-
The ultrafast nonadibatic relaxation dynamics of the excited state of 2-methylpyrazine has been studied by using femtosecond time-resolved photoelectron imaging and femtosecond time-resolved mass spectrometry. The first excited state S1 of 2-methylpyrazine was excited by 323 nm pump light, and the excited state deactivation process is detected by 400 nm probe light. The lifetime of S1 state 98 ps is obtained by time-resolved mass spectroscopy. The intersystem crossing from the S1 state to the T1 state is observed on real time. The relaxation dynamics of S1 state of 2-methlypyrazine is different from that of pyrazine, the results show that the intersystem crossing process between S1 and T1 is the main relaxation channel of S1 state of 2-methlypyrazine, but the internal conversion process between S1 and S0 is also a main relaxation channel of S1 state. By using the advantages of femtosecond time-resolved photoelectron imaging, the photoelectron angular distribution at different pump-probe time delay was obtained experimentally. From the photoelectron angle distribution combined with photoelectron kinetic energy distributions, we tried to observe the field-free nonadiabatic alignment. However, due to the fact that the molecular symmetry of 2-methylpyrazine is lower than that of pyrazine, it is more challenging to observe the phenomenon of molecular nonadiabatic alignment with lower symmetry. Therefore, it is fail to observe nonadiabatic alignment feature of 2-methylpyrazine in this experiment. This work provides a clearer physical picture for S1 state nonadibatic relaxation dynamics of 2-methylpyrazine.
-
Keywords:
- Methlypyrazine /
- photoelectron imaging /
- intersystem crossing /
- pump-probe /
- time-resolved spectroscopy
[1] De Gruijl F 1999 Eur. J. Cancer 35 2003Google Scholar
[2] Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, Tsuru K, Horikawa T 2003 Toxicology 189 21Google Scholar
[3] Iqbal A, Stavros V G 2010 J. Phys. Chem. Lett. 1 2274Google Scholar
[4] Domcke W, Stock G 1997 Adv. Chem. Phys. 100 1
[5] Gustavsson T, Improta R, Markovitsi D 2010 J. Phys. Chem. Lett. 1 2025Google Scholar
[6] Schoenlein R W, Peteanu L A, Mathies R, Shank C V 1991 Science 254 412Google Scholar
[7] Suzuki T, Wang L, Kohguchi H 1999 J. Chem. Phys. 111 4859Google Scholar
[8] Song J K, Tsubouchi M, Suzuki T 2001 J. Chem. Phys. 115 8810Google Scholar
[9] Ling F Z, Li S, Song X L, Wang Y M, Long J Y, Zhang B 2017 Sci. Rep. 7 15362Google Scholar
[10] Toshinori S 2014 Bull. Chem. Soc. Jpn. 87 341Google Scholar
[11] Farmanara P, Stert V, Radloff W, Hertel I V 2001 J. Phys. Chem. A 105 5613Google Scholar
[12] Suzuki Y I, Horio T, Fuji T, Suzuki T 2011 J. Chem. Phys. 134 184313Google Scholar
[13] Frad A, Lahmani F, Tramer A, Tric C 1974 J. Chem. Phys. 60 4419Google Scholar
[14] Zhong D, Diau E W G, Bernhardt T M, Feyter S D, Roberts J D, Zewail A H 1998 Chem. Phys. Lett. 298 129Google Scholar
[15] Wang L, Kohguchi H, Suzuki T 1999 Faraday Discuss. 113 37Google Scholar
[16] Tsubouchi M, Whitaker B J, Wang L, Kohguchi H, Suzuki T 2001 Phys. Rev. Lett. 86 4500Google Scholar
[17] 刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp 2016 物理学报 65 113301Google Scholar
Liu Y Z, Xiao S R, Wang J F, He Zhong F, Qiu X J, Knopp G 2016 Acta Phys. Sin. 65 113301Google Scholar
[18] 刘玉柱, 陈云云, 郑改革, 金峰Gregor, Knopp 2016 物理学报 65 053302Google Scholar
Liu Y Z, Chen Y Y, Zheng G G, Jin F, Knopp G 2016 Acta Phys. Sin. 65 053302Google Scholar
[19] Liu Y Z, Knopp G, Qin C C, Gerber T 2015 Chem. Phys. 446 142Google Scholar
[20] Fuji T, Suzuki Y I, Horio T, Suzuki T, Mitrić R, Werner U, Koutecký V B 2010 J. Chem. Phys. 133 234303Google Scholar
[21] 凌丰姿 2018 博士学位论文(武汉: 中国科学院武汉物理与数学研究所)
Ling F Z 2018 Ph. D. Dissertation (Wuhan: Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences) (in Chinese)
[22] Hao Q L, Long J Y, Deng X L, Tang Y, Abulimiti B, Zhang B 2017 J. Phys. Chem. A 121 3858Google Scholar
[23] Ling F, Li S, Wei J, Liu K, Wang Y M, Zhang B 2018 J. Chem. Phys. 148 144311Google Scholar
[24] Dribinski V, Ossadtchi A, Mandelshtam V. A, Reisler H 2002 Rev. Sci. Instrum. 73 2634Google Scholar
[25] Matsumoto Y, Kim S. K, Suzuki T 2003 J. Chem. Phys. 119 300Google Scholar
-
图 1 (a)光电子影像装置实物图; (b)飞秒时间分辨光电子影像装置示意图[21]
Figure 1. (a) Photoelectron imaging apparatus; (b) schematic diagram of the femtosecond time resolved photoelectron imaging setup.
图 2 (a)泵浦光323 nm, 探测光400 nm的各自单光和零时刻双光质谱;(b)泵浦光323 nm, 探测光400 nm作用下时间分辨母体离子信号, 图中实线表示拟合曲线, 圆圈代表实验数据
Figure 2. (a) Two color (at time overlap) and one color mass spectra of 2-methlypyrazine at 323 nm pump and 400 nm probe; (b) time-resolved total ion signals of parent ion as a function of delay time between the pump pulse at 323 nm and the probe pulse at 400 nm. The circles are the experimental results, and solid lines are the fitting results.
图 3 泵浦光323 nm, 探测光400 nm, 在不同时间延迟下的光电子原始影像和BASEX变换后的影像(上排为原始影像, 而下排为BASEX变换后的影像.). 泵浦光和探测光都是线偏振光, 偏振方向为图平面竖直方向
Figure 3. Time-resolved photoelectron raw images (shown in the upper row) and BASEX-inverted images (shown in the lower row) at various time delays observed at 323 nm pump and 400 nm probe.
-
[1] De Gruijl F 1999 Eur. J. Cancer 35 2003Google Scholar
[2] Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, Tsuru K, Horikawa T 2003 Toxicology 189 21Google Scholar
[3] Iqbal A, Stavros V G 2010 J. Phys. Chem. Lett. 1 2274Google Scholar
[4] Domcke W, Stock G 1997 Adv. Chem. Phys. 100 1
[5] Gustavsson T, Improta R, Markovitsi D 2010 J. Phys. Chem. Lett. 1 2025Google Scholar
[6] Schoenlein R W, Peteanu L A, Mathies R, Shank C V 1991 Science 254 412Google Scholar
[7] Suzuki T, Wang L, Kohguchi H 1999 J. Chem. Phys. 111 4859Google Scholar
[8] Song J K, Tsubouchi M, Suzuki T 2001 J. Chem. Phys. 115 8810Google Scholar
[9] Ling F Z, Li S, Song X L, Wang Y M, Long J Y, Zhang B 2017 Sci. Rep. 7 15362Google Scholar
[10] Toshinori S 2014 Bull. Chem. Soc. Jpn. 87 341Google Scholar
[11] Farmanara P, Stert V, Radloff W, Hertel I V 2001 J. Phys. Chem. A 105 5613Google Scholar
[12] Suzuki Y I, Horio T, Fuji T, Suzuki T 2011 J. Chem. Phys. 134 184313Google Scholar
[13] Frad A, Lahmani F, Tramer A, Tric C 1974 J. Chem. Phys. 60 4419Google Scholar
[14] Zhong D, Diau E W G, Bernhardt T M, Feyter S D, Roberts J D, Zewail A H 1998 Chem. Phys. Lett. 298 129Google Scholar
[15] Wang L, Kohguchi H, Suzuki T 1999 Faraday Discuss. 113 37Google Scholar
[16] Tsubouchi M, Whitaker B J, Wang L, Kohguchi H, Suzuki T 2001 Phys. Rev. Lett. 86 4500Google Scholar
[17] 刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp 2016 物理学报 65 113301Google Scholar
Liu Y Z, Xiao S R, Wang J F, He Zhong F, Qiu X J, Knopp G 2016 Acta Phys. Sin. 65 113301Google Scholar
[18] 刘玉柱, 陈云云, 郑改革, 金峰Gregor, Knopp 2016 物理学报 65 053302Google Scholar
Liu Y Z, Chen Y Y, Zheng G G, Jin F, Knopp G 2016 Acta Phys. Sin. 65 053302Google Scholar
[19] Liu Y Z, Knopp G, Qin C C, Gerber T 2015 Chem. Phys. 446 142Google Scholar
[20] Fuji T, Suzuki Y I, Horio T, Suzuki T, Mitrić R, Werner U, Koutecký V B 2010 J. Chem. Phys. 133 234303Google Scholar
[21] 凌丰姿 2018 博士学位论文(武汉: 中国科学院武汉物理与数学研究所)
Ling F Z 2018 Ph. D. Dissertation (Wuhan: Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences) (in Chinese)
[22] Hao Q L, Long J Y, Deng X L, Tang Y, Abulimiti B, Zhang B 2017 J. Phys. Chem. A 121 3858Google Scholar
[23] Ling F, Li S, Wei J, Liu K, Wang Y M, Zhang B 2018 J. Chem. Phys. 148 144311Google Scholar
[24] Dribinski V, Ossadtchi A, Mandelshtam V. A, Reisler H 2002 Rev. Sci. Instrum. 73 2634Google Scholar
[25] Matsumoto Y, Kim S. K, Suzuki T 2003 J. Chem. Phys. 119 300Google Scholar
Catalog
Metrics
- Abstract views: 7469
- PDF Downloads: 79
- Cited By: 0