 024008Google Scholar

    [18]

    Meyer D H, O'Brien C, Fahey D P, Cox K C, Kunz P D 2021 Phys. Rev. A 104 043103

    [19]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911

    [20]

    Hu J L, Li H Q, Song R, Bai J X, Jiao Y C, Zhao J M, Jia S T 2022 Appl. Phys. Lett. 121 011101

    [21]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [22]

    Zhao J M, Zhu X B, Zhang L J, Feng Z G, Li C Y, Jia S T 2009 Opt. Express 17 15821Google Scholar

    [23]

    Kumar S, Fan H, Kübler H, Sheng J, Shaffer J P 2017 Sci. Rep. 7 42981Google Scholar

    [24]

    Simons M T, Gordon J A, Holloway C L 2018 Appl. Opt. 57 6456

    [25]

    Jia F D, Zhang J, Zhang L, Wang F, Mei J, Yu Y H, Zhong Z P, Xie F 2020 Appl. Opt. 59 2108Google Scholar

    [26]

    Fancher C T, Scherer D R, St. John M C, Marlow B L S 2021 IEEE Trans. Quantum Eng. 2 1Google Scholar

    [27]

    李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 物理学报 64 163201Google Scholar

    Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201Google Scholar

    [28]

    Wu B H, Chuang Y W, Chen Y H, Yu J C, Chang M S, Yu I A 2017 Sci. Rep. 7 9726Google Scholar

    [29]

    Su H J, Liou J Y, Lin I C, Chen Y H 2022 Opt. Express 30 1499Google Scholar

    [30]

    He Z S, Tsai J H, Chang Y Y, Liao C C, Tsai C C 2013 Phys. Rev. A 87 033402

    [31]

    Moon H S, Lee L, Kim J B 2008 Opt. Express 16 12163Google Scholar

    [32]

    Yang B D, Liang Q B, He J, Zhang T C, Wang J M 2010 Phys. Rev. A 81 043803

    [33]

    Zhang L J, Bao S X, Zhang H, Raithel G, Zhao J M, Xiao L T, Jia S T 2018 Opt. Express 26 29931

    [34]

    Prajapati N, Robinson A K, Berweger S, et al. 2021 Appl. Phys. Lett. 119 214001Google Scholar

    [35]

    Prajapati N, Akulshin A M, Novikova I 2018 J. Opt. Soc. Am. B: Opt. Phys. 35 1133Google Scholar

    [36]

    Akulshin A M, Orel A A, McLean R J 2012 J. Phys. B: At. Mol. Phys. 45 015401Google Scholar

    [37]

    Yang A H, Zhou W P, Zhao S C, Xu Y, Fedor J , Li Y X, Peng Y D 2020 J. Opt. Soc. Am. B: Opt. Phys. 37 1664

    [38]

    Li S H, Yuan J P, Wang L R, Xiao L T, Jia S T 2022 Front. Phys. 10 846687Google Scholar

    [39]

    Wang Q X, Wang Z H, Liu Y X, Guan S J, He J, Zhang P F, Li G, Zhang T C 2023 Acta Phys. Sin. 72 087801 [王勤霞, 王志辉, 刘岩鑫, 管世军, 何军, 张鹏飞, 李刚, 张天才 2023 物理学报 72 087801]Google Scholar

    Wang Q X, Wang Z H, Liu Y X, Guan S J, He J, Zhang P F, Li G, Zhang T C 2023 Acta Phys. Sin. 72 087801Google Scholar

    [40]

    Moon H S, Lee W K, Lee L, Kim J B 2004 IEEE Conf. Publ. 85 3965

  • [1] CAI Ting, HE Jun, LIU Zhihui, LIU Yao, SU Nan, SHI Pengfei, JIN Gang, CHENG Yongjie, WANG Junmin. Rydberg atomic spectroscopy based on nanosecond pulsed laser excitation. Acta Physica Sinica, 2025, 74(1): 013201. doi: 10.7498/aps.74.20240900
    [2] DING Chao, HU Shanshan, DENG Song, SONG Hongtian, ZHANG Ying, WANG Baoshuai, YAN Sheng, XIAO Dongping, ZHANG Huaiqing. Rydberg atom electric field based quantum measurement method and polarization influence analysis. Acta Physica Sinica, 2025, 74(4): 043201. doi: 10.7498/aps.74.20241362
    [3] Zhang Xue-Chao, Qiao Jia-Hui, Liu Yao, Su Nan, Liu Zhi-Hui, Cai Ting, He Jun, Zhao Yan-Ting, Wang Jun-Min. Measurement of low-frequency electric field waveform by Rydberg atom-based sensor. Acta Physica Sinica, 2024, 73(7): 070201. doi: 10.7498/aps.73.20231778
    [4] Han Xiao-Xuan, Sun Guang-Zu, Hao Li-Ping, Bai Su-Ying, Jiao Yue-Chun. Sensitivity of radio-frequency electric field sensor based on Rydberg Stark effect. Acta Physica Sinica, 2024, 73(9): 093202. doi: 10.7498/aps.73.20240162
    [5] Xie Ke, Luo Ji-Hong, Yao Xing-Can. Preparation of Bose-Einstein condensate of dysprosium atoms based on demagnetization cooling. Acta Physica Sinica, 2024, 73(21): 216701. doi: 10.7498/aps.73.20241299
    [6] Zhou Fei, Jia Feng-Dong, Liu Xiu-Bin, Zhang Jian, Xie Feng, Zhong Zhi-Ping. Measurement of microwave electric field based on electromagnetically induced transparency by using cold Rydberg atoms. Acta Physica Sinica, 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [7] Liao Qiu-Yu, Hu Heng-Jie, Chen Mao-Wei, Shi Yi, Zhao Yuan, Hua Chun-Bo, Xu Si-Liu, Fu Qi-Dong, Ye Fang-Wei, Zhou Qin. Two-dimensional spatial optical solitons in Rydberg cold atomic system under the action of optical lattice. Acta Physica Sinica, 2023, 72(10): 104202. doi: 10.7498/aps.72.20230096
    [8] Bai Jian-Nan, Han Song, Chen Jian-Di, Han Hai-Yan, Yan Dong. Correlated collective excitation and quantum entanglement between two Rydberg superatoms in steady state. Acta Physica Sinica, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [9] He Xiao, Xiao Xiao-Zhou, He Bin, Xue Ping, Xiao Jia-Ying. Quantitative analysis of oxygen partial pressure measurements based on photoacoustic pump-probe imaging. Acta Physica Sinica, 2023, 72(21): 218101. doi: 10.7498/aps.72.20231041
    [10] Wang Xin, Ren Fei-Fan, Han Song, Han Hai-Yan, Yan Dong. Perfect optomechanically induced transparency and slow light in an Rydberg atom-assisted optomechanical system. Acta Physica Sinica, 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [11] Wu Feng-Chuan, Lin Yi, Wu Bo, Fu Yun-Qi. Response characteristics of radio frequency pulse of Rydberg atoms. Acta Physica Sinica, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [12] Zhao Jia-Dong, Zhang Hao, Yang Wen-Guang, Zhao Jing-Hua, Jing Ming-Yong, Zhang Lin-Jie. Deceleration of optical pulses based on electromagnetically induced transparency of Rydberg atoms. Acta Physica Sinica, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [13] Liu Shuo, Bai Jian-Dong, Wang Jie-Ying, He Jun, Wang Jun-Min. Measurement of quantum defect of cesium nP3/2 (n = 70—94) Rydberg states by using ultraviolet single-photon Rydberg excitation. Acta Physica Sinica, 2019, 68(7): 073201. doi: 10.7498/aps.68.20182283
    [14] Jiao Yue-Chun, Zhao Jian-Ming, Jia Suo-Tang. Broadband Rydberg atom-based radio-frequency field sensor. Acta Physica Sinica, 2018, 67(7): 073201. doi: 10.7498/aps.67.20172636
    [15] Pei Dong-Liang, He Jun, Wang Jie-Ying, Wang Jia-Chao, Wang Jun-Min. Measurement of the fine structure of cesium Rydberg state. Acta Physica Sinica, 2017, 66(19): 193701. doi: 10.7498/aps.66.193701
    [16] Jiang Li-Juan, Zhang Xian-Zhou, Jia Guang-Rui, Zhang Yong-Hui, Xia Li-Hua. Coherent excitation and control of Rydberg lithium atoms in a chirped microwave field. Acta Physica Sinica, 2013, 62(1): 013101. doi: 10.7498/aps.62.013101
    [17] Sun Jiang, Liu Peng, Sun Juan, Su Hong-Xin, Wang Ying. Study of the satellite line in measurement of the argon -gas-induced broadening of the barium Rydberg levels by two-photon resonant nondegenerate four-wave mixing. Acta Physica Sinica, 2012, 61(12): 124205. doi: 10.7498/aps.61.124205
    [18] Sun Jiang, Sun Juan, Wang Ying, Su Hong-Xin. Measurement of the argon-gas-induced broadening and shifting of the barium Rydberg levels by two-photon resonant nondegenerate four-wave mixing. Acta Physica Sinica, 2012, 61(11): 114214. doi: 10.7498/aps.61.114214
    [19] Jiang Li-Juan, Zhang Xian-Zhou, Ma Huan-Qiang, Jia Guang-Rui, Zhang Yong-Hui, Xia Li-Hua. Population transfer of high excited states of Rydberg sodium atoms in a chirped microwave field. Acta Physica Sinica, 2012, 61(4): 043101. doi: 10.7498/aps.61.043101
    [20] Sun Jiang, Zuo Zhan-Chun, Guo Qing-Lin, Wang Ying-Long, Huai Su-Fang, Wang Ying, Fu Pan-Ming. Observation of Rydberg series of neutral barium by two-photon resonent nondegenerate four-wave mixing. Acta Physica Sinica, 2006, 55(1): 221-225. doi: 10.7498/aps.55.221
Metrics
  • Abstract views:  495
  • PDF Downloads:  21
  • Cited By: 0
Publishing process
  • Received Date:  17 January 2025
  • Accepted Date:  30 January 2025
  • Available Online:  21 February 2025
  • Published Online:  20 April 2025

/

返回文章
返回