-
The interaction between an electric field and the energy levels of Rydberg states results in the Stark effect, which can be used for quantum detection by measuring the frequency shift in EIT (Electromagnetically Induced Transparency) spectra. By leveraging the functional relationship between the frequency shift and the electric field, it is possible to measure the electric field in question. However, when the mismatch between the probe laster and the polarisation direction of the coupled laster leads to errors in the measurement of the frequency shift, which in turn affects the accurate measurement of the electric field. In this paper, the Schrödinger equation is firstly solved by perturbation method to derive the functional relationship between the energy offset and the electric field strength. Then, the functional relationship between the energy offset and the electric field strength is brought into the density matrix equation solution to derive and analyse the effect of the polarization direction of the detected and coupled light on the EIT-Stark mathematical model. The paper then employs an internal electrode method to prevent shielding effects caused by alkali metal atoms adhering to the surface of the atomic vapor cell, thereby enabling the application of the electric field. The calibration of the Rydberg state polarisation rate is achieved by applying a standard source and measuring the frequency shift of the EIT spectrum. Finally, the effect of polarisation mismatch on the EIT spectrum as well as the electric field measurement results was verified by modulating the laser polarisation direction. The experimental data show that when the polarisation directions of the probe and coupled laser are parallel to each other, it is the most matched polarisation direction of the laser, the peak value of the EIT spectrum is the largest, and the maximum relative error of the electric field measurement is 1.67%. When the angle between the polarisation directions of the probe light and the coupled light laser is 45°, the laser polarisation mismatch is the most serious, the EIT spectral peak is the lowest and the maximum relative error of the electric field measurement is 10.24%.
-
Keywords:
- Electric field measurement /
- Rydberg atom /
- Electromagnetically induced transparency(EIT) /
- Direction of laser polarisation
-
[1] Holloway C L, Prajapati N, Simons M T, Artusio-Glimpse A 2022 IEEE Microwave Magazine23 pp44-56
[2] Zhang X, Qiao J, Liu Y, Su N, Liu Z, Cai T, He J, Zhao Y, Wang J 2024 Acta Phys. Sin. 73 073201 (in Chinese) [张学超, 乔佳慧, 刘瑶, 苏楠, 刘智慧, 蔡婷, 何军, 赵延霆, 王军民 2024 物理学报 73 070201]
[3] Zhan Y, Tang J, Li C, Wu C, Zhang J, Zhou Y 2024 Acta Phys. Sin. 73 104203 (in Chinese) [夏刚,
Xia G,
[4] Hao L, Xue Y, Fan J, Bai J, Jiao Y, Zhao J 2020 Chin. Phys. B 29 033201
[5] 张亚鹏, 汤婧雯, 李春燕, 吴春旺, 张杰, 周艳丽 2024 物理学报 73 104203]
[6] Zhang C, Li W, Zhang H, Jing M, Zhang L 2021 Acta Photonica Sinica 50 0602001 (in Chinese) [张淳刚,李伟,张好,景明勇,张临杰 2021 光子学报50 0602001]
[7] Li W, Zhang C, Zhang H, Jing M, Zhang L 2021 Laser & Optoelectronics Progress 58 1702002 (in Chinese) [李伟,张淳刚,张好,景明勇,张临杰 2021 激光与光电子学进展 58 1702002]
[8] Hu J, Li H, Song R, Bai J, Jiao Y, Zhao J, Jia S 2022 Appl. Phys. Lett. 121 014002
[9] Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Advances 9 045030
[10] Amy K R, Nikunjkumar P, Senic D 2021 Appl. Phys. Lett. 118 114001
[11] Ruan W, Zhang Y, Feng Z, Zhou Y Song Z, Qu J 2024 Acta Metrologica Sinca 45 pp97-102 (in Chinese)[阮伟民,张映昀, 冯志刚, 周亚东, 宋振飞, 屈继峰 2024 计量学报 45pp97-102]
[12] Zhang Y, Ruan W, Feng Z, Qu J, Song Z 2023 Acta Metrologica Sinca 44 pp1438-1443(in Chinese)[ 张映昀, 阮伟民, 冯志刚, 屈继峰, 宋振飞 2023 计量学报 44 pp1438-1443]
[13] Li K, Tian J, Zhang H, Jing M, Zhang L 2023 Acta Photonica Sinica 52 0902001(in Chinese)[李可, 田建飞, 张好, 景明勇, 张临杰 2023 光子学报 52 0902001]
[14] Liu X, Jia F, Zhou F, Yu Y, Zhang J, Xie F, Zhong Z 2023 Journal of Astronautic Metrology and Measurement 43 pp5-10(in Chinese)[刘修彬,贾凤东, 周飞, 俞永宏, 张剑, 谢锋, 钟志萍 2023 宇航计测技术 43 pp5-10]
[15] Cai M, Xu Z, You S, Liu H 2022 Photonics 9 250
[16] Cai D, Hu X, Wu H, Lv J 2023 Power Systems and big data 26 pp90-100 (in Chinese)[蔡德成, 胡星, 吴海洋, 吕健双 2023 电力大数据 26 pp90-100]
[17] Zhang Y, Xin M, Feng Q, Zhu J 2023Power Systems and big data 26 pp69-76 (in Chinese)[ 张缘圆, 辛明勇, 冯起辉, 祝健杨 2023 电力大数据 26 pp69-76]
[18] Liu W, Zhang L, Wang T 2023 Chinese Physcis B32 053203
[19] Zhao S S, Gao W, Cheng H, You L, Liu H P 2018 Phys. Rev. Lett. 120 063203
[20] Han Y, Liu B, Zhang K, Sun J, Sun H, Ding D 2024 Acta Phys. Sin. 73 113201 (in Chinese)[韩玉龙, 刘邦, 张侃, 孙金芳, 孙辉, 丁冬生 2024 物理学报 73 113201]
[21] Yan S, Xiao D, Shi Z, Zhang H, Liu W 2024 Transactions of China Electrotechnical Society 39 pp2953-2960(in Chinese)[ 阎晟,肖冬萍, 石筑鑫, 张淮清 刘卫华 2024 电工技术学报 39 pp2953-2960]
[22] Wang Y, Wu bo, Fu Y, An Q 2024 Laser & Optoelectronics Progress OL(in Chinese)[ 王延正,武博, 付运起, 安强 2024 激光与光电子学进展OL]
[23] Noah S, Andrew P R, Alexandra B A, Nikunjkumar P, Samuel B, Dangka S, Matthew T S, Christopher L H 2024 Phys. Rev. A 109 L021702
[24] Sedlacek J A, Schwettmann A, Kubler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001
[25] Bao S, Zhang H, Zhou J, Zhang L, Zhao J, Xiao L, Jia S 2016 Phys. Rev. A 94 043822
Metrics
- Abstract views: 101
- PDF Downloads: 10
- Cited By: 0