-
Gallium nitride (GaN) is a key material in blue light-emitting devices and is recognized as one of the most important semiconductors after Si. Its outstanding thermal conductivity, high saturation velocity, and high breakdown electric field have enabled the use of GaN for high-power and high-frequency devices. Although lots of researches have been done on the optical and optoelectrical properties of GaN, the defect-related ultrafast dynamics of the photo-excitation and the relaxation mechanism are still completely unclear at present, especially when the photo-generated carrier concentration is close to the defect density in n-type GaN. The transient absorption spectroscopy has become a powerful spectroscopic method, and the advantages of this method are contact-free, highly sensitive to free carriers, and femtosecond time resolved. In this article, by employing optical pump and infrared probe spectroscopy, we investigate the ultrafast photo-generated carriers dynamics in representative high-purity n-type and Ge-doped GaN (GaN:Ge) crystal. The transient absorption response increased as probe wavelengths increased, and hole-related absorption was superior to electron-related absorption, especially at 1050 nm. The transient absorption kinetics in GaN:Ge appeared to be double exponential decay under two-photon excitation. By modelling the carrier population dynamics in energy levels, which contained both radiative and non-radiative defect states, the carrier dynamics and carrier capture coefficients in GaN: Ge can be interpreted and determined unambiguously. The faster component (30–60 ps) of absorption decay kinetics corresponded to the capturing process of holes by negatively charged acceptor CN. However, the capturing process was limited by the recombination of electron and trapped holes under higher excitation after the saturation of deep acceptors. As a result, the slower component decayed slower as the excitation fluence increased. Moreover, the experimental and theoretical results found that, the carrier lifetime in n-GaN can be modulated by controlling the defect density and carrier concentration under a moderate carrier injection, making GaN applicable in different fields such as LED and optical communication.
-
Keywords:
- carrier dynamics /
- transient absorption spectroscopy /
- two-photon absorption /
- GaN
[1] Nakamura S, Pearton S, Fasol G 2013 The Blue Laser Diode: the Complete Sstory (2nd Ed.) (Berlin: Springer-Verlag) pp3,4
[2] Pearton S J, Ren F 2000 Adv. Mater. 12 1571Google Scholar
[3] Xiong C, Pernice W, Ryu K K, Schuck C, Fong K Y, Palacios T, Tang H X 2011 Opt. Express 19 10462Google Scholar
[4] Bruch A W, Xiong C, Leung B, Poot M, Han J, Tang H X 2015 Appl. Phys. Lett. 107 141113Google Scholar
[5] Monteagudo-Lerma L, Naranjo F B, Valdueza-Felip S, Jiménez-Rodríguez M, Monroy E, Postigo P A, Corredera P, González-Herráez M 2016 Phys. Status Solidi A 213 1269Google Scholar
[6] van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851Google Scholar
[7] Reshchikov M A, Morkoc H 2005 J. Appl. Phys. 97 061301Google Scholar
[8] Chichibu S F, Uedono A, Kojima K, Ikeda H, Fujito K, Takashima S, Edo M, Ueno K, Ishibashi S 2018 J. Appl. Phys. 123 161413Google Scholar
[9] Jarašiūnas K, Malinauskas T, Nargelas S, Gudelis V, Vaitkus J V, Soukhoveev V, Usikov A 2010 Phys. Status Solidi B 247 1703Google Scholar
[10] Iwinska M, Takekawa N, Ivanov V Y, Amilusik M, Kruszewski P, Piotrzkowski R, Litwin-Staszewska E, Lucznik B, Fijalkowski M, Sochacki T, Teisseyre H, Murakami H, Bockowski M 2017 J. Cryst. Growth 480 102Google Scholar
[11] Ueno K, Arakawa Y, Kobayashi A, Ohta J, Fujioka H 2017 Appl. Phys. Express 10 101002Google Scholar
[12] Götz W, Johnson N, Chen C, Liu H, Kuo C, Imler W 1996 Appl. Phys. Lett. 68 3144Google Scholar
[13] Götz W, Kern R S, Chen C H, Liu H, Steigerwald D A, Fletcher R M 1999 Mater. Sci. Eng. B 59 211Google Scholar
[14] Nenstiel C, Bügler M, Callsen G, Nippert F, Kure T, Fritze S, Dadgar A, Witte H, Bläsing J, Krost A, Hoffmann A 2015 Phys. Status SolidiRRL 9 716Google Scholar
[15] Ajay A, Lim C B, Browne D A, Polaczyński J, Bellet-Amalric E, Bleuse J, den Hertog M I, Monroy E 2017 Nanotechnology 28 405204Google Scholar
[16] Zhong Y, Wong K S, Zhang W, Look D C 2006 Appl. Phys. Lett. 89 022108Google Scholar
[17] Williams K W, Monahan N R, Koleske D D, Crawford M H, Zhu X Y 2016 Appl. Phys. Lett. 108 141105Google Scholar
[18] Ščajev P, Jarašiūnas K, Okur S, Özgür Ü, Morkoç H 2012 J. Appl. Phys. 111 023702Google Scholar
[19] Ohashi Y, Katayama K, Shen Q, Toyoda T 2009 J. Appl. Phys. 106 063515Google Scholar
[20] Upadhya P C, Martinez J A, Li Q, Wang G T, Swartzentruber B S, Taylor A J, Prasankumar R P 2015 Appl. Phys. Lett. 106 263103Google Scholar
[21] Chen Y T, Yang C Y, Chen P C, Sheu J K, Lin K H 2017 Sci. Rep. 7 5788Google Scholar
[22] Dugar P, Kumar M, T. C S K, Aggarwal N, Gupta G 2015 RSC Adv. 5 83969Google Scholar
[23] Marcinkevičius S, Uždavinys T K, Foronda H M, Cohen D A, Weisbuch C, Speck J S 2016 Phys. Rev. B 94 235205Google Scholar
[24] Fang Y, Yang J, Yong Y, Wu X, Xiao Z, Zhou F, Song Y 2016 J. Phys. D: Appl. Phys. 49 045105Google Scholar
[25] 方宇 2016 博士学位论文 (苏州: 苏州大学)
Fang Y 2016 Ph. D. Dissertation (Suzhou: Soochow University) (in Chinese)
[26] 聂媱, 王友云, 吴雪琴, 方宇 2019 激光与光电子学进展 56 063201Google Scholar
Nie Y, Wang Y, Wu X, Fang Y 2019 Laser & Optoelectronics Progress 56 063201Google Scholar
[27] Zhao W, Palffy-Muhoray P 1993 Appl. Phys. Lett. 63 1613Google Scholar
[28] Gu H, Ren G, Zhou T, Tian F, Xu Y, Zhang Y, Wang M, Zhang Z, Cai D, Wang J 2016 J. Alloys Compd. 674 218Google Scholar
[29] Zhang Y M, Wang J F, Cai D M, Ren G Q, Xu Y, Wang M Y, Hu X J, Xu K 2020 Chin. Phys. B 29 026104Google Scholar
[30] Kioupakis E, Rinke P, Schleife A, Bechstedt F, van de Walle C G 2010 Phys. Rev. B 81 241201Google Scholar
[31] Ščajev P, Jarašiūnas K, Özgür Ü, Morkoç H, Leach J, Paskova T 2012 Appl. Phys. Lett. 100 022112Google Scholar
[32] Ridley B K 2013 Quantum Processes in Semiconductors (5th Ed.) (Oxford: Oxford University Press) pp194–195
[33] Lyons J, Janotti A, van de Walle C G 2010 Appl. Phys. Lett. 97 152108Google Scholar
[34] Demchenko D O, Diallo I C, Reshchikov M A 2013 Phys. Rev. Lett. 110 087404Google Scholar
[35] Zhang H S, Shi L, Yang X B, Zhao Y J, Xu K, Wang L W 2017 Adv. Opt. Mater. 5 1700404Google Scholar
[36] Christenson S G, Xie W, Sun Y, Zhang S 2015 J. Appl. Phys. 118 135708Google Scholar
[37] Wu S, Yang X, Zhang H, Shi L, Zhang Q, Shang Q, Qi Z, Xu Y, Zhang J, Tang N 2018 Phys. Rev. Lett. 121 145505Google Scholar
[38] Fang Y, Zhou F, Yang J, Wu X, Xiao Z, Li Z, Song Y 2015 Appl. Phys. Lett. 106 131903Google Scholar
[39] Reshchikov M A, Albarakati N M, Monavarian M, Avrutin V, Morkoç H 2018 J. Appl. Phys. 123 161520Google Scholar
[40] Reshchikov M A, Korotkov R Y 2001 Phys. Rev. B 64 115205Google Scholar
[41] Dreyer C E, Alkauskas A, Lyons J L, Speck J S, Van de Walle C G 2016 Appl. Phys. Lett. 108 141101Google Scholar
-
图 1 (a) GaN: Ge晶体的线性吸收谱, 内插图为2PE下的发光图片; (b)不同脉冲能量激发下GaN: Ge的开孔Z扫描曲线, 实线为理论拟合曲线
Figure 1. (a) Linear absorption spectrum of GaN: Ge crystal. The inset shows the two-photon excited photoluminescence photograph of sample; (b) open-aperture Z-scan data of GaN: Ge at several input pulse energies, the solid lines are theoretical fitting curves.
图 2 (a) 2PE下GaN: Ge的超快瞬态吸收光谱, 激发能流为0.8 mJ/cm2; (b) 1PE下GaN: Ge的超快瞬态吸收光谱, 激发能流为0.5 mJ/cm2. 内插图均为可见光探测下的结果
Figure 2. (a) Ultrafast TAS in GaN: Ge using 2PE under the excitation fluence of 0.8 mJ/cm2; (b) ultrafast TAS in GaN: Ge using 1PE under the excitation fluence of 0.5 mJ/cm2. The insets show the TAS probed at visible wavelengths.
图 3 (a)不同激发能流下GaN: Ge的瞬态吸收动力学, 探测波长为1050 nm, 实线为双指数拟合曲线, 内插图为较短时间尺度下(7 ps)的数据; (b)不同激发能流下瞬态吸收衰减曲线拟合得到的快速和慢速弛豫寿命(分别为τ1和τ2)
Figure 3. (a) The transient absorption kinetics in GaN: Ge under various excitation fluence probed at 1050 nm, the solid lines denote the theoretical curves using bi-exponential decay, and the inset illustrates the transient absorption kinetics in a 7 ps time window; (b) the fast and slow relaxation time (τ1 and τ2, respectively) extracted from transient absorption kinetics under various excitation fluence.
表 1 用于模拟实验结果使用和确定的参数. Ni和τnRad的数值为预估值, BRad数值来自参考文献[18], Cni, Cpi和S数值为拟合实验数据确定的参数
Table 1. Parameters used/determined to model the experimental results. The values of Ni and τnRad were estimated. The value of BRad was extracted from Ref. [18]. The values of Cni, Cpi and S were determined by fitting the data.
参数 数值 Ni 1 × 1016 cm–3 Cni (2.7 ± 0.8) × 10–9 cm3·s–1 Cpi (5.9 ± 0.7) × 10–7 cm3·s–1 τnRad 40 ns BRad 3 × 10–11 cm3·s–1 S 7 ± 1 -
[1] Nakamura S, Pearton S, Fasol G 2013 The Blue Laser Diode: the Complete Sstory (2nd Ed.) (Berlin: Springer-Verlag) pp3,4
[2] Pearton S J, Ren F 2000 Adv. Mater. 12 1571Google Scholar
[3] Xiong C, Pernice W, Ryu K K, Schuck C, Fong K Y, Palacios T, Tang H X 2011 Opt. Express 19 10462Google Scholar
[4] Bruch A W, Xiong C, Leung B, Poot M, Han J, Tang H X 2015 Appl. Phys. Lett. 107 141113Google Scholar
[5] Monteagudo-Lerma L, Naranjo F B, Valdueza-Felip S, Jiménez-Rodríguez M, Monroy E, Postigo P A, Corredera P, González-Herráez M 2016 Phys. Status Solidi A 213 1269Google Scholar
[6] van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851Google Scholar
[7] Reshchikov M A, Morkoc H 2005 J. Appl. Phys. 97 061301Google Scholar
[8] Chichibu S F, Uedono A, Kojima K, Ikeda H, Fujito K, Takashima S, Edo M, Ueno K, Ishibashi S 2018 J. Appl. Phys. 123 161413Google Scholar
[9] Jarašiūnas K, Malinauskas T, Nargelas S, Gudelis V, Vaitkus J V, Soukhoveev V, Usikov A 2010 Phys. Status Solidi B 247 1703Google Scholar
[10] Iwinska M, Takekawa N, Ivanov V Y, Amilusik M, Kruszewski P, Piotrzkowski R, Litwin-Staszewska E, Lucznik B, Fijalkowski M, Sochacki T, Teisseyre H, Murakami H, Bockowski M 2017 J. Cryst. Growth 480 102Google Scholar
[11] Ueno K, Arakawa Y, Kobayashi A, Ohta J, Fujioka H 2017 Appl. Phys. Express 10 101002Google Scholar
[12] Götz W, Johnson N, Chen C, Liu H, Kuo C, Imler W 1996 Appl. Phys. Lett. 68 3144Google Scholar
[13] Götz W, Kern R S, Chen C H, Liu H, Steigerwald D A, Fletcher R M 1999 Mater. Sci. Eng. B 59 211Google Scholar
[14] Nenstiel C, Bügler M, Callsen G, Nippert F, Kure T, Fritze S, Dadgar A, Witte H, Bläsing J, Krost A, Hoffmann A 2015 Phys. Status SolidiRRL 9 716Google Scholar
[15] Ajay A, Lim C B, Browne D A, Polaczyński J, Bellet-Amalric E, Bleuse J, den Hertog M I, Monroy E 2017 Nanotechnology 28 405204Google Scholar
[16] Zhong Y, Wong K S, Zhang W, Look D C 2006 Appl. Phys. Lett. 89 022108Google Scholar
[17] Williams K W, Monahan N R, Koleske D D, Crawford M H, Zhu X Y 2016 Appl. Phys. Lett. 108 141105Google Scholar
[18] Ščajev P, Jarašiūnas K, Okur S, Özgür Ü, Morkoç H 2012 J. Appl. Phys. 111 023702Google Scholar
[19] Ohashi Y, Katayama K, Shen Q, Toyoda T 2009 J. Appl. Phys. 106 063515Google Scholar
[20] Upadhya P C, Martinez J A, Li Q, Wang G T, Swartzentruber B S, Taylor A J, Prasankumar R P 2015 Appl. Phys. Lett. 106 263103Google Scholar
[21] Chen Y T, Yang C Y, Chen P C, Sheu J K, Lin K H 2017 Sci. Rep. 7 5788Google Scholar
[22] Dugar P, Kumar M, T. C S K, Aggarwal N, Gupta G 2015 RSC Adv. 5 83969Google Scholar
[23] Marcinkevičius S, Uždavinys T K, Foronda H M, Cohen D A, Weisbuch C, Speck J S 2016 Phys. Rev. B 94 235205Google Scholar
[24] Fang Y, Yang J, Yong Y, Wu X, Xiao Z, Zhou F, Song Y 2016 J. Phys. D: Appl. Phys. 49 045105Google Scholar
[25] 方宇 2016 博士学位论文 (苏州: 苏州大学)
Fang Y 2016 Ph. D. Dissertation (Suzhou: Soochow University) (in Chinese)
[26] 聂媱, 王友云, 吴雪琴, 方宇 2019 激光与光电子学进展 56 063201Google Scholar
Nie Y, Wang Y, Wu X, Fang Y 2019 Laser & Optoelectronics Progress 56 063201Google Scholar
[27] Zhao W, Palffy-Muhoray P 1993 Appl. Phys. Lett. 63 1613Google Scholar
[28] Gu H, Ren G, Zhou T, Tian F, Xu Y, Zhang Y, Wang M, Zhang Z, Cai D, Wang J 2016 J. Alloys Compd. 674 218Google Scholar
[29] Zhang Y M, Wang J F, Cai D M, Ren G Q, Xu Y, Wang M Y, Hu X J, Xu K 2020 Chin. Phys. B 29 026104Google Scholar
[30] Kioupakis E, Rinke P, Schleife A, Bechstedt F, van de Walle C G 2010 Phys. Rev. B 81 241201Google Scholar
[31] Ščajev P, Jarašiūnas K, Özgür Ü, Morkoç H, Leach J, Paskova T 2012 Appl. Phys. Lett. 100 022112Google Scholar
[32] Ridley B K 2013 Quantum Processes in Semiconductors (5th Ed.) (Oxford: Oxford University Press) pp194–195
[33] Lyons J, Janotti A, van de Walle C G 2010 Appl. Phys. Lett. 97 152108Google Scholar
[34] Demchenko D O, Diallo I C, Reshchikov M A 2013 Phys. Rev. Lett. 110 087404Google Scholar
[35] Zhang H S, Shi L, Yang X B, Zhao Y J, Xu K, Wang L W 2017 Adv. Opt. Mater. 5 1700404Google Scholar
[36] Christenson S G, Xie W, Sun Y, Zhang S 2015 J. Appl. Phys. 118 135708Google Scholar
[37] Wu S, Yang X, Zhang H, Shi L, Zhang Q, Shang Q, Qi Z, Xu Y, Zhang J, Tang N 2018 Phys. Rev. Lett. 121 145505Google Scholar
[38] Fang Y, Zhou F, Yang J, Wu X, Xiao Z, Li Z, Song Y 2015 Appl. Phys. Lett. 106 131903Google Scholar
[39] Reshchikov M A, Albarakati N M, Monavarian M, Avrutin V, Morkoç H 2018 J. Appl. Phys. 123 161520Google Scholar
[40] Reshchikov M A, Korotkov R Y 2001 Phys. Rev. B 64 115205Google Scholar
[41] Dreyer C E, Alkauskas A, Lyons J L, Speck J S, Van de Walle C G 2016 Appl. Phys. Lett. 108 141101Google Scholar
Catalog
Metrics
- Abstract views: 11932
- PDF Downloads: 260
- Cited By: 0