Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Attosecond coincidence interferometer and measurement of attosecond photoelectron ionization time delay in atomic, molecular and cluster systems

WANG Xuhan OU Xianbin GONG Xiaochun

Citation:

Attosecond coincidence interferometer and measurement of attosecond photoelectron ionization time delay in atomic, molecular and cluster systems

WANG Xuhan, OU Xianbin, GONG Xiaochun
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The evolution mechanisms of electrons in isolated atoms, molecules and complex systems on a natural time-scale have long been a fundamental question in atomic and molecular physics, with significant implications for the applications of quantum materials. Over the past two decades, the development of attosecond light pulses and attosecond metrology has opened new opportunities for investigating the electronic dynamics, while also posing new challenges. Traditional detection techniques, such as time-of-flight and velocity map imaging spectrometers, can be used to study the attosecond scattering phase shifts in the photoemission and ionization processes with extremely high temporal and energy resolution. However, the limitations in multi-particle coincidence detection and three-dimensional momentum correlation limit the deeper exploration of many-body correlations and non-adiabatic ultrafast dynamics involving electron-nuclear coupling. To enable multidimensional and real-time observation of the three-dimensional momenta of both electrons and ions during photoionization, the attosecond interferometry has been integrated into electron-ion coincidence systems. In this study, we utilize an attosecond coincidence interferometer that combines an attosecond pump-infrared femtosecond probe scheme with cold target recoil ion momentum spectroscopy. The apparatus enables attosecond-time-resolved momentum imaging of all charged fragments in atomic and molecular systems, thereby providing deeper insights into the dynamics of photoionization. We also highlight the recent groundbreaking applications and advances of attosecond coincidence interferometer in studying photoionization dynamics in atoms, molecules, and more complex systems.
  • 图 1  阿秒干涉仪示意图. 相位锁定的XUV阿秒脉冲串与NIR脉冲被聚焦到待测样品上, 光电离产生了离子和电子, 其动量及动能随泵浦-探测延迟的变化关系被测量记录. 左上角插图展示了光电离过程中边带(sideband, SB)电子的能级

    Figure 1.  Schematic diagram of attosecond interferometry. The phase stabilized extreme-ultraviolet attosecond pulse train and near infrared pulse are focused onto the targets, generating the ions and electrons by photoionizing, of which the momentum and kinetic energy are measured as a function of the pump-probe delays. The inset in the left corner shows the energy diagram of the sideband (SB) electron generation.

    图 2  归一化的原子相移分布(单位: π)随光电子发射角的变化关系. 研究对象分别为(a) He原子, (b) Ne原子, (c) Ar原子. 每组图片从左至右依次对应偏振调控角为0°、20°、54.7°、90°, 三角(方形、圆形)符号与实线分别表示实验与理论结果, 实验误差棒代表标准偏差, 阴影区域标示拟合误差范围, 线色权重由光电子角分布产量决定. 图片改编自文献[49]

    Figure 2.  The normalized atomic phase shift distributions (in units of πradians) as a function of the photoelectron emission angle of (a) helium, (b) neon, (c) argon. Each column includes the four situations with the skew-angle of 0°, 20°, 54.7° and 90° correspondingly. The triangles (squares/dots) and solid lines show the experimental and theoretical results, respectively. The error bars in the experimental results represent the standard deviation. The shaded area indicates the fitting error uncertainty and the line colors are weighted by the yield of the photoelectron angular distribution. Figure adapted from ref. [49].

    图 3  N2O与H2O分子的光电离时延. (a) N2O分子的阿秒干涉测量; (b) 实验测得的从N2O分子HOMO-1与HOMO轨道移出的电子光发射时延差值; (c) 同(b), 但研究对象为H2O分子; (d, e) 理论计算的光电离时延; (f) 与N2O阳离子A态相关的σ对称性形状共振(光子能量范围25—30 eV). 图片改编自文献[12]

    Figure 3.  Molecular photoionization time delays in N2O and H2O. (a) Attosecond interferometry of N2O molecules; (b) Measured photoemission time delay differences between electrons removed from HOMO-1 and HOMO of N2O molecule; (c) Same as (b) but for H2O molecule; (d, e) Calculated photoionization time delays; (f) Shape resonance of σ symmetry in the photon-energy range of 25–30 eV associated with the A state of the N2O cation. Figure adapted from ref. [12].

    图 4  N2分子的阿秒光发射时延. (a) $ v'=0 $振动态下$ {\rm{X}}^2\Sigma^+_{{\rm{g}}} $态与$ {\rm{A}}^2\Pi^+_{{\rm{u}}} $态的时延差值; (b) $ {\rm{X}}^2\Sigma^+_{{\rm{g}}} $态的光电离截面; (c) $ {\rm{X}}^2\Sigma^+_{{\rm{g}}} $态中$ v'=1 $与$ v'=0 $振动态的时延差值; (d) $ {\rm{A}}^2\Pi^+_{{\rm{u}}} $态中$ v'=1 $与$ v'=0 $振动态的时延差值. 图中实线空心圆圈表示理论结果, 虚线空心圆圈表示实验结果. 图改编自文献[13]

    Figure 4.  Attosecond photoemission time delays of N2 molecules. (a) Time delay difference between $ {\rm{X}}^2\Sigma^+_{{\rm{g}}} $ and A state for $ v'=0 $; (b) Photoionization cross section of the $ {\rm{X}}^2\Sigma^+_{{\rm{g}}} $ state; (c) Time delay difference between $ v'=1 $ and $ v'=0 $ for $ {\rm{X}}^2\Sigma^+_{{\rm{g}}} $ state; (d) Same as (c) but for $ {\rm{A}}^2\Pi^+_{{\rm{u}}} $ state. The open circles with solid line represent theoretical results and the experimental results are highlighted by the dashed line. Figure adapted from ref. [13].

    图 5  CH4的阿秒光电子谱. (a)理论计算与(b)实验测量的CH4光电子能谱$( E_{{\rm{e}}} )$与$ {\rm{CH^+}} $碎片符合信号随阿秒脉冲串-IR脉冲间的时延的变化; (c)为(b)中阿秒光电子谱的傅里叶变换振幅; (d)为(b)中阿秒光电子谱在$ 2\omega_{{\rm{NIR}}} $频率处的归一化振荡振幅(橙色实线)与相位(蓝色虚线), 彩色圆点为拟合值. (e—h)同(a—d), 但研究对象为CD4. (i—l)和(m—p)分别展示CH4与CD4分子中对应$( {\rm{CH_3^++H}} )$和$( {\rm{CD_3^++D}} )$碎片的符合光电子谱, 其中$ E_{{\rm{sum}}} = E_{{\rm{e}}}+E_{{\rm{mol}}} $$( E_{{\rm{mol}}} $为分子产生的阳离子动能). 图片改编自文献[54]

    Figure 5.  Attosecond photoelectron spectroscopy of CH4. (a) Theoretically calculated and (b) experimentally measured photoelectron spectrum $( E_{{\rm{e}}} )$ of CH4 in coincidence with $ {\rm{CH}}^+ $ as a function of attosecond pulse train-IR delay; (c) Fourier-transform amplitude of the attosecond photoelectron spectra in (b); (d) Normalized oscillation amplitude (orange solid line) and phase (navy dashed line) at $ 2\omega_{\rm{{NIR}}} $ of the attosecond photoelectron spectra in (b), and the fitted results are shown as colored circles. (e–h) Same as (a–d) but for CD4. (i–l) and (m–p) show the photoelectron spectra of CH4 and CD4 in coincidence with and ions, respectively, where $ E_{\rm{{sum}}} = E_{{\rm{e}}}+E_{\rm{{mol}}} $, with $ E_{\rm{{mol}}} $ being the kinetic energy of the molecular cation. Figure adapted from ref. [54].

    图 6  实验室坐标系的CF4分子光电离时延. (a) 实验测得的从$ 1{\rm{t}}_1 $轨道移出电子的光电离时延; (b) 实验测得的从$ 4{\rm{t}}_2 $轨道移出电子的光电离时延; (c) $ 1 t_1 $ HOMO轨道的三维波函数(左图)与共振能量处$ {\rm{t}}_2 $对称性偶极激发波函数(右图); (d) $ 4{\rm{t}}_2 $ HOMO轨道的三维波函数(左图)与共振能量处$ {\rm{a}}_1 $对称性偶极激发波函数(右图). 图片改编自文献[22]

    Figure 6.  Laboratory-frame photoionization time delays of CF4 molecules. Experimentally measured photoionization time delays of the electron removal from $ 1{\rm{t}}_1 $ (a) and $ 4{\rm{t}}_2 $ (b); (c) Three-dimensional orbital wave functions for the $ 1{\rm{t}}_1 $ HOMO (left) and the $ {\rm{t}}_2 $ dipole-prepared wave function at the resonance energy (right); (d) Same as (c), but for $ 4{\rm{t}}_2 $ HOMO-1 and its dipole-prepared resonant $ {\rm{a}}_1 $ wave function. Figure adapted from ref. [22].

    图 7  一氧化氮分子的分子坐标系光电离时延. 蓝色与橙色圆点分别表示朝氮(N)原子端和氧(O)原子端发射的光电子时延; 青色圆点表示偶极平面内各方向偏振平均的角度分辨时延. 图改编自文献[23]

    Figure 7.  Molecular-frame photoionization time delay of nitric oxide molecules. The blue and orange dots indicate the photoelectron emitted to the N atom and O atom sites, respectively. The cyan dots show the angle-resolved time delays with the light polarization averaged over all directions in the dipole plane. Figure adapted from ref. [23].

    图 8  水团簇电离碎裂示意图(上图)及团簇质谱, 其中$ r_{{\rm{ion}}} $表示探测器实测碎裂碎片分布半径. 图片改编自文献[26]

    Figure 8.  Illustration of the fragmentation of small water clusters following ionization (top) and mass spectrum of the water clusters, $ r_{ion} $ is the measured fragmentation radius at the detector. Figure adapted from ref. [26].

    图 9  尺寸分辨的水团簇$ 1{\rm{b}}_1 $电子能带光电离时延: (a) 边带12处; (b) 边带14处. (b)中红点标示液相测量相对时延值[18]. 图片改编自文献[26]

    Figure 9.  Cluster size resolved water clusters photoionization time delays of the $ 1{\rm{b}}_1 $ electron band at (a) SB12 and (b) SB14. The red dot in (b) shows the relative delay obtained in the liquid-phase measurements [18]. Figure adapted from ref. [26].

  • [1]

    Zewail A 2000 J. Phys. Chem. A 104 5660Google Scholar

    [2]

    Ferray M, L’Huillier A, Li X, Lompre L, Mainfray G, Manus C 1988 J. Phys. B 21 L31Google Scholar

    [3]

    Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66Google Scholar

    [4]

    Hentschel M, Kienberger R, Spielmann C, Reider G, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [5]

    Paul P, Toma E, Breger P, Mullot G, Augé F, Balcou P, Muller H, Agostini P 2001 Science 292 1689Google Scholar

    [6]

    Mairesse Y, de Bohan A, Frasinski L, Merdji H, Dinu L, Monchicourt P, Breger P, Kovacev M, Taïeb R, Carré B, Muller H, Agostini P, Salières P 2003 Science 302 1540Google Scholar

    [7]

    Itatani J, Quéré F, Yudin G, Ivanov M, Krausz F, Corkum P 2002 Phys. Rev. Lett. 88 173903Google Scholar

    [8]

    Goulielmakis E, Uiberacker M, Kienberger R, Baltuska A, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2004 Science 305 1267Google Scholar

    [9]

    Guenot D, Kroon D, Balogh E, Larsen E W, Kotur M, Miranda M, Fordell T, Johnsson P, Mauritsson J, Gisselbrecht M, Varju K, Arnold C L, Carette T, Kheifets A S, Lindroth E, L’Huillier A, Dahlstrom J M 2014 J. Phys. B 47 245602Google Scholar

    [10]

    Palatchi C, Dahlstrom J M, Kheifets A S, Ivanov I A, Canaday D M, Agostini P, DiMauro L F 2014 J. Phys. B 47 245003Google Scholar

    [11]

    Alexandridi C, Platzer D, Barreau L, Busto D, Zhong S, Turconi M, Neoricic L, Laurell H, Arnold C L, Borot A, Hergott J F, Tcherbakoff O, Lejman M, Gisselbrecht M, Lindroth E, L’Huillier A, Dahlstrom J M, Salieres P 2021 Phys. Rev. Res. 3 L012012Google Scholar

    [12]

    Huppert M, Jordan I, Baykusheva D, von Conta A, Wörner H J 2016 Phys. Rev. Lett. 117 093001Google Scholar

    [13]

    Nandi S, Plesiat E, Zhong S, Palacios A, Busto D, Isinger M, Neoricic L, Arnold C L, Squibb R J, Feifel R, Decleva P, L’Huillier A, Martin F, Gisselbrecht M 2020 Sci. Adv. 6 eaba7762Google Scholar

    [14]

    Beaulieu S, Comby A, Clergerie A, Caillat J, Descamps D, Dudovich N, Fabre B, Geneaux R, Legare F, Petit S, Pons B, Porat G, Ruchon T, Taieb R, Blanchet V, Mairesse Y 2017 Science 358 1288Google Scholar

    [15]

    Cavalieri A L, Mueller N, Uphues T, Yakovlev V S, Baltuska A, Horvath B, Schmidt B, Bluemel L, Holzwarth R, Hendel S, Drescher M, Kleineberg U, Echenique P M, Kienberger R, Krausz F, Heinzmann U 2007 Nature 449 1029Google Scholar

    [16]

    Lucchini M, Sato S A, Ludwig A, Herrmann J, Volkov M, Kasmi L, Shinohara Y, Yabana K, Gallmann L, Keller U 2016 Science 353 916Google Scholar

    [17]

    Tao Z, Chen C, Szilvasi T, Keller M, Mavrikakis M, Kapteyn H, Murnane M 2016 Science 353 62Google Scholar

    [18]

    Jordan I, Huppert M, Rattenbacher D, Peper M, Jelovina D, Perry C, von Conta A, Schild A, Woerner H J 2020 Science 369 974Google Scholar

    [19]

    Klunder K, Dahlstrom J M, Gisselbrecht M, Fordell T, Swoboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A, Taieb R, L’Huillier A 2011 Phys. Rev. Lett. 106 143002Google Scholar

    [20]

    Gong X, Lin C, He F, Song Q, Lin K, Ji Q, Zhang W, Ma J, Lu P, Liu Y, Zeng H, Yang W, Wu J 2017 Phys. Rev. Lett. 118 143203Google Scholar

    [21]

    Isinger M, Squibb R J, Busto D, Zhong S, Harth A, Kroon D, Nandi S, Arnold C L, Miranda M, Dahlstrom J M, Lindroth E, Feifel R, Gisselbrecht M, L’Huillier A 2017 Science 358 893Google Scholar

    [22]

    Heck S, Baykusheva D, Han M, Ji J B, Perry C, Gong X, Woerner H J 2021 Sci. Adv. 7 eabj8121Google Scholar

    [23]

    Gong X, Jiang W, Tong J, Qiang J, Lu P, Ni H, Lucchese R, Ueda K, Wu J 2022 Phys. Rev. X 12 011002

    [24]

    Ossiander M, Siegrist F, Shirvanyan V, Pazourek R, Sommer A, Latka T, Guggenmos A, Nagele S, Feist J, Burgdoerfer J, Kienberger R, Schultze M 2017 Nat. Phys. 13 280Google Scholar

    [25]

    Vos J, Cattaneo L, Patchkovskii S, Zimmermann T, Cirelli C, Lucchini M, Kheifets A, Landsman A S, Keller U 2018 Science 360 1326Google Scholar

    [26]

    Gong X, Heck S, Jelovina D, Perry C, Zinchenko K, Lucchese R, Woerner H J 2022 Nature 609 507Google Scholar

    [27]

    Ullrich J, Moshammer R, Dorner R, Jagutzki O, Mergel V, SchmidtBocking H, Spielberger L 1997 J. Phys. B 30 2917Google Scholar

    [28]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [29]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [30]

    Sandhu A S, Gagnon E, Santra R, Sharma V, Li W, Ho P, Ranitovic P, Cocke C L, Murnane M M, Kapteyn H C 2008 Science 322 1081Google Scholar

    [31]

    Ranitovic P, Hogle C W, Riviere P, Palacios A, Tong X M, Toshima N, Gonzalez-Castrillo A, Martin L, Martin F, Murnane M M, Kapteyn H 2014 Proc. Natl. Acad. Sci. U.S.A. 111 912Google Scholar

    [32]

    Sabbar M, Heuser S, Boge R, Lucchini M, Gallmann L, Cirelli C, Keller U 2014 Rev. Sci. Instrum. 85 103113Google Scholar

    [33]

    Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schoeffler M, Muller H G, Doerner R, Keller U 2008 Nat. Phys. 4 565Google Scholar

    [34]

    Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Doerner R, Muller H G, Buettiker M, Keller U 2008 Science 322 1525Google Scholar

    [35]

    Chini M, Mashiko H, Wang H, Chen S, Yun C, Scott S, Gilbertson S, Chang Z 2009 Opt. Express 17 21459Google Scholar

    [36]

    Wigner E 1955 Phys. Rev. 98 145Google Scholar

    [37]

    Smith F 1960 Phys. Rev. 118 349Google Scholar

    [38]

    Dahlstrom J M, L’Huillier A, Maquet A 2012 J. Phys. B 45 183001Google Scholar

    [39]

    Baykusheva D, Woerner H J 2017 J. Chem. Phys. 146 124306Google Scholar

    [40]

    Jordan I, Woerner H J 2018 J. Opt. 20 024013Google Scholar

    [41]

    Gong X, Jordan I, Huppert M, Heck S, Baykusheva D, Jelovina D, Schild A, Wörner H J 2022 Chimia 76 520Google Scholar

    [42]

    Heuser S, Galan A J, Cirelli C, Marante C, Sabbar M, Boge R, Lucchini M, Gallmann L, Ivanov I, Kheifets A S, Dahlstrom J M, Lindroth E, Argenti L, Martin F, Keller U 2016 Phys. Rev. A 94 063409Google Scholar

    [43]

    You D, Ueda K, Gryzlova E V, Grum-Grzhimailo A N, Popova M M, Staroselskaya E I, Tugs O, Orimo Y, Sato T, Ishikawa K L, Carpeggiani P A, Csizmadia T, Fule M, Sansone G, Maroju P K, D’Elia A, Mazza T, Meyer M, Callegari C, Di Fraia M, Plekan O, Richter R, Giannessi L, Allaria E, De Ninno G, Trovo M, Badano L, Diviacco B, Gaio G, Gauthier D, Mirian N, Penco G, Ribic P R, Spampinati S, Spezzani C, Prince K C 2020 Phys. Rev. X 10 031070

    [44]

    Busto D, Vinbladh J, Zhong S, Isinger M, Nandi S, Maclot S, Johnsson P, Gisselbrecht M, L’Huillier A, Lindroth E, Dahlstrom J M 2019 Phys. Rev. Lett. 123 133201Google Scholar

    [45]

    Leahy D, Reid K, Zare R 1991 J. Chem. Phys. 95 1757Google Scholar

    [46]

    O’Keeffe P, López-Martens R, Mauritsson J, Johansson A, L’Huillier A, Véniard V, Taïeb R, Maquet A, Meyer M 2004 Phys. Rev. A 69 051401Google Scholar

    [47]

    Meyer M, Cubaynes D, Glijer D, Dardis J, Hayden P, Hough P, Richardson V, Kennedy E T, Costello J T, Radcliffe P, Duesterer S, Azima A, Li W B, Redlin H, Feldhaus J, Taieb R, Maquet A, GrumGrzhimailo A N, Gryzlova E V, Strakhova S I 2008 Phys. Rev. Lett. 101 193002Google Scholar

    [48]

    Reid K 2003 Annu. Rev. Phys. Chem. 54 397Google Scholar

    [49]

    Jiang W, Armstrong G S J, Tong J, Xu Y, Zuo Z, Qiang J, Lu P, Clarke D D A, Benda J, Fleischer A, Ni H, Ueda K, van der Hart H W, Brown A C, Gong X, Wu J 2022 Nat. Commun. 13 5072Google Scholar

    [50]

    Kheifets A S, Xu Z 2023 J. Phys. B 56 155601Google Scholar

    [51]

    Kheifets A S 2023 J. Phys. B 56 022001Google Scholar

    [52]

    Ji J B, Ueda K, Han M, Wörner H J 2024 J. Phys. B 57 235601Google Scholar

    [53]

    Dahlstrom J M, Guenot D, Klunder K, Gisselbrecht M, Mauritsson J, L’Huillier A, Maquet A, Taieb R 2013 Chem. Phys. 414 53Google Scholar

    [54]

    Gong X, Plesiat E, Palacios A, Heck S, Martin F, Woerner H J 2023 Nat. Commun. 14 4402Google Scholar

    [55]

    Toma E, Muller H 2002 J. Phys. B 35 3435Google Scholar

    [56]

    Jiang W, Roantree L, Han L, Ji J, Xu Y, Zuo Z, Woerner H J, Ueda K, Brown A C, van der Hart H W, Gong X, Wu J 2025 Nat. Commun. 16 381Google Scholar

    [57]

    Mondal T, Varandas A J C 2014 J. Chem. Theory Comput. 10 3606Google Scholar

    [58]

    Li M, Zhang M, Vendrell O, Guo Z, Zhu Q, Gao X, Cao L, Guo K, Su Q, Cao W, Luo S, Yan J, Zhou Y, Liu Y, Lu P, Li Z 2021 Nat. Commun. 12 4233Google Scholar

    [59]

    Baker S, Robinson J, Haworth C, Teng H, Smith R, Chirila C, Lein M, Tisch J, Marangos J 2006 Science 312 424Google Scholar

    [60]

    Ertel D, Busto D, Makos I, Schmoll M, Benda J, Ahmadi H, Moioli M, Frassetto F, Poletto L, Schroeter C D, Pfeifer T, Moshammer R, Masin Z, Patchkovskii S, Sansone G 2023 Sci. Adv. 9 eadh7747Google Scholar

    [61]

    Vacher M, Bearpark M J, Robb M A, Malhado J P 2017 Phys. Rev. Lett. 118 083001Google Scholar

    [62]

    Cattaneo L, Vos J, Bello R Y, Palacios A, Heuser S, Pedrelli L, Lucchini M, Cirelli C, Martin F, Keller U 2018 Nat. Phys. 14 733Google Scholar

    [63]

    Kraus P M, Baykusheva D, Woerner H J 2014 Phys. Rev. Lett. 113 023001Google Scholar

    [64]

    Loh Z H, Doumy G, Arnold C, Kjellsson L, Southworth S H, Al Haddad A, Kumagai Y, Tu M F, Ho P J, March A M, Schaller R D, Yusof M S B M, Debnath T, Simon M, Welsch R, Inhester L, Khalili K, Nanda K, Krylov A I, Moeller S, Coslovich G, Koralek J, Minitti M P, Schlotter W F, Rubensson J E, Santra R, Young L 2020 Science 367 179Google Scholar

    [65]

    Schild A, Peper M, Perry C, Rattenbacher D, Woerner H J 2020 J. Phys. Chem. Lett. 11 1128Google Scholar

    [66]

    Yang J, Dettori R, Nunes J P F, List N H, Biasin E, Centurion M, Chen Z, Cordones A A, Deponte D P, Heinz T F, Kozina M E, Ledbetter K, Lin M F, Lindenberg A M, Mo M, Nilsson A, Shen X, Wolf T J A, Donadio D, Gaffney K J, Martinez T J, Wang X 2021 Nature 596 531Google Scholar

    [67]

    Ismail I, Ferte A, Penent F, Guillemin R, Peng D, Marchenko T, Travnikova O, Inhester L, Taieb R, Verma A, Velasquez N, Kukk E, Trinter F, Koulentianos D, Mazza T, Baumann T M, Rivas D E, Ovcharenko Y, Boll R, Dold S, De Fanis A, Ilchen M, Meyer M, Goldsztejn G, Li K, Doumy G, Young L, Sansone G, Doerner R, Piancastelli M N, Carniato S, Bozek J D, Puetner R, Simon M 2023 Phys. Rev. Lett. 131 253201Google Scholar

    [68]

    Schnorr K, Belina M, Augustin S, Lindenblatt H, Liu Y, Meister S, Pfeifer T, Schmid G, Treusch R, Trost F, Slavilek P, Moshammer R 2023 Sci. Adv. 9 eadg7864Google Scholar

    [69]

    Anderson P 1958 Phys. Rev. 109 1492Google Scholar

    [70]

    Hunt P, Sprik M, Vuilleumier R 2003 Chem. Phys. Lett. 376 68Google Scholar

    [71]

    Prendergast D, Grossman J, Galli G 2005 J. Chem. Phys. 123 014501Google Scholar

    [72]

    Svoboda V, Michiels R, LaForge A C, Med J, Stienkemeier F, Slavicek P, Wörner H J 2020 Sci. Adv. 6 eaaz0385Google Scholar

  • [1] XU Huilin, HUANG Cheng, WEI Zhengrong. Regulation of ultrafast photoisomerization dynamics of 1122C by femtosecond pump-dump-probe transient absorption spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.74.20250909
    [2] ZHANG Yichen, DING Nannan, LI Jialin, FU Yuxi. Attosecond transient absorption spectroscopy: an ultrafast optical probe for revealing electron dynamics. Acta Physica Sinica, doi: 10.7498/aps.74.20250546
    [3] Fang Zhen, Yu You, Zhao Qiu-Ye, Zhang Yu-Dong, Wang Zhi-Qiang, Zhang Zu-Xing. Spectral pulsation dynamics of soliton molecules in ultrafast fiber lasers based on pump intensity modulation. Acta Physica Sinica, doi: 10.7498/aps.73.20231030
    [4] Jia Yun-Zhe, Meng Sheng. Ultrafast dynamics of water system under photoexcitation. Acta Physica Sinica, doi: 10.7498/aps.73.20240047
    [5] Yang Xu, Feng Hong-Mei, Liu Jia-Nan, Zhang Xiang-Qun, He Wei, Cheng Zhao-Hua. Ultrafast spin dynamics: From femtosecond magnetism to attosecond magnetism. Acta Physica Sinica, doi: 10.7498/aps.73.20240646
    [6] Tao Chen-Yu, Lei Jian-Ting, Yu Xuan, Luo Yan, Ma Xin-Wen, Zhang Shao-Feng. Development of attosecond pulses and their application to ultrafast dynamics of atoms and molecules. Acta Physica Sinica, doi: 10.7498/aps.72.20222436
    [7] Xu Yi-Dan, Jiang Wen-Yu, Tong Ji-Hong, Han Lu-Lu, Zuo Zi-Tan, Xu Li-Ming, Gong Xiao-Chun, Wu Jian. Precise measurement of attosecond dynamics of NO molecular shape resonance. Acta Physica Sinica, doi: 10.7498/aps.71.20221735
    [8] Jin Ya-Qing, Dong Rui-Fang, Quan Run-Ai, Xiang Xiao, Liu Tao, Zhang Shou-Gang. Temporal filtering characteristics of gated InGaAs/InP single-photon detectors for coincidence measurement. Acta Physica Sinica, doi: 10.7498/aps.70.20201648
    [9] Fang Yu, Wu Xing-Zhi, Chen Yong-Qiang, Yang Jun-Yi, Song Ying-Lin. Study on two-photon induced ultrafast carrier dynamcis in Ge-doped GaN by transient absorption spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.69.20200397
    [10] Hai Bang, Zhang Shao-Feng, Zhang Min, Dong Da-Pu, Lei Jian-Ting, Zhao Dong-Mei, Ma Xin-Wen. A tabletop experimental system for investigating ultrafast atomic dynamics based on femtosecond extreme ultraviolet photons. Acta Physica Sinica, doi: 10.7498/aps.69.20201035
    [11] Li Yong-Ming,  Wang Liang,  Chen Xiang-Lin,  Ruan Nian-Shou,  Zhao De-Shan. Regression analysis of coincidence measurements for determinating the neutron emission rate of 252Cf spontaneous fission. Acta Physica Sinica, doi: 10.7498/aps.67.20181073
    [12] He Shu-Kai, Liu Dong-Xiao, Jiao Jin-Long, Deng Zhi-Gang, Teng Jian, Zhang Zhi-Meng, Hong Wei, Gu Yu-Qiu. Charged paricle activation analysis for characterizing parameters of laser-accelerated protons. Acta Physica Sinica, doi: 10.7498/aps.66.205201
    [13] Liu Can-Dong, Jia Zheng-Mao, Zheng Ying-Hui, Ge Xiao-Chun, Zeng Zhi-Nan, Li Ru-Xin. Research progress of the control and measurement of the atomic and molecular ultrafast electron dynamics using two-color field. Acta Physica Sinica, doi: 10.7498/aps.65.223206
    [14] Zhang Bo, Zhang Chun-Feng, Li Xi-You, Wang Rui, Xiao Min. Ultrafast spectroscopic study for singlet fission. Acta Physica Sinica, doi: 10.7498/aps.64.094210
    [15] Xu Yue, Jin Zuan-Ming, Li Gao-Fang, Zhang Zheng-Bing, Lin Xian, Ma Guo-Hong, Cheng Zhen-Xiang. Ultrafast spectroscopy of the Mn3+ dd transition in YMnO3 film. Acta Physica Sinica, doi: 10.7498/aps.61.177802
    [16] Wang Wen-Fang, Chen Ke, Wu Jing-Da, Wen Jin-Hui, Lai Tian-Shu. Influence of long lifetime absorption process on the measurement of ultrafast carrier dynamics. Acta Physica Sinica, doi: 10.7498/aps.60.117802
    [17] Tang Xiao-Feng, Niu Ming-Li, Zhou Xiao-Guo, Liu Shi-Lin. Spectroscopic studies of molecular ions and their dissociation dynamics by the threshold photoelectron-photoion coincidence. Acta Physica Sinica, doi: 10.7498/aps.59.6940
    [18] Ma Hai-Qiang, Li Lin-Xia, Wang Su-Mei, Wu Zhang-Bin, Jiao Rong-Zhen. An all-fiber method to measure the wave-particle duality of light. Acta Physica Sinica, doi: 10.7498/aps.59.75
    [19] Ge Yu-Cheng. A new method for directly measuring frequency and intensity temporal profiles of attosecond XUV pulse simultaneously and completely. Acta Physica Sinica, doi: 10.7498/aps.54.2653
    [20] Chang Jun-Tao, Wu Ling-An. Absolute self-calibration of the quantum efficiency of single-photon detectors. Acta Physica Sinica, doi: 10.7498/aps.52.1132
Metrics
  • Abstract views:  173
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Received Date:  28 August 2025
  • Accepted Date:  23 October 2025
  • Available Online:  31 October 2025
  • /

    返回文章
    返回