-
The Rydberg-based microwave detection is an all-optical technology that uses the strong coherent interaction between Rydberg atoms and microwave field. Different from the traditional microwave meter, the Rydberg atomic sensing is a new-type microwave detector that transforms the microwave spectrum into a coherent optical spectrum, and arouses increasingly the interests due to its high sensibility. For this kind of sensor, the coherence effect induced by coupling atoms with microwave plays a key role, and the decoherence may reduce the sensitivity. A multi-level Rydberg atomic scheme with optimized quantum coherence, which enhances both the bandwidth and the sensitivity for 4 GHz microwave sensing, is demonstrated experimentally in this work. The enhanced quantum coherence of Rydberg electromagnetically induced transparency (EIT) and microwave induced Autler-Townes(AT) splitting in EIT windows are shown using optical pumping at D1 line. The enhanced sensitivity at 3.4 GHz with 0.3 GHz bandwidth can be realized, based on the enhanced EIT-AT spectrum. The experimental results show that in the stepped Rydberg EIT system, the spectral width of EIT and microwave field EIT-AT can be narrowed by optical pumping(OP), so the sensitivity of microwave electric field measurement can be improved. After optimizing the EIT amplitude and adding single-frequency microwaves, the sensitivity of the microwave electric field measurement observed by the AT splitting interval is improved by 1.3 times. This work provides a reference for utilizing atomic microwave detection.
-
Keywords:
- quantum coherence effect /
- Rydberg /
- microwave measurements /
- optical pumping
-
图 2 微波探测实验结果 (a)四能级EIT-AT分裂谱; 黑线为微波与里德伯态共振耦合的EIT-AT谱(3.4 GHz), 红线和蓝线分别为微波频率发生红移或蓝移的耦合谱(3.276—3.516 GHz); (b)OP效应增强的EIT和EIT-AT谱; (c)不同再泵浦光频率失谐对EIT峰增强特性; (d)OP效应和无OP效应时EIT-AT谱宽的对比
Figure 2. Experimental results of microwave detection: (a) Four-level EIT-AT fission spectra; the black line is the EIT-AT spectrum (3.4 GHz) of microwave and Rydberg state resonance coupling, the red line and blue line are the coupling spectrum of microwave frequency with red shift or blue shift (3.276–3.516 GHz); (b) EIT and EIT-AT spectra with enhanced OP effect; (c) the enhancement characteristics of EIT peak by different repump optical frequency detuning; (d) the comparison of EIT-AT spectral width between OP effect and no OP effect.
-
[1] Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848
Google Scholar
[2] Holloway C, Simons M, Haddab A H, Gordon J A, Anderson D A, Raithel G 2021 IEEE Antennas Propag. Mag. 63 63
[3] Holloway C L, Simons M T, Gordon J A, Novotny D 2019 IEEE Antennas Wirel Propag. Lett. 18 1853
[4] Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. A 15 014053
[5] Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 Appl. Phys. 129 154503
[6] Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455
[7] Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001
Google Scholar
[8] Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014053
[9] Holloway C L, Prajapati N, Artusio-Glimpse A B, Berweger S, Simons M T, Kasahara Y, Alú A, Ziolkowski R W 2022 Appl. Phys. Lett. 120 204001
Google Scholar
[10] Fan H Q, Kumar S, Sedlacek J, Kübler H, Karimkashi S, Shaffer J P 2015 J. Phys. B: At. Mol. Opt. Phys. 48 202001
[11] Hao J H, Jia F D, Cui Y, Wang Y H, Zhou F, Liu X B, Zhang J, Xie F, Bai J H, You J Q, Wang Y, Zhong Z P 2024 Chin. Phys. B 33 050702
[12] Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A, Raithel G 2016 Appl. Phys. Lett. 108 174101
Google Scholar
[13] Jia F D , Yu Y H , Liu X B , Zhang X, Zhang L, Wang F, Mei J, Zhang J, Xie F, Zhong Z P 2022 J. Appl. Phys. 132 244401
[14] Liu X B, Jia F D, Zhang H Y, Mei J, Yu Y H, Liang W C, Zhang J, Xie F, Zhong Z P 2023 Appl. Phys. Lett. 122 161103
[15] Li S H, Yuan J P, Wang L R 2020 Appl. Sci. 10 8110
[16] Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432
[17] Chopinaud A, Pritchard J D 2021 Phys. Rev. Appl. 16 024008
Google Scholar
[18] Meyer D H, O'Brien C, Fahey D P, Cox K C, Kunz P D 2021 Phys. Rev. A 104 043103
[19] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911
[20] Hu J L, Li H Q, Song R, Bai J X, Jiao Y C, Zhao J M, Jia S T 2022 Appl. Phys. Lett. 121 011101
[21] Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003
[22] Zhao J M, Zhu X B, Zhang L J, Feng Z G, Li C Y, Jia S T 2009 Opt. Express 17 15821
[23] Kumar S, Fan H, Kübler H, Sheng J, Shaffer J P 2017 Sci. Rep. 7 42981
[24] Simons M T, Gordon J A, Holloway C L 2018 Appl. Opt. 57 6456
[25] Jia F D, Zhang J, Zhang L, Wang F, Mei J, Yu Y H, Zhong Z P, Xie F 2020 Appl. Opt. 59 2108
[26] Fancher C T, Scherer D R, St. John M C, Marlow B L S 2021 IEEE Trans. Quantum Eng. 2 1
[27] 李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 物理学报 64 163201
Google Scholar
Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201
Google Scholar
[28] Wu B H, Chuang Y W, Chen Y H, Yu J C, Chang M S, Yu I A 2017 Sci. Rep. 7 9726
[29] Su H J, Liou J Y, Lin I C, Chen Y H 2022 Opt. Express 30 1499
[30] He Z S, Tsai J H, Chang Y Y, Liao C C, Tsai C C 2013 Phys. Rev. A 87 033402
[31] Moon H S, Lee L, Kim J B 2008 Opt. Express 16 12163
Google Scholar
[32] Yang B D, Liang Q B, He J, Zhang T C, Wang J M 2010 Phys. Rev. A 81 043803
[33] Zhang L J, Bao S X, Zhang H, Raithel G, Zhao J M, Xiao L T, Jia S T 2018 Opt. Express 26 29931
[34] Prajapati N, Robinson A K, Berweger S, Simons M T, Artusio-Glimpse A B, Holloway C L 2021 Appl. Phys. Lett. 119 214001
Google Scholar
[35] Prajapati N, Akulshin A M, Novikova I 2018 J. Opt. Soc. Am. B: Opt. Phys. 35 1133
Google Scholar
[36] Akulshin A M, Orel A A, McLean R J 2012 J. Phys. B: At. Mol. Phys. 45 015401
[37] Yang A H, Zhou W P, Zhao S C, Xu Y, Fedor J , Li Y X, Peng Y D 2020 J. Opt. Soc. Am. B: Opt. Phys. 37 1664
[38] Li S H, Yuan J P, Wang L R, Xiao L T, Jia S T 2022 Front. Phys. 10 846687
Google Scholar
[39] Wang Q X, Wang Z H, Liu Y X, Guan S J, He J, Zhang P F, Li G, Zhang T C 2023 Acta Phys. Sin. 72 087801 [王勤霞, 王志辉, 刘岩鑫, 管世军, 何军, 张鹏飞, 李刚, 张天才 2023 物理学报 72 087801]
Google Scholar
Wang Q X, Wang Z H, Liu Y X, Guan S J, He J, Zhang P F, Li G, Zhang T C 2023 Acta Phys. Sin. 72 087801
Google Scholar
[40] Moon H S, Lee W K, Lee L, Kim J B 2018 IEEE Conf. Publ. 85 3965
Metrics
- Abstract views: 292
- PDF Downloads: 10
- Cited By: 0