-
The evolution mechanisms of electrons in isolated atoms, molecules and complex systems on a natural time-scale have long been a fundamental question in atomic and molecular physics, with significant implications for the applications of quantum materials. Over the past two decades, the development of attosecond light pulses and attosecond metrology has opened new opportunities for investigating the electronic dynamics, while also posing new challenges. Traditional detection techniques, such as time-of-flight and velocity map imaging spectrometers, can be used to study the attosecond scattering phase shifts in the photoemission and ionization processes with extremely high temporal and energy resolution. However, the limitations in multi-particle coincidence detection and three-dimensional momentum correlation limit the deeper exploration of many-body correlations and non-adiabatic ultrafast dynamics involving electron-nuclear coupling. To enable multidimensional and real-time observation of the three-dimensional momenta of both electrons and ions during photoionization, the attosecond interferometry has been integrated into electron-ion coincidence systems. In this study, we utilize an attosecond coincidence interferometer that combines an attosecond pump-infrared femtosecond probe scheme with cold target recoil ion momentum spectroscopy. The apparatus enables attosecond-time-resolved momentum imaging of all charged fragments in atomic and molecular systems, thereby providing deeper insights into the dynamics of photoionization. We also highlight the recent groundbreaking applications and advances of attosecond coincidence interferometer in studying photoionization dynamics in atoms, molecules, and more complex systems.
-
Keywords:
- coincidence measurement /
- attosecond spectroscopy /
- atomic and molecular ultrafast dynamics /
- microscopic-system photoionization
-
图 1 阿秒干涉仪示意图. 相位锁定的XUV阿秒脉冲串与NIR脉冲被聚焦到待测样品上, 光电离产生了离子和电子, 其动量及动能随泵浦-探测延迟的变化关系被测量记录. 左上角插图展示了光电离过程中边带(sideband, SB)电子的能级
Figure 1. Schematic diagram of attosecond interferometry. The phase stabilized extreme-ultraviolet attosecond pulse train and near infrared pulse are focused onto the targets, generating the ions and electrons by photoionizing, of which the momentum and kinetic energy are measured as a function of the pump-probe delays. The inset in the left corner shows the energy diagram of the sideband (SB) electron generation.
图 2 归一化的原子相移分布(单位: π)随光电子发射角的变化关系. 研究对象分别为(a) He原子, (b) Ne原子, (c) Ar原子. 每组图片从左至右依次对应偏振调控角为0°、20°、54.7°、90°, 三角(方形、圆形)符号与实线分别表示实验与理论结果, 实验误差棒代表标准偏差, 阴影区域标示拟合误差范围, 线色权重由光电子角分布产量决定. 图片改编自文献[49]
Figure 2. The normalized atomic phase shift distributions (in units of πradians) as a function of the photoelectron emission angle of (a) helium, (b) neon, (c) argon. Each column includes the four situations with the skew-angle of 0°, 20°, 54.7° and 90° correspondingly. The triangles (squares/dots) and solid lines show the experimental and theoretical results, respectively. The error bars in the experimental results represent the standard deviation. The shaded area indicates the fitting error uncertainty and the line colors are weighted by the yield of the photoelectron angular distribution. Figure adapted from ref. [49].
图 3 N2O与H2O分子的光电离时延. (a) N2O分子的阿秒干涉测量; (b) 实验测得的从N2O分子HOMO-1与HOMO轨道移出的电子光发射时延差值; (c) 同(b), 但研究对象为H2O分子; (d, e) 理论计算的光电离时延; (f) 与N2O阳离子A态相关的σ对称性形状共振(光子能量范围25—30 eV). 图片改编自文献[12]
Figure 3. Molecular photoionization time delays in N2O and H2O. (a) Attosecond interferometry of N2O molecules; (b) Measured photoemission time delay differences between electrons removed from HOMO-1 and HOMO of N2O molecule; (c) Same as (b) but for H2O molecule; (d, e) Calculated photoionization time delays; (f) Shape resonance of σ symmetry in the photon-energy range of 25–30 eV associated with the A state of the N2O cation. Figure adapted from ref. [12].
图 4 N2分子的阿秒光发射时延. (a) $ v'=0 $振动态下$ {\rm{X}}^2\Sigma^+_{{\rm{g}}} $态与$ {\rm{A}}^2\Pi^+_{{\rm{u}}} $态的时延差值; (b) $ {\rm{X}}^2\Sigma^+_{{\rm{g}}} $态的光电离截面; (c) $ {\rm{X}}^2\Sigma^+_{{\rm{g}}} $态中$ v'=1 $与$ v'=0 $振动态的时延差值; (d) $ {\rm{A}}^2\Pi^+_{{\rm{u}}} $态中$ v'=1 $与$ v'=0 $振动态的时延差值. 图中实线空心圆圈表示理论结果, 虚线空心圆圈表示实验结果. 图改编自文献[13]
Figure 4. Attosecond photoemission time delays of N2 molecules. (a) Time delay difference between $ {\rm{X}}^2\Sigma^+_{{\rm{g}}} $ and A state for $ v'=0 $; (b) Photoionization cross section of the $ {\rm{X}}^2\Sigma^+_{{\rm{g}}} $ state; (c) Time delay difference between $ v'=1 $ and $ v'=0 $ for $ {\rm{X}}^2\Sigma^+_{{\rm{g}}} $ state; (d) Same as (c) but for $ {\rm{A}}^2\Pi^+_{{\rm{u}}} $ state. The open circles with solid line represent theoretical results and the experimental results are highlighted by the dashed line. Figure adapted from ref. [13].
图 5 CH4的阿秒光电子谱. (a)理论计算与(b)实验测量的CH4光电子能谱$( E_{{\rm{e}}} )$与$ {\rm{CH^+}} $碎片符合信号随阿秒脉冲串-IR脉冲间的时延的变化; (c)为(b)中阿秒光电子谱的傅里叶变换振幅; (d)为(b)中阿秒光电子谱在$ 2\omega_{{\rm{NIR}}} $频率处的归一化振荡振幅(橙色实线)与相位(蓝色虚线), 彩色圆点为拟合值. (e—h)同(a—d), 但研究对象为CD4. (i—l)和(m—p)分别展示CH4与CD4分子中对应$( {\rm{CH_3^++H}} )$和$( {\rm{CD_3^++D}} )$碎片的符合光电子谱, 其中$ E_{{\rm{sum}}} = E_{{\rm{e}}}+E_{{\rm{mol}}} $$( E_{{\rm{mol}}} $为分子产生的阳离子动能). 图片改编自文献[54]
Figure 5. Attosecond photoelectron spectroscopy of CH4. (a) Theoretically calculated and (b) experimentally measured photoelectron spectrum $( E_{{\rm{e}}} )$ of CH4 in coincidence with $ {\rm{CH}}^+ $ as a function of attosecond pulse train-IR delay; (c) Fourier-transform amplitude of the attosecond photoelectron spectra in (b); (d) Normalized oscillation amplitude (orange solid line) and phase (navy dashed line) at $ 2\omega_{\rm{{NIR}}} $ of the attosecond photoelectron spectra in (b), and the fitted results are shown as colored circles. (e–h) Same as (a–d) but for CD4. (i–l) and (m–p) show the photoelectron spectra of CH4 and CD4 in coincidence with and ions, respectively, where $ E_{\rm{{sum}}} = E_{{\rm{e}}}+E_{\rm{{mol}}} $, with $ E_{\rm{{mol}}} $ being the kinetic energy of the molecular cation. Figure adapted from ref. [54].
图 6 实验室坐标系的CF4分子光电离时延. (a) 实验测得的从$ 1{\rm{t}}_1 $轨道移出电子的光电离时延; (b) 实验测得的从$ 4{\rm{t}}_2 $轨道移出电子的光电离时延; (c) $ 1 t_1 $ HOMO轨道的三维波函数(左图)与共振能量处$ {\rm{t}}_2 $对称性偶极激发波函数(右图); (d) $ 4{\rm{t}}_2 $ HOMO轨道的三维波函数(左图)与共振能量处$ {\rm{a}}_1 $对称性偶极激发波函数(右图). 图片改编自文献[22]
Figure 6. Laboratory-frame photoionization time delays of CF4 molecules. Experimentally measured photoionization time delays of the electron removal from $ 1{\rm{t}}_1 $ (a) and $ 4{\rm{t}}_2 $ (b); (c) Three-dimensional orbital wave functions for the $ 1{\rm{t}}_1 $ HOMO (left) and the $ {\rm{t}}_2 $ dipole-prepared wave function at the resonance energy (right); (d) Same as (c), but for $ 4{\rm{t}}_2 $ HOMO-1 and its dipole-prepared resonant $ {\rm{a}}_1 $ wave function. Figure adapted from ref. [22].
图 7 一氧化氮分子的分子坐标系光电离时延. 蓝色与橙色圆点分别表示朝氮(N)原子端和氧(O)原子端发射的光电子时延; 青色圆点表示偶极平面内各方向偏振平均的角度分辨时延. 图改编自文献[23]
Figure 7. Molecular-frame photoionization time delay of nitric oxide molecules. The blue and orange dots indicate the photoelectron emitted to the N atom and O atom sites, respectively. The cyan dots show the angle-resolved time delays with the light polarization averaged over all directions in the dipole plane. Figure adapted from ref. [23].
图 8 水团簇电离碎裂示意图(上图)及团簇质谱, 其中$ r_{{\rm{ion}}} $表示探测器实测碎裂碎片分布半径. 图片改编自文献[26]
Figure 8. Illustration of the fragmentation of small water clusters following ionization (top) and mass spectrum of the water clusters, $ r_{ion} $ is the measured fragmentation radius at the detector. Figure adapted from ref. [26].
图 9 尺寸分辨的水团簇$ 1{\rm{b}}_1 $电子能带光电离时延: (a) 边带12处; (b) 边带14处. (b)中红点标示液相测量相对时延值[18]. 图片改编自文献[26]
Figure 9. Cluster size resolved water clusters photoionization time delays of the $ 1{\rm{b}}_1 $ electron band at (a) SB12 and (b) SB14. The red dot in (b) shows the relative delay obtained in the liquid-phase measurements [18]. Figure adapted from ref. [26].
-
[1] Zewail A 2000 J. Phys. Chem. A 104 5660
Google Scholar
[2] Ferray M, L’Huillier A, Li X, Lompre L, Mainfray G, Manus C 1988 J. Phys. B 21 L31
Google Scholar
[3] Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66
Google Scholar
[4] Hentschel M, Kienberger R, Spielmann C, Reider G, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509
Google Scholar
[5] Paul P, Toma E, Breger P, Mullot G, Augé F, Balcou P, Muller H, Agostini P 2001 Science 292 1689
Google Scholar
[6] Mairesse Y, de Bohan A, Frasinski L, Merdji H, Dinu L, Monchicourt P, Breger P, Kovacev M, Taïeb R, Carré B, Muller H, Agostini P, Salières P 2003 Science 302 1540
Google Scholar
[7] Itatani J, Quéré F, Yudin G, Ivanov M, Krausz F, Corkum P 2002 Phys. Rev. Lett. 88 173903
Google Scholar
[8] Goulielmakis E, Uiberacker M, Kienberger R, Baltuska A, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2004 Science 305 1267
Google Scholar
[9] Guenot D, Kroon D, Balogh E, Larsen E W, Kotur M, Miranda M, Fordell T, Johnsson P, Mauritsson J, Gisselbrecht M, Varju K, Arnold C L, Carette T, Kheifets A S, Lindroth E, L’Huillier A, Dahlstrom J M 2014 J. Phys. B 47 245602
Google Scholar
[10] Palatchi C, Dahlstrom J M, Kheifets A S, Ivanov I A, Canaday D M, Agostini P, DiMauro L F 2014 J. Phys. B 47 245003
Google Scholar
[11] Alexandridi C, Platzer D, Barreau L, Busto D, Zhong S, Turconi M, Neoricic L, Laurell H, Arnold C L, Borot A, Hergott J F, Tcherbakoff O, Lejman M, Gisselbrecht M, Lindroth E, L’Huillier A, Dahlstrom J M, Salieres P 2021 Phys. Rev. Res. 3 L012012
Google Scholar
[12] Huppert M, Jordan I, Baykusheva D, von Conta A, Wörner H J 2016 Phys. Rev. Lett. 117 093001
Google Scholar
[13] Nandi S, Plesiat E, Zhong S, Palacios A, Busto D, Isinger M, Neoricic L, Arnold C L, Squibb R J, Feifel R, Decleva P, L’Huillier A, Martin F, Gisselbrecht M 2020 Sci. Adv. 6 eaba7762
Google Scholar
[14] Beaulieu S, Comby A, Clergerie A, Caillat J, Descamps D, Dudovich N, Fabre B, Geneaux R, Legare F, Petit S, Pons B, Porat G, Ruchon T, Taieb R, Blanchet V, Mairesse Y 2017 Science 358 1288
Google Scholar
[15] Cavalieri A L, Mueller N, Uphues T, Yakovlev V S, Baltuska A, Horvath B, Schmidt B, Bluemel L, Holzwarth R, Hendel S, Drescher M, Kleineberg U, Echenique P M, Kienberger R, Krausz F, Heinzmann U 2007 Nature 449 1029
Google Scholar
[16] Lucchini M, Sato S A, Ludwig A, Herrmann J, Volkov M, Kasmi L, Shinohara Y, Yabana K, Gallmann L, Keller U 2016 Science 353 916
Google Scholar
[17] Tao Z, Chen C, Szilvasi T, Keller M, Mavrikakis M, Kapteyn H, Murnane M 2016 Science 353 62
Google Scholar
[18] Jordan I, Huppert M, Rattenbacher D, Peper M, Jelovina D, Perry C, von Conta A, Schild A, Woerner H J 2020 Science 369 974
Google Scholar
[19] Klunder K, Dahlstrom J M, Gisselbrecht M, Fordell T, Swoboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A, Taieb R, L’Huillier A 2011 Phys. Rev. Lett. 106 143002
Google Scholar
[20] Gong X, Lin C, He F, Song Q, Lin K, Ji Q, Zhang W, Ma J, Lu P, Liu Y, Zeng H, Yang W, Wu J 2017 Phys. Rev. Lett. 118 143203
Google Scholar
[21] Isinger M, Squibb R J, Busto D, Zhong S, Harth A, Kroon D, Nandi S, Arnold C L, Miranda M, Dahlstrom J M, Lindroth E, Feifel R, Gisselbrecht M, L’Huillier A 2017 Science 358 893
Google Scholar
[22] Heck S, Baykusheva D, Han M, Ji J B, Perry C, Gong X, Woerner H J 2021 Sci. Adv. 7 eabj8121
Google Scholar
[23] Gong X, Jiang W, Tong J, Qiang J, Lu P, Ni H, Lucchese R, Ueda K, Wu J 2022 Phys. Rev. X 12 011002
[24] Ossiander M, Siegrist F, Shirvanyan V, Pazourek R, Sommer A, Latka T, Guggenmos A, Nagele S, Feist J, Burgdoerfer J, Kienberger R, Schultze M 2017 Nat. Phys. 13 280
Google Scholar
[25] Vos J, Cattaneo L, Patchkovskii S, Zimmermann T, Cirelli C, Lucchini M, Kheifets A, Landsman A S, Keller U 2018 Science 360 1326
Google Scholar
[26] Gong X, Heck S, Jelovina D, Perry C, Zinchenko K, Lucchese R, Woerner H J 2022 Nature 609 507
Google Scholar
[27] Ullrich J, Moshammer R, Dorner R, Jagutzki O, Mergel V, SchmidtBocking H, Spielberger L 1997 J. Phys. B 30 2917
Google Scholar
[28] Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463
Google Scholar
[29] Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95
Google Scholar
[30] Sandhu A S, Gagnon E, Santra R, Sharma V, Li W, Ho P, Ranitovic P, Cocke C L, Murnane M M, Kapteyn H C 2008 Science 322 1081
Google Scholar
[31] Ranitovic P, Hogle C W, Riviere P, Palacios A, Tong X M, Toshima N, Gonzalez-Castrillo A, Martin L, Martin F, Murnane M M, Kapteyn H 2014 Proc. Natl. Acad. Sci. U.S.A. 111 912
Google Scholar
[32] Sabbar M, Heuser S, Boge R, Lucchini M, Gallmann L, Cirelli C, Keller U 2014 Rev. Sci. Instrum. 85 103113
Google Scholar
[33] Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schoeffler M, Muller H G, Doerner R, Keller U 2008 Nat. Phys. 4 565
Google Scholar
[34] Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Doerner R, Muller H G, Buettiker M, Keller U 2008 Science 322 1525
Google Scholar
[35] Chini M, Mashiko H, Wang H, Chen S, Yun C, Scott S, Gilbertson S, Chang Z 2009 Opt. Express 17 21459
Google Scholar
[36] Wigner E 1955 Phys. Rev. 98 145
Google Scholar
[37] Smith F 1960 Phys. Rev. 118 349
Google Scholar
[38] Dahlstrom J M, L’Huillier A, Maquet A 2012 J. Phys. B 45 183001
Google Scholar
[39] Baykusheva D, Woerner H J 2017 J. Chem. Phys. 146 124306
Google Scholar
[40] Jordan I, Woerner H J 2018 J. Opt. 20 024013
Google Scholar
[41] Gong X, Jordan I, Huppert M, Heck S, Baykusheva D, Jelovina D, Schild A, Wörner H J 2022 Chimia 76 520
Google Scholar
[42] Heuser S, Galan A J, Cirelli C, Marante C, Sabbar M, Boge R, Lucchini M, Gallmann L, Ivanov I, Kheifets A S, Dahlstrom J M, Lindroth E, Argenti L, Martin F, Keller U 2016 Phys. Rev. A 94 063409
Google Scholar
[43] You D, Ueda K, Gryzlova E V, Grum-Grzhimailo A N, Popova M M, Staroselskaya E I, Tugs O, Orimo Y, Sato T, Ishikawa K L, Carpeggiani P A, Csizmadia T, Fule M, Sansone G, Maroju P K, D’Elia A, Mazza T, Meyer M, Callegari C, Di Fraia M, Plekan O, Richter R, Giannessi L, Allaria E, De Ninno G, Trovo M, Badano L, Diviacco B, Gaio G, Gauthier D, Mirian N, Penco G, Ribic P R, Spampinati S, Spezzani C, Prince K C 2020 Phys. Rev. X 10 031070
[44] Busto D, Vinbladh J, Zhong S, Isinger M, Nandi S, Maclot S, Johnsson P, Gisselbrecht M, L’Huillier A, Lindroth E, Dahlstrom J M 2019 Phys. Rev. Lett. 123 133201
Google Scholar
[45] Leahy D, Reid K, Zare R 1991 J. Chem. Phys. 95 1757
Google Scholar
[46] O’Keeffe P, López-Martens R, Mauritsson J, Johansson A, L’Huillier A, Véniard V, Taïeb R, Maquet A, Meyer M 2004 Phys. Rev. A 69 051401
Google Scholar
[47] Meyer M, Cubaynes D, Glijer D, Dardis J, Hayden P, Hough P, Richardson V, Kennedy E T, Costello J T, Radcliffe P, Duesterer S, Azima A, Li W B, Redlin H, Feldhaus J, Taieb R, Maquet A, GrumGrzhimailo A N, Gryzlova E V, Strakhova S I 2008 Phys. Rev. Lett. 101 193002
Google Scholar
[48] Reid K 2003 Annu. Rev. Phys. Chem. 54 397
Google Scholar
[49] Jiang W, Armstrong G S J, Tong J, Xu Y, Zuo Z, Qiang J, Lu P, Clarke D D A, Benda J, Fleischer A, Ni H, Ueda K, van der Hart H W, Brown A C, Gong X, Wu J 2022 Nat. Commun. 13 5072
Google Scholar
[50] Kheifets A S, Xu Z 2023 J. Phys. B 56 155601
Google Scholar
[51] Kheifets A S 2023 J. Phys. B 56 022001
Google Scholar
[52] Ji J B, Ueda K, Han M, Wörner H J 2024 J. Phys. B 57 235601
Google Scholar
[53] Dahlstrom J M, Guenot D, Klunder K, Gisselbrecht M, Mauritsson J, L’Huillier A, Maquet A, Taieb R 2013 Chem. Phys. 414 53
Google Scholar
[54] Gong X, Plesiat E, Palacios A, Heck S, Martin F, Woerner H J 2023 Nat. Commun. 14 4402
Google Scholar
[55] Toma E, Muller H 2002 J. Phys. B 35 3435
Google Scholar
[56] Jiang W, Roantree L, Han L, Ji J, Xu Y, Zuo Z, Woerner H J, Ueda K, Brown A C, van der Hart H W, Gong X, Wu J 2025 Nat. Commun. 16 381
Google Scholar
[57] Mondal T, Varandas A J C 2014 J. Chem. Theory Comput. 10 3606
Google Scholar
[58] Li M, Zhang M, Vendrell O, Guo Z, Zhu Q, Gao X, Cao L, Guo K, Su Q, Cao W, Luo S, Yan J, Zhou Y, Liu Y, Lu P, Li Z 2021 Nat. Commun. 12 4233
Google Scholar
[59] Baker S, Robinson J, Haworth C, Teng H, Smith R, Chirila C, Lein M, Tisch J, Marangos J 2006 Science 312 424
Google Scholar
[60] Ertel D, Busto D, Makos I, Schmoll M, Benda J, Ahmadi H, Moioli M, Frassetto F, Poletto L, Schroeter C D, Pfeifer T, Moshammer R, Masin Z, Patchkovskii S, Sansone G 2023 Sci. Adv. 9 eadh7747
Google Scholar
[61] Vacher M, Bearpark M J, Robb M A, Malhado J P 2017 Phys. Rev. Lett. 118 083001
Google Scholar
[62] Cattaneo L, Vos J, Bello R Y, Palacios A, Heuser S, Pedrelli L, Lucchini M, Cirelli C, Martin F, Keller U 2018 Nat. Phys. 14 733
Google Scholar
[63] Kraus P M, Baykusheva D, Woerner H J 2014 Phys. Rev. Lett. 113 023001
Google Scholar
[64] Loh Z H, Doumy G, Arnold C, Kjellsson L, Southworth S H, Al Haddad A, Kumagai Y, Tu M F, Ho P J, March A M, Schaller R D, Yusof M S B M, Debnath T, Simon M, Welsch R, Inhester L, Khalili K, Nanda K, Krylov A I, Moeller S, Coslovich G, Koralek J, Minitti M P, Schlotter W F, Rubensson J E, Santra R, Young L 2020 Science 367 179
Google Scholar
[65] Schild A, Peper M, Perry C, Rattenbacher D, Woerner H J 2020 J. Phys. Chem. Lett. 11 1128
Google Scholar
[66] Yang J, Dettori R, Nunes J P F, List N H, Biasin E, Centurion M, Chen Z, Cordones A A, Deponte D P, Heinz T F, Kozina M E, Ledbetter K, Lin M F, Lindenberg A M, Mo M, Nilsson A, Shen X, Wolf T J A, Donadio D, Gaffney K J, Martinez T J, Wang X 2021 Nature 596 531
Google Scholar
[67] Ismail I, Ferte A, Penent F, Guillemin R, Peng D, Marchenko T, Travnikova O, Inhester L, Taieb R, Verma A, Velasquez N, Kukk E, Trinter F, Koulentianos D, Mazza T, Baumann T M, Rivas D E, Ovcharenko Y, Boll R, Dold S, De Fanis A, Ilchen M, Meyer M, Goldsztejn G, Li K, Doumy G, Young L, Sansone G, Doerner R, Piancastelli M N, Carniato S, Bozek J D, Puetner R, Simon M 2023 Phys. Rev. Lett. 131 253201
Google Scholar
[68] Schnorr K, Belina M, Augustin S, Lindenblatt H, Liu Y, Meister S, Pfeifer T, Schmid G, Treusch R, Trost F, Slavilek P, Moshammer R 2023 Sci. Adv. 9 eadg7864
Google Scholar
[69] Anderson P 1958 Phys. Rev. 109 1492
Google Scholar
[70] Hunt P, Sprik M, Vuilleumier R 2003 Chem. Phys. Lett. 376 68
Google Scholar
[71] Prendergast D, Grossman J, Galli G 2005 J. Chem. Phys. 123 014501
Google Scholar
[72] Svoboda V, Michiels R, LaForge A C, Med J, Stienkemeier F, Slavicek P, Wörner H J 2020 Sci. Adv. 6 eaaz0385
Google Scholar
Metrics
- Abstract views: 173
- PDF Downloads: 7
- Cited By: 0









DownLoad: