Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrafast spin dynamics: From femtosecond magnetism to attosecond magnetism

Yang Xu Feng Hong-Mei Liu Jia-Nan Zhang Xiang-Qun He Wei Cheng Zhao-Hua

Citation:

Ultrafast spin dynamics: From femtosecond magnetism to attosecond magnetism

Yang Xu, Feng Hong-Mei, Liu Jia-Nan, Zhang Xiang-Qun, He Wei, Cheng Zhao-Hua
PDF
HTML
Get Citation
  • Ultrafast spin dynamics is the study of the evolution of spin degrees of freedom on a time scale from picoseconds to attoseconds after being excited by an external field. With the development of laser technology, ultrafast spin dynamics has presented new opportunities for realizing ultrafast spintronic devices since 1996. However, despite decades of development, many aspects of femtosecond magnetism remain unclear. Understanding the parameters of these ultrafast spin dynamics processes requires experiments on an even faster timescale. Attosecond magnetism and the interaction of attosecond laser pulses with magnetic materials can reveal spin dynamics on a sub-femtosecond to attosecond time scale. In this review, we first introduce the significant research progress, including the mechanisms of ultrafast demagnetization, all-optical switching, ultrafast spin currents, and terahertz waves. Secondly, we analyze the problems in ultrafast spin dynamics, such as the unclear physical mechanisms of ultrafast demagnetization, the uncertain relationship between magnetic damping and ultrafast demagnetization time, and the unexplored anisotropic ultrafast demagnetization. Thirdly, we discuss the opportunities and challenges in attosecond magnetism. Finally, we analyze and discuss the future development and prospects of ultrafast spin dynamics.
      Corresponding author: Cheng Zhao-Hua, zhcheng@iphy.ac.cn
    [1]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731Google Scholar

    [2]

    Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901Google Scholar

    [3]

    Farle M 1998 Rep. Prog. Phys. 61 755Google Scholar

    [4]

    Kambersky V 1976 Czech. J. Phys. B 26 1366Google Scholar

    [5]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [6]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601Google Scholar

    [7]

    Lambert C H, Mangin S, Varaprasad B S D C S, Takahashi Y K, Hehn M, Cinchetti M, Malinowski G, Hono K, Fainman Y, Aeschlimann M, Fullerton E E 2014 Science 345 1337Google Scholar

    [8]

    Igarashi J, Zhang W, Remy Q, Diaz E, Lin J X, Hohlfeld J, Hehn M, Mangin S, Gorchon J, Malinowski G 2023 Nat. Mater. 22 725Google Scholar

    [9]

    Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blugel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455Google Scholar

    [10]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [11]

    Ferray M, L'Huillier A, Li X F, Lomprk L A, Mainfray G, Manus C 1988 J. Phys. B-At. Mol. Opt. 21 L31Google Scholar

    [12]

    Nisoli M, Sansone G 2009 Prog. Quant. Electron. 33 17Google Scholar

    [13]

    Siegrist F, Gessner J A, Ossiander M, Denker C, Chang Y P, Schroder M C, Guggenmos A, Cui Y, Walowski J, Martens U, Dewhurst J K, Kleineberg U, Munzenberg M, Sharma S, Schultze M 2019 Nature 571 240Google Scholar

    [14]

    Li Y, Li Y, Liu Q, Xie Z K, Vetter E, Yuan Z, He W, Liu H L, Sun D L, Xia K, Yu W, Sun Y B, Zhao J J, Zhang X Q, Cheng Z H 2019 New J. Phys. 21 103040Google Scholar

    [15]

    Tserkovnyak Y, Brataas A, Bauer G E 2002 Phys. Rev. Lett. 88 117601Google Scholar

    [16]

    Katine J A, Albert F J, Buhrman R A 2000 Phys. Rev. Lett. 84 3149Google Scholar

    [17]

    Ralph D C, Stiles M D 2008 J. Magn. Magn. Mater. 320 1190Google Scholar

    [18]

    Soumyanarayanan A, Reyren N, Fert A, Panagopoulos C 2016 Nature 539 509Google Scholar

    [19]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [20]

    Yang S A 2016 Spin 06 1640003Google Scholar

    [21]

    Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z, Shen Z X 2009 Science 325 178Google Scholar

    [22]

    Di Sante D, Barone P, Bertacco R, Picozzi S 2013 Adv. Mater. 25 509Google Scholar

    [23]

    Manchon A, Koo H C, Nitta J, Frolov S M, Duine R A 2015 Nat. Mater. 14 871Google Scholar

    [24]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev Mod Phys 87 1213Google Scholar

    [25]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boni P 2009 Phys. Rev. Lett. 102 186602Google Scholar

    [26]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106Google Scholar

    [27]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [28]

    Zutic I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323Google Scholar

    [29]

    Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472Google Scholar

    [30]

    Binasch G, Grunberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B Condens. Matter. 39 4828Google Scholar

    [31]

    Hashimoto S, Ochiai Y 1990 J. Magn. Magn. Mater. 88 211Google Scholar

    [32]

    Cheng Z H, He W, Zhang X Q, Sun D L, Du H F, Wu Q, Ye J, Fang Y P, Liu H L 2015 Chin. Phys. B 24 077505Google Scholar

    [33]

    Walowski J, Muller G, Djordjevic M, Munzenberg M, Klaui M, Vaz C A, Bland J A 2008 Phys. Rev. Lett. 101 237401Google Scholar

    [34]

    Radu I, Woltersdorf G, Kiessling M, Melnikov A, Bovensiepen U, Thiele J U, Back C H 2009 Phys. Rev. Lett. 102 117201Google Scholar

    [35]

    Guidoni L, Beaurepaire E, Bigot J Y 2002 Phys. Rev. Lett. 89 017401Google Scholar

    [36]

    Graves C E, Reid A H, Wang T, et al. 2013 Nat. Mater. 12 293Google Scholar

    [37]

    Bartelt A F, Comin A, Feng J, Nasiatka J R, Eimüller T, Ludescher B, Schütz G, Padmore H A, Young A T, Scholl A 2007 Appl. Phys. Lett. 90 162503Google Scholar

    [38]

    Li Y, Zhang W, Li N, Sun R, Tang J, Gong Z Z, Li Y, Yang X, Xie Z K, Gul Q, Zhang X Q, He W, Cheng Z H 2019 J. Phys. Condens. Mat. 31 305802Google Scholar

    [39]

    Zhang Q, Nurmikko A V, Miao G X, Xiao G, Gupta A 2006 Phys. Rev. B 74 064414Google Scholar

    [40]

    Muller G M, Walowski J, Djordjevic M, Miao G X, Gupta A, Ramos A V, Gehrke K, Moshnyaga V, Samwer K, Schmalhorst J, Thomas A, Hutten A, Reiss G, Moodera J S, Munzenberg M 2009 Nat. Mater. 8 56Google Scholar

    [41]

    Lu X Y, Lin Z Y, Pi H Q, Zhang T, Li G Q, Gong Y T, Yan Y, Ruan X Z, Li Y, Zhang H, Li L, He L, Wu J, Zhang R, Weng H M, Zeng C G, Xu Y B 2024 Nat. Commun. 15 2410Google Scholar

    [42]

    Lichtenberg T, Schippers C F, van Kooten S C P, Evers S G F, Barcones B, Guimarães M H D, Koopmans B 2022 2D Mater. 10 015008Google Scholar

    [43]

    Wu N, Zhang S J, Chen D Q, Wang Y X, Meng S 2024 Nat. Commun. 15 2804Google Scholar

    [44]

    Khela M, Da Browski M, Khan S, Keatley P S, Verzhbitskiy I, Eda G, Hicken R J, Kurebayashi H, Santos E J G 2023 Nat. Commun. 14 1378Google Scholar

    [45]

    Sun T, Zhou C, Jiang Z Z, Li X M, Qiu K, Xiao R C, Liu C X, Ma Z W, Luo X, Sun Y P, Sheng Z G 2021 2D Mater. 8 045040Google Scholar

    [46]

    Da Browski M, Guo S, Strungaru M, Keatley P S, Withers F, Santos E J G, Hicken R J 2022 Nat. Commun. 13 5976Google Scholar

    [47]

    Lee W J, Fernandez-Mulligan S, Tan H X, Yan C H, Guan Y D, Lee S H, Mei R B, Liu C X, Yan B H, Mao Z Q, Yang S L 2023 Nat. Phys. 19 950Google Scholar

    [48]

    Padmanabhan H, Stoica V A, Kim P K, Poore M, Yang T N, Shen X Z, Reid A H, Lin M F, Park S, Yang J, Wang H Y, Koocher N Z, Puggioni D, Georgescu A B, Min L J, Lee S H, Mao Z Q, Rondinelli J M, Lindenberg A M, Chen L Q, Wang X J, Averitt R D, Freeland J W, Gopalan V 2022 Adv. Mater. 34 2202841Google Scholar

    [49]

    Bartram F M, Leng Y C, Wang Y, Liu L, Chen X, Peng H, Li H, Yu P, Wu Y, Lin M L, Zhang J, Tan P H, Yang L 2022 npj Quantum. Mater. 7 84Google Scholar

    [50]

    Evans R F L, Fan W J, Chureemart P, Ostler T A, Ellis M O A, Chantrell R W 2014 J. Phys. Condens. Matter. 26 103202Google Scholar

    [51]

    Atxitia U, Chubykalo-Fesenko O 2011 Phys. Rev. B 84 144414Google Scholar

    [52]

    Koopmans B, Ruigrok J J, Longa F D, de Jonge W J 2005 Phys. Rev. Lett. 95 267207Google Scholar

    [53]

    Koopmans B, Malinowski G, Dalla Longa F, Steiauf D, Fahnle M, Roth T, Cinchetti M, Aeschlimann M 2010 Nat. Mater. 9 259Google Scholar

    [54]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [55]

    Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M, Koopmans B 2008 Nat. Phys. 4 855Google Scholar

    [56]

    Schellekens A J, Kuiper K C, de Wit R R J C, Koopmans B 2014 Nat. Commun. 5 4333Google Scholar

    [57]

    Li N, Sun Y B, Sun R, Yang X, Zhang W, Xie Z K, Liu J N, Li Y, Li Y, Gong Z Z, Zhang X Q, He W, Cheng Z H 2022 Phys. Rev. B 105 144415Google Scholar

    [58]

    Hou Y S, Wu R Q 2019 Phys. Rev. Appl. 11 054032Google Scholar

    [59]

    Gong Z H, Zhang W, Liu J N, Xie Z K, Yang X, Tang J, Du H F, Li N, Zhang X Q, He W, Cheng Z H 2023 Phys. Rev. B 107 144429Google Scholar

    [60]

    Zhang X C, Shkurinov A, Zhang Y 2017 Nat. Photonics 11 16Google Scholar

    [61]

    Pawar A Y, Sonawane D D, Erande K B, Derle D V 2013 Drug. Invent. Today 5 157Google Scholar

    [62]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Notzold J, Mahrlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blugel S, Wolf M, Radu I, Oppeneer P M, Munzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar

    [63]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [64]

    Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910Google Scholar

    [65]

    Ando K, Takahashi S, Harii K, Sasage K, Ieda J, Maekawa S, Saitoh E 2008 Phys. Rev. Lett. 101 036601Google Scholar

    [66]

    Rojas-Sanchez J C, Reyren N, Laczkowski P, Savero W, Attane J P, Deranlot C, Jamet M, George J M, Vila L, Jaffres H 2014 Phys. Rev. Lett. 112 106602Google Scholar

    [67]

    Sun R, Yang S J, Yang X, Vetter E, Sun D L, Li N, Su L, Li Y, Li Y, Gong Z Z, Xie Z K, Hou K Y, Gul Q, He W, Zhang X Q, Cheng Z H 2019 Nano Lett. 19 4420Google Scholar

    [68]

    Sun R, Yang S J, Yang X, Kumar A, Vetter E, Xue W H, Li Y, Li N, Li Y, Zhang S H, Ge B H, Zhang X Q, He W, Kemper A F, Sun D, Cheng Z H 2020 Adv. Mater. 32 2005315Google Scholar

    [69]

    Qiu H S, Zhou L, Zhang C, Wu J, Tian Y, Cheng S, Mi S, Zhao H, Zhang Q, Wu D, Jin B, Chen J, Wu P 2020 Nat. Phys. 17 388Google Scholar

    [70]

    Tang J, Ke Y J, He W, Zhang X Q, Zhang W, Li N, Zhang Y S, Li Y, Cheng Z H 2018 Adv. Mater. 30 1706439Google Scholar

    [71]

    Kuiper K C, Roth T, Schellekens A J, Schmitt O, Koopmans B, Cinchetti M, Aeschlimann M 2014 Appl. Phys. Lett. 105 202402Google Scholar

    [72]

    Zhang G P, Hubner W 2000 Phys. Rev. Lett. 85 3025Google Scholar

    [73]

    Tauchert S R, Volkov M, Ehberger D, Kazenwadel D, Evers M, Lange H, Donges A, Book A, Kreuzpaintner W, Nowak U, Baum P 2022 Nature 602 73Google Scholar

    [74]

    Ren Y, Zuo Y L, Si M S, Zhang Z Z, Jin Q Y, Zhou S M 2013 Ieee T. Magn. 49 3159Google Scholar

    [75]

    Zhang Z, Wu D, Luan Z, Yuan H, Zhang Z, Zhao J, Zhao H, Chen L 2015 IEEE Magn. Lett. 6 1Google Scholar

    [76]

    Woltersdorf G, Kiessling M, Meyer G, Thiele J U, Back C H 2009 Phys. Rev. Lett. 102 257602Google Scholar

    [77]

    Gilmore K, Stiles M D, Seib J, Steiauf D, Fahnle M 2010 Phys. Rev. B 81 174414Google Scholar

    [78]

    Xia H, Zhao Z R, Zeng F L, Zhao H C, Shi J Y, Zheng Z, Shen X, He J, Ni G, Wu Y Z, Chen L Y, Zhao H B 2021 Phys. Rev. B 104 024404Google Scholar

    [79]

    Zhang W, He W, Zhang X Q, Cheng Z H, Teng J, Fähnle M 2017 Phys. Rev. B 96 220415Google Scholar

    [80]

    Zhang W, Liu Q, Yuan Z, Xia K, He W, Zhan Q F, Zhang X Q, Cheng Z H 2019 Phys. Rev. B 100 104412Google Scholar

    [81]

    Unikandanunni V, Medapalli R, Fullerton E E, Carva K, Oppeneer P M, Bonetti S 2021 Appl. Phys. Lett. 118 232404Google Scholar

    [82]

    Yang X, Qiu L, Li Y, Xue H P, Liu J N, Sun R, Yang Q L, Gai X S, Wei Y S, Comstock A H, Sun D, Zhang X Q, He W, Hou Y, Cheng Z H 2023 Phys. Rev. Lett. 131 186703Google Scholar

    [83]

    Waldrop M M 2016 Nature 530 144Google Scholar

    [84]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614Google Scholar

    [85]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Worner H J 2017 Opt. Express 25 27506Google Scholar

    [86]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X, Chang Z 2012 Opt. Lett. 37 3891Google Scholar

    [87]

    Midorikawa K 2022 Nat. Photonics 16 267Google Scholar

    [88]

    Xue B, Tamaru Y, Fu Y, Yuan H, Lan P, Mücke O D, Suda A, Midorikawa K, Takahashi E J 2020 Sci. Adv. 6 eaay2802Google Scholar

    [89]

    Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M 2010 Nat. Photonics 4 875Google Scholar

    [90]

    Corkum P B, Krausz F 2007 Nat. Phys. 3 381Google Scholar

    [91]

    Popmintchev T, Chen M C, Arpin P, Murnane M M, Kapteyn H C 2010 Nat. Photonics 4 822Google Scholar

    [92]

    Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaja L, Becker A, Jaron-Becker A, Murnane M M, Kapteyn H C 2012 Science 336 1287Google Scholar

    [93]

    Li S, Wang R, Frauenheim T, He J 2024 J. Phys. Chem. Lett. 15 5959Google Scholar

    [94]

    Tao Z, Chen C, Szilvási T, Keller M, Mavrikakis M, Kapteyn H, Murnane M 2016 Science 353 62Google Scholar

    [95]

    Hofherr M, Häuser S, Dewhurst J K, Tengdin P, Sakshath S, Nembach H T, Weber S T, Shaw J M, Silva T J, Kapteyn H C, Cinchetti M, Rethfeld B, Murnane M M, Steil D, Stadtmüller B, Sharma S, Aeschlimann M, Mathias S 2020 Sci. Adv. 6 eaay8717Google Scholar

    [96]

    Ryan S a A, Johnsen P C, Elhanoty M F, Grafov A, Li N, Delin A, Markou A, Lesne E, Felser C, Eriksson O, Kapteyn H C, Grånäs O, Murnane M M 2023 Sci. Adv. 9 eadi1428Google Scholar

    [97]

    Tengdin P, Gentry C, Blonsky A, Zusin D, Gerrity M, Hellbrück L, Hofherr M, Shaw J, Kvashnin Y, Delczeg-Czirjak E K, Arora M, Nembach H, Silva T J, Mathias S, Aeschlimann M, Kapteyn H C, Thonig D, Koumpouras K, Eriksson O, Murnane M M 2020 Sci. Adv. 6 eaaz1100Google Scholar

    [98]

    Locher R, Castiglioni L, Lucchini M, Greif M, Gallmann L, Osterwalder J, Hengsberger M, Keller U 2015 Optica 2 405Google Scholar

    [99]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [100]

    Chainani A, Yokoya T, Kiss T, Shin S 2000 Phys. Rev. Lett. 85 1966Google Scholar

    [101]

    Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515Google Scholar

  • 图 1  超快自旋动力学不同时间区域 (a) Ni薄膜的超快退磁现象[5]; (b) 超快自旋动力学3个过程, I为超快退磁, II为磁矩恢复, III为磁矩进动[32]; (c) 激光与铁磁性金属相互作用的热力学库; (d) Ni的三温度模型得到的电子、晶格、自旋的温度变化[5]

    Figure 1.  Different time regimes of the ultrafast spin dynamics: (a) The ultrafast demagnetization of Ni thin film[5]; (b) the three-time regimes of Fe/MgO, I represents ultrafast demagnetization, II represents magnetic moment recovery, and III represents magnetic moment precession[32]; (c) the interaction between the laser pulse and the three thermalized reservoirs of electrons, lattice, and spin; (d) the temperature changes of electrons, lattice, and spin with time[5].

    图 2  拓扑表面态增强的Fe/Bi2Se3的超快自旋动力学行为 (a), (b)分别为9 QL和3 QL的Bi2Se3能带结构; (c) 异质结阻尼因子随温度的变化; (d) Fe/Bi2Se3 (9 QL 和3 QL)表面态对超快退磁的影响[57]

    Figure 2.  Topological surface state enhanced ultrafast spin dynamics of Fe/Bi2Se3 heterostructures: (a), (b) The band structures of Bi2Se3 with the thickness of 9 QL and 3 QL; (c) temperature dependence of damping; (d) ultrafast demagnetization curves of different samples[57].

    图 3  可产生Skyrmions的FeGe材料中Type I-Type II超快退磁的转变 (a), (b) 分别为温度、磁场相关的FeGe薄膜的超快退磁行为; (c), (d)分别为第1步退磁与第2步退磁的退磁时间、退磁量的比值, 其中(c)插图为50 ps内的示例曲线; (e), (f)分别为磁性测量的FeGe磁相图, 灰色线为磁相转变区, 椭圆形区域为Skyrmions出现区域, 不同的颜色代表(c)和(d)的数值, 白色虚线为Type I到Type II转变的边界, 黑色点为测量TR-MOKE的条件, 红色点为(a)和(b)的测量条件[59]

    Figure 3.  Transition of Type I-Type II ultrafast demagnetization in FeGe materials capable of generating Skyrmions. (a), (b) The dependence of the ultrafast demagnetization of FeGe film on the ambient temperature scenario and field scenario. (c), (d) The demagnetization times and amplitude ratios between the second and first step obtained by bi-exponential function. Inset in (c) is an example curve shown up to 50 ps. (e), (f) The magnetic phase diagrams of FeGe obtained by magnetization measurements. Gray solid lines are the boundaries of magnetic phases. Elliptic shadow is a reference skyrmion region. Color map in (e), (f) represents the data in (c), (d), respectively. The white dashed line is the boundary between Type-I and Type-II demagnetization. Black dots are all the TR-MOKE measurement points; red dots are the data points shown in (a), (b)[59].

    图 4  圆偏振的飞秒激光脉冲全光学磁记录[6]

    Figure 4.  All-optical magnetic recording by the circular femtosecond laser pulse[6].

    图 5  (a)超快激光脉冲激发下基于逆Rashba-Edelstein效应的太赫兹发射原理图[27]; (b) Fe/Ag/Bi薄膜的频域太赫兹信号[27]

    Figure 5.  (a) Schematic of THz emission via inverse Rashba-Edelstein effect upon excitation of ultrafast laser pulses[27]; (b) the frequency-domain THz signal of Fe/Ag/Bi[27].

    图 6  费米面呼吸以及冒泡模型 (a)描述不同时刻的费米面的形状, 费米面呼吸膜型; (b) 带间跃迁和带内跃迁[77]

    Figure 6.  Fermi surface breathing model and bubbling model: (a) A sketch of the Fermi surface at different times; (b) the intraband and interband transition[77].

    图 7  超快退磁时间与阻尼因子的关系 (a) Co/Ni双层膜的超快退磁时间与阻尼因子的正比关系[79]; (b) FeGa/IrMn双层膜的超快退磁时间与阻尼因子的反比关系[80]

    Figure 7.  Relationship between the ultrafast demagnetization time and damping: (a) The ultrafast demagnetization time is in direct proportion to the damping in the Co/Ni bilayer[79]; (b) the ultrafast demagnetization time is inversely proportional to the damping in the FeGa/IrMn bilayer[80].

    图 8  (a) Co薄膜中的各向异性超快自旋动力学[81]; (b), (c) Fe/GeTe (30 nm)的各向异性阻尼因子与各向异性能带结构; (d), (e) Fe/GeTe (5 nm)的各向同性阻尼因子以及各向同性的能带劈裂[82]

    Figure 8.  (a) Anisotropic ultrafast spin dynamics in Co thin film[81]; (b), (c) the anisotropic damping and splitting band structures of Fe/GeTe (30 nm); (d), (e) the isotropic damping and band structure of Fe/GeTe (5 nm)[82].

    图 9  高次谐波的准经典三步模型[90]

    Figure 9.  Quasi-classical three-step model of higher harmonics[90]

    图 10  RABBITT方法实现阿秒时间分辨的电子动力学 (a)利用RABBITT实现阿秒时间分辨的光电子能谱装置[98]; (b) RABBITT的过程示意图[98]

    Figure 10.  Attosecond time resolution electrons dynamics by RABBITT method: (a) Schematic illustration of the photoemission spectrum with attosecond time resolution by RABBITT method[98]; (b) schematic representation of the three steps of RABBITT[98].

    图 11  高次谐波的典型特征

    Figure 11.  Typical character of the high Harmonic generation.

    表 1  常见的3d过度族元素的M2, 3边的能量

    Table 1.  The M2, 3 energies for 3d elements.

    元素M2, 3 边能量/eV元素M2, 3 边能量/eV
    Sc32Fe54
    Ti35Co60
    V38Ni68
    Cr42Cu74
    Mn49Zn87
    DownLoad: CSV
  • [1]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731Google Scholar

    [2]

    Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901Google Scholar

    [3]

    Farle M 1998 Rep. Prog. Phys. 61 755Google Scholar

    [4]

    Kambersky V 1976 Czech. J. Phys. B 26 1366Google Scholar

    [5]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [6]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601Google Scholar

    [7]

    Lambert C H, Mangin S, Varaprasad B S D C S, Takahashi Y K, Hehn M, Cinchetti M, Malinowski G, Hono K, Fainman Y, Aeschlimann M, Fullerton E E 2014 Science 345 1337Google Scholar

    [8]

    Igarashi J, Zhang W, Remy Q, Diaz E, Lin J X, Hohlfeld J, Hehn M, Mangin S, Gorchon J, Malinowski G 2023 Nat. Mater. 22 725Google Scholar

    [9]

    Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blugel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455Google Scholar

    [10]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [11]

    Ferray M, L'Huillier A, Li X F, Lomprk L A, Mainfray G, Manus C 1988 J. Phys. B-At. Mol. Opt. 21 L31Google Scholar

    [12]

    Nisoli M, Sansone G 2009 Prog. Quant. Electron. 33 17Google Scholar

    [13]

    Siegrist F, Gessner J A, Ossiander M, Denker C, Chang Y P, Schroder M C, Guggenmos A, Cui Y, Walowski J, Martens U, Dewhurst J K, Kleineberg U, Munzenberg M, Sharma S, Schultze M 2019 Nature 571 240Google Scholar

    [14]

    Li Y, Li Y, Liu Q, Xie Z K, Vetter E, Yuan Z, He W, Liu H L, Sun D L, Xia K, Yu W, Sun Y B, Zhao J J, Zhang X Q, Cheng Z H 2019 New J. Phys. 21 103040Google Scholar

    [15]

    Tserkovnyak Y, Brataas A, Bauer G E 2002 Phys. Rev. Lett. 88 117601Google Scholar

    [16]

    Katine J A, Albert F J, Buhrman R A 2000 Phys. Rev. Lett. 84 3149Google Scholar

    [17]

    Ralph D C, Stiles M D 2008 J. Magn. Magn. Mater. 320 1190Google Scholar

    [18]

    Soumyanarayanan A, Reyren N, Fert A, Panagopoulos C 2016 Nature 539 509Google Scholar

    [19]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [20]

    Yang S A 2016 Spin 06 1640003Google Scholar

    [21]

    Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z, Shen Z X 2009 Science 325 178Google Scholar

    [22]

    Di Sante D, Barone P, Bertacco R, Picozzi S 2013 Adv. Mater. 25 509Google Scholar

    [23]

    Manchon A, Koo H C, Nitta J, Frolov S M, Duine R A 2015 Nat. Mater. 14 871Google Scholar

    [24]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev Mod Phys 87 1213Google Scholar

    [25]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boni P 2009 Phys. Rev. Lett. 102 186602Google Scholar

    [26]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106Google Scholar

    [27]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [28]

    Zutic I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323Google Scholar

    [29]

    Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472Google Scholar

    [30]

    Binasch G, Grunberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B Condens. Matter. 39 4828Google Scholar

    [31]

    Hashimoto S, Ochiai Y 1990 J. Magn. Magn. Mater. 88 211Google Scholar

    [32]

    Cheng Z H, He W, Zhang X Q, Sun D L, Du H F, Wu Q, Ye J, Fang Y P, Liu H L 2015 Chin. Phys. B 24 077505Google Scholar

    [33]

    Walowski J, Muller G, Djordjevic M, Munzenberg M, Klaui M, Vaz C A, Bland J A 2008 Phys. Rev. Lett. 101 237401Google Scholar

    [34]

    Radu I, Woltersdorf G, Kiessling M, Melnikov A, Bovensiepen U, Thiele J U, Back C H 2009 Phys. Rev. Lett. 102 117201Google Scholar

    [35]

    Guidoni L, Beaurepaire E, Bigot J Y 2002 Phys. Rev. Lett. 89 017401Google Scholar

    [36]

    Graves C E, Reid A H, Wang T, et al. 2013 Nat. Mater. 12 293Google Scholar

    [37]

    Bartelt A F, Comin A, Feng J, Nasiatka J R, Eimüller T, Ludescher B, Schütz G, Padmore H A, Young A T, Scholl A 2007 Appl. Phys. Lett. 90 162503Google Scholar

    [38]

    Li Y, Zhang W, Li N, Sun R, Tang J, Gong Z Z, Li Y, Yang X, Xie Z K, Gul Q, Zhang X Q, He W, Cheng Z H 2019 J. Phys. Condens. Mat. 31 305802Google Scholar

    [39]

    Zhang Q, Nurmikko A V, Miao G X, Xiao G, Gupta A 2006 Phys. Rev. B 74 064414Google Scholar

    [40]

    Muller G M, Walowski J, Djordjevic M, Miao G X, Gupta A, Ramos A V, Gehrke K, Moshnyaga V, Samwer K, Schmalhorst J, Thomas A, Hutten A, Reiss G, Moodera J S, Munzenberg M 2009 Nat. Mater. 8 56Google Scholar

    [41]

    Lu X Y, Lin Z Y, Pi H Q, Zhang T, Li G Q, Gong Y T, Yan Y, Ruan X Z, Li Y, Zhang H, Li L, He L, Wu J, Zhang R, Weng H M, Zeng C G, Xu Y B 2024 Nat. Commun. 15 2410Google Scholar

    [42]

    Lichtenberg T, Schippers C F, van Kooten S C P, Evers S G F, Barcones B, Guimarães M H D, Koopmans B 2022 2D Mater. 10 015008Google Scholar

    [43]

    Wu N, Zhang S J, Chen D Q, Wang Y X, Meng S 2024 Nat. Commun. 15 2804Google Scholar

    [44]

    Khela M, Da Browski M, Khan S, Keatley P S, Verzhbitskiy I, Eda G, Hicken R J, Kurebayashi H, Santos E J G 2023 Nat. Commun. 14 1378Google Scholar

    [45]

    Sun T, Zhou C, Jiang Z Z, Li X M, Qiu K, Xiao R C, Liu C X, Ma Z W, Luo X, Sun Y P, Sheng Z G 2021 2D Mater. 8 045040Google Scholar

    [46]

    Da Browski M, Guo S, Strungaru M, Keatley P S, Withers F, Santos E J G, Hicken R J 2022 Nat. Commun. 13 5976Google Scholar

    [47]

    Lee W J, Fernandez-Mulligan S, Tan H X, Yan C H, Guan Y D, Lee S H, Mei R B, Liu C X, Yan B H, Mao Z Q, Yang S L 2023 Nat. Phys. 19 950Google Scholar

    [48]

    Padmanabhan H, Stoica V A, Kim P K, Poore M, Yang T N, Shen X Z, Reid A H, Lin M F, Park S, Yang J, Wang H Y, Koocher N Z, Puggioni D, Georgescu A B, Min L J, Lee S H, Mao Z Q, Rondinelli J M, Lindenberg A M, Chen L Q, Wang X J, Averitt R D, Freeland J W, Gopalan V 2022 Adv. Mater. 34 2202841Google Scholar

    [49]

    Bartram F M, Leng Y C, Wang Y, Liu L, Chen X, Peng H, Li H, Yu P, Wu Y, Lin M L, Zhang J, Tan P H, Yang L 2022 npj Quantum. Mater. 7 84Google Scholar

    [50]

    Evans R F L, Fan W J, Chureemart P, Ostler T A, Ellis M O A, Chantrell R W 2014 J. Phys. Condens. Matter. 26 103202Google Scholar

    [51]

    Atxitia U, Chubykalo-Fesenko O 2011 Phys. Rev. B 84 144414Google Scholar

    [52]

    Koopmans B, Ruigrok J J, Longa F D, de Jonge W J 2005 Phys. Rev. Lett. 95 267207Google Scholar

    [53]

    Koopmans B, Malinowski G, Dalla Longa F, Steiauf D, Fahnle M, Roth T, Cinchetti M, Aeschlimann M 2010 Nat. Mater. 9 259Google Scholar

    [54]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [55]

    Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M, Koopmans B 2008 Nat. Phys. 4 855Google Scholar

    [56]

    Schellekens A J, Kuiper K C, de Wit R R J C, Koopmans B 2014 Nat. Commun. 5 4333Google Scholar

    [57]

    Li N, Sun Y B, Sun R, Yang X, Zhang W, Xie Z K, Liu J N, Li Y, Li Y, Gong Z Z, Zhang X Q, He W, Cheng Z H 2022 Phys. Rev. B 105 144415Google Scholar

    [58]

    Hou Y S, Wu R Q 2019 Phys. Rev. Appl. 11 054032Google Scholar

    [59]

    Gong Z H, Zhang W, Liu J N, Xie Z K, Yang X, Tang J, Du H F, Li N, Zhang X Q, He W, Cheng Z H 2023 Phys. Rev. B 107 144429Google Scholar

    [60]

    Zhang X C, Shkurinov A, Zhang Y 2017 Nat. Photonics 11 16Google Scholar

    [61]

    Pawar A Y, Sonawane D D, Erande K B, Derle D V 2013 Drug. Invent. Today 5 157Google Scholar

    [62]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Notzold J, Mahrlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blugel S, Wolf M, Radu I, Oppeneer P M, Munzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar

    [63]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [64]

    Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910Google Scholar

    [65]

    Ando K, Takahashi S, Harii K, Sasage K, Ieda J, Maekawa S, Saitoh E 2008 Phys. Rev. Lett. 101 036601Google Scholar

    [66]

    Rojas-Sanchez J C, Reyren N, Laczkowski P, Savero W, Attane J P, Deranlot C, Jamet M, George J M, Vila L, Jaffres H 2014 Phys. Rev. Lett. 112 106602Google Scholar

    [67]

    Sun R, Yang S J, Yang X, Vetter E, Sun D L, Li N, Su L, Li Y, Li Y, Gong Z Z, Xie Z K, Hou K Y, Gul Q, He W, Zhang X Q, Cheng Z H 2019 Nano Lett. 19 4420Google Scholar

    [68]

    Sun R, Yang S J, Yang X, Kumar A, Vetter E, Xue W H, Li Y, Li N, Li Y, Zhang S H, Ge B H, Zhang X Q, He W, Kemper A F, Sun D, Cheng Z H 2020 Adv. Mater. 32 2005315Google Scholar

    [69]

    Qiu H S, Zhou L, Zhang C, Wu J, Tian Y, Cheng S, Mi S, Zhao H, Zhang Q, Wu D, Jin B, Chen J, Wu P 2020 Nat. Phys. 17 388Google Scholar

    [70]

    Tang J, Ke Y J, He W, Zhang X Q, Zhang W, Li N, Zhang Y S, Li Y, Cheng Z H 2018 Adv. Mater. 30 1706439Google Scholar

    [71]

    Kuiper K C, Roth T, Schellekens A J, Schmitt O, Koopmans B, Cinchetti M, Aeschlimann M 2014 Appl. Phys. Lett. 105 202402Google Scholar

    [72]

    Zhang G P, Hubner W 2000 Phys. Rev. Lett. 85 3025Google Scholar

    [73]

    Tauchert S R, Volkov M, Ehberger D, Kazenwadel D, Evers M, Lange H, Donges A, Book A, Kreuzpaintner W, Nowak U, Baum P 2022 Nature 602 73Google Scholar

    [74]

    Ren Y, Zuo Y L, Si M S, Zhang Z Z, Jin Q Y, Zhou S M 2013 Ieee T. Magn. 49 3159Google Scholar

    [75]

    Zhang Z, Wu D, Luan Z, Yuan H, Zhang Z, Zhao J, Zhao H, Chen L 2015 IEEE Magn. Lett. 6 1Google Scholar

    [76]

    Woltersdorf G, Kiessling M, Meyer G, Thiele J U, Back C H 2009 Phys. Rev. Lett. 102 257602Google Scholar

    [77]

    Gilmore K, Stiles M D, Seib J, Steiauf D, Fahnle M 2010 Phys. Rev. B 81 174414Google Scholar

    [78]

    Xia H, Zhao Z R, Zeng F L, Zhao H C, Shi J Y, Zheng Z, Shen X, He J, Ni G, Wu Y Z, Chen L Y, Zhao H B 2021 Phys. Rev. B 104 024404Google Scholar

    [79]

    Zhang W, He W, Zhang X Q, Cheng Z H, Teng J, Fähnle M 2017 Phys. Rev. B 96 220415Google Scholar

    [80]

    Zhang W, Liu Q, Yuan Z, Xia K, He W, Zhan Q F, Zhang X Q, Cheng Z H 2019 Phys. Rev. B 100 104412Google Scholar

    [81]

    Unikandanunni V, Medapalli R, Fullerton E E, Carva K, Oppeneer P M, Bonetti S 2021 Appl. Phys. Lett. 118 232404Google Scholar

    [82]

    Yang X, Qiu L, Li Y, Xue H P, Liu J N, Sun R, Yang Q L, Gai X S, Wei Y S, Comstock A H, Sun D, Zhang X Q, He W, Hou Y, Cheng Z H 2023 Phys. Rev. Lett. 131 186703Google Scholar

    [83]

    Waldrop M M 2016 Nature 530 144Google Scholar

    [84]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614Google Scholar

    [85]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Worner H J 2017 Opt. Express 25 27506Google Scholar

    [86]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X, Chang Z 2012 Opt. Lett. 37 3891Google Scholar

    [87]

    Midorikawa K 2022 Nat. Photonics 16 267Google Scholar

    [88]

    Xue B, Tamaru Y, Fu Y, Yuan H, Lan P, Mücke O D, Suda A, Midorikawa K, Takahashi E J 2020 Sci. Adv. 6 eaay2802Google Scholar

    [89]

    Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M 2010 Nat. Photonics 4 875Google Scholar

    [90]

    Corkum P B, Krausz F 2007 Nat. Phys. 3 381Google Scholar

    [91]

    Popmintchev T, Chen M C, Arpin P, Murnane M M, Kapteyn H C 2010 Nat. Photonics 4 822Google Scholar

    [92]

    Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaja L, Becker A, Jaron-Becker A, Murnane M M, Kapteyn H C 2012 Science 336 1287Google Scholar

    [93]

    Li S, Wang R, Frauenheim T, He J 2024 J. Phys. Chem. Lett. 15 5959Google Scholar

    [94]

    Tao Z, Chen C, Szilvási T, Keller M, Mavrikakis M, Kapteyn H, Murnane M 2016 Science 353 62Google Scholar

    [95]

    Hofherr M, Häuser S, Dewhurst J K, Tengdin P, Sakshath S, Nembach H T, Weber S T, Shaw J M, Silva T J, Kapteyn H C, Cinchetti M, Rethfeld B, Murnane M M, Steil D, Stadtmüller B, Sharma S, Aeschlimann M, Mathias S 2020 Sci. Adv. 6 eaay8717Google Scholar

    [96]

    Ryan S a A, Johnsen P C, Elhanoty M F, Grafov A, Li N, Delin A, Markou A, Lesne E, Felser C, Eriksson O, Kapteyn H C, Grånäs O, Murnane M M 2023 Sci. Adv. 9 eadi1428Google Scholar

    [97]

    Tengdin P, Gentry C, Blonsky A, Zusin D, Gerrity M, Hellbrück L, Hofherr M, Shaw J, Kvashnin Y, Delczeg-Czirjak E K, Arora M, Nembach H, Silva T J, Mathias S, Aeschlimann M, Kapteyn H C, Thonig D, Koumpouras K, Eriksson O, Murnane M M 2020 Sci. Adv. 6 eaaz1100Google Scholar

    [98]

    Locher R, Castiglioni L, Lucchini M, Greif M, Gallmann L, Osterwalder J, Hengsberger M, Keller U 2015 Optica 2 405Google Scholar

    [99]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [100]

    Chainani A, Yokoya T, Kiss T, Shin S 2000 Phys. Rev. Lett. 85 1966Google Scholar

    [101]

    Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515Google Scholar

  • [1] Chen Gao. Isolated attosecond pulse generation from helium atom irradiated by a three-color laser pulse. Acta Physica Sinica, 2022, 71(5): 054204. doi: 10.7498/aps.71.20211502
    [2] Song Hao, Lü Xiao-Yuan, Zhu Ruo-Bi, Chen Gao. Isolated attosecond pulse generation from polarizationgating pulse with 10 fs duration. Acta Physica Sinica, 2019, 68(18): 184201. doi: 10.7498/aps.68.20190392
    [3] Lü Xiao-Yuan, Zhu Ruo-Bi, Song Hao, Su Ning, Chen Gao. Isolated attosecond pulse generation from a double optical gating scheme based on orthogonal polarization field. Acta Physica Sinica, 2019, 68(21): 214201. doi: 10.7498/aps.68.20190847
    [4] Huang Feng, Li Peng-Cheng, Zhou Xiao-Xin. Isolated attosecond pulse generated by a model helium atom exposed to the combined field. Acta Physica Sinica, 2012, 61(23): 233203. doi: 10.7498/aps.61.233203
    [5] Chen Ji-Gen, Zeng Si-Liang, Yang Yu-Jun, Cheng Chao. Isolated intense sub-30-as pulse generation by quantum path control in the three-color laser pulse. Acta Physica Sinica, 2012, 61(12): 123201. doi: 10.7498/aps.61.123201
    [6] Lu Ying-Ying, Zeng Zhi-Nan, Zheng Ying-Hui, Zou Pu, Liu Can-Dong, Gong Cheng, Li Ru-Xin, Xu Zhi-Zhan. Macroscopic effects of high-order harmonic and isolated attosecond pulse generation driven by two-color laser field. Acta Physica Sinica, 2011, 60(10): 103202. doi: 10.7498/aps.60.103202
    [7] Pan Hui-Ling, Li Peng-Cheng, Zhou Xiao-Xin. Single attosecond pulse generated by atom exposed to two laser pulses with the same color and half cycle pulses. Acta Physica Sinica, 2011, 60(4): 043203. doi: 10.7498/aps.60.043203
    [8] Li Wei, Wang Guo-Li, Zhou Xiao-Xin. Single attosecond pulse generated by model helium atom exposed to the combined field of an intense few-cycle chirped laser pulse and a half cycle pulse. Acta Physica Sinica, 2011, 60(12): 123201. doi: 10.7498/aps.60.123201
    [9] Chen Yang, Chen Ji-Gen, Yang Yu-Jun. Isolated intense 39 attosecond pulse generatedby adding a harmonic pulse. Acta Physica Sinica, 2011, 60(3): 033202. doi: 10.7498/aps.60.033202
    [10] Luo Mu-Hua, Zhang Qiu-Ju, Yan Chun-Yan. Optimization of attosecond pulses from the interaction of ultrarelativistic laser with overdense plasma. Acta Physica Sinica, 2010, 59(12): 8559-8565. doi: 10.7498/aps.59.8559
    [11] Hong Wei-Yi, Yang Zhen-Yu, Lan Peng-Fei, Zhang Qing-Bin, Li Qian-Guang, Lu Pei-Xiang. Generating isolated broadband attosecond pulses with stable pulse duration in a non-colinear polarized two-color field. Acta Physica Sinica, 2009, 58(7): 4914-4919. doi: 10.7498/aps.58.4914
    [12] Ye Xiao-Liang, Zhou Xiao-Xin, Zhao Song-Feng, Li Peng-Cheng. The single attosecond pulse generated by atom exposed to two-color combined laser field. Acta Physica Sinica, 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [13] Li Qian-Guang, Lan Peng-Fei, Hong Wei-Yi, Zhang Qing-Bin, Lu Pei-Xiang. Propagation characteristics of the broadband supercontinuum with an attosecond ionization gate. Acta Physica Sinica, 2009, 58(8): 5679-5684. doi: 10.7498/aps.58.5679
    [14] Hong Wei-Yi, Yang Zhen-Yu, Lan Peng-Fei, Lu Pei-Xiang. Direct generation of isolated sub-50 attosecond pulse via controlling quantum paths by a low frequency field. Acta Physica Sinica, 2008, 57(9): 5853-5858. doi: 10.7498/aps.57.5853
    [15] Zhang Qing-Bin, Hong Wei-Yi, Lan Peng-Fei, Yang Zhen-Yu, Lu Pei-Xiang. Control of attosecond pulse generation with modulated polarization gating. Acta Physica Sinica, 2008, 57(12): 7848-7854. doi: 10.7498/aps.57.7848
    [16] Zheng Ying-Hui, Zeng Zhi-Nan, Li Ru-Xin, Xu Zhi-Zhan. Nondipole effects in high-order harmonic generation induced by extreme ultraviolet attosecond pulse. Acta Physica Sinica, 2007, 56(4): 2243-2249. doi: 10.7498/aps.56.2243
    [17] Cao Wei, Lan Peng-Fei, Lu Pei-Xiang. Proposal for single attosecond pulse production with a 43 fs super intense laser pulse. Acta Physica Sinica, 2007, 56(3): 1608-1612. doi: 10.7498/aps.56.1608
    [18] Cao Wei, Lan Peng-Fei, Lu Pei-Xiang. Single attosecond pulse generation by tightly focused laser beam-electron interaction. Acta Physica Sinica, 2006, 55(5): 2115-2121. doi: 10.7498/aps.55.2115
    [19] Zheng Jun, Sheng Zheng-Ming, Zhang Jie. Attosecond pulses emitted by a single energetic electron traversing an intense laser beam. Acta Physica Sinica, 2005, 54(6): 2638-2644. doi: 10.7498/aps.54.2638
    [20] Zeng Zhi-Nan, Li Ru-Xin, Xie Xin-Hua, Xu Zhi-Zhan. High-order harmonic attosecond pulses driven by a two-pulse laser. Acta Physica Sinica, 2004, 53(7): 2316-2319. doi: 10.7498/aps.53.2316
Metrics
  • Abstract views:  802
  • PDF Downloads:  122
  • Cited By: 0
Publishing process
  • Received Date:  08 May 2024
  • Accepted Date:  13 June 2024
  • Available Online:  20 June 2024
  • Published Online:  05 August 2024

/

返回文章
返回