-
Research on the interaction and interconversion between electrons and photons on an individual molecular scale can provide scientific basis for the future developing of information and energy technology. Scanning tunneling microscope(STM) can offer abilities beyond atomic-resolution imaging and manipulation, and its highly localized tunneling electrons can also be used for exciting the molecules inside the tunnel junction, generating molecule-specific light emission, and thus enabling the investigation of molecular optoelectronic behavior in local nano-environment. In this paper, we present an overview of our recent research progress related to the single-molecule electroluminescence of zinc phthalocyanine (ZnPc) molecules. First, we demonstrate the realization of single-molecule electroluminescence from an isolated ZnPc by adopting a combined strategy of both efficient electronic decoupling and nanocavity plasmonic enhancement. By further combining the photon correlation measurements via the Hanbury-Brown-Twiss interferometry with STM induced luminescence technique, we demonstrate and confirm the single-photon emission nature of such an electrically driven single-molecule electroluminescence. Second, by developing the sub-nanometer resolved electroluminescence imaging technique, we demonstrate the real-space visualization of the coherent intermolecular dipole-dipole coupling of an artificially constructed non-bonded ZnPc dimer. By mapping the spatial distribution of the photon yield for the excitonic coupling in a well-defined molecular architecture, we can reveal the local optical response of the system and the dependence of the local optical response on the relative orientation and phase of the transition dipoles of the individual molecules in the dimer. Third, by using a single molecular emitter as a distinctive optical probe to coherently couple with the highly confined plasmonic nanocavity, we demonstrate the Fano resonance and photonic Lamb shift at a single-molecule level. The ability to spatially control the single-molecule Fano resonance with sub-nanometer precision can reveal the coherent and highly confined nature of the broadband nanocavity plasmon, as well as the coupling strength and the anisotropy of the field-matter interaction. These results not only shed light on the fabrication of electrically driven nano-emitters and single-photon sources, but also open up a new avenue to the study of intermolecular energy transfer, field-matter interaction, and molecular optoelectronics, all at the single-molecule level.
-
Keywords:
- single-molecule electroluminescence /
- single-photon source /
- dipole coupling /
- Fano resonance effect
[1] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
[2] Ozbay E 2006 Science 311 189
[3] Lee T H, Gonzalez J I, Zheng J, Dickson R M 2005 Acc. Chem. Res. 38 534
[4] Lee T H, Gonzalez J I, Dickson R M 2002 Proc. Natl. Acad. Sci. USA 99 10272
[5] Gonzalez J I, Vosch T, Dickson R M 2006 Phys. Rev. B 74 064305
[6] Duan X, Huang Y, Agarwal R, Lieber C M 2003 Nature 421 241
[7] Chen J, Perebeinos V, Freitag M, Tsang J, Fu Q, Liu J, Avouris P 2005 Science 310 1171
[8] Misewich J A, Martel R, Avouris Ph. Tsang J C, Heinze S, Tersoff J 2003 Science 300 783
[9] Marquardt C W, Grunder S, Błaszczyk A, Dehm S, Hennrich F, Löhneysen H V, Mayor M, Krupke R 2010 Nat. Nanotechnol. 5 863
[10] Gimzewski J K, Sass J K, Schlitter R R, Schott J 1989 Europhys. Lett. 8 435
[11] Berndt R, Gaisch R, Gimzewski J K, Reihl B, Schlittler R R, Schneider W D, Tschudy M 1993 Science 262 1425
[12] Qiu X H, Nazin G V, Ho W 2003 Science 299 542
[13] Chen C, Chu P, Bobisch C A, Mills D L, Ho W 2010 Phys. Rev. Lett. 105 217402
[14] Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, Hou J G 2016 Nature 531 623
[15] Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, Kim Y 2016 Nature 538 364
[16] Doppagne B, Chong M C, Bulou H, Boeglin A, Scheurer F, Schull G 2018 Science 361 251
[17] Kuhnke K, Große C, Merino P, Kern K 2017 Chem. Rev. 117 5174
[18] Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L, Hou J G 2010 Nat. Photon. 4 50
[19] Dong Z C, Guo X L, Trifonov A S, Dorozhkin P S, Miki K, Kimura K, Yokoyama S, Mashiko S 2004 Phys. Rev. Lett. 92 086801
[20] Zhang L, Yu Y J, Chen L G, Luo Y, Yang B, Kong F F, Chen G, Zhang Y, Zhang Q, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 580
[21] Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 15225
[22] Ćavar E, Blm M C, Pivetta M, Patthey F, Chergui M, Schneider W D 2005 Phys. Rev. Lett. 95 196102
[23] Zhu S E, Kuang Y M, Geng F, Zhu J Z, Wang C Z, Yu Y J, Luo Y, Xiao Y, Liu K Q, Meng Q S, Zhang L, Jiang S, Zhang Y, Wang G W, Dong Z C, Hou J G 2013 J. Am. Chem. Soc. 135 15794
[24] Chong M C, Reecht G, Bulou H, Boeglin H A, Scheurer F, Mathevet F, Schull G 2016 Phys. Rev. Lett. 116 036802
[25] Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
[26] Luk’yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nat. Mater. 9 707
[27] Vardi Y, Cohen-Hoshen E, Shalem G, Bar-Joseph I 2016 Nano Lett. 16 748
[28] Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, Kim Y 2017 Phys. Rev. Lett. 119 013901
[29] Zhang Y, Zhang Y, Dong Z C 2018 AAPPS Bull. 28 19
[30] Nothaft M, Höhla S, Jelezko F, Frhauf N, Pflaum J, Wrachtrup J 2012 Nat. Commun. 3 628
[31] Perronet K, Schull G, Raimond P, Charra F 2006 Europhys. Lett. 74 313
[32] Silly F, Charra F 2000 Appl. Phys. Lett. 77 3648
[33] Barnes W L 1998 J. Mod. Opt. 45 661
[34] Merino P, Große C, Rosßawska A, Kuhnke K, Kern K 2015 Nat. Commun. 6 8461
[35] Rezus Y L A, Walt S G, Lettow R, Renn A, Zumofen G, Götzinger S, Sandoghdar V 2012 Phys. Rev. Lett. 108 093601
[36] Iwasaki T, Ishibashi F, Miyamoto Y, Doi Y, Kobayashi S, Miyazaki T, Tahara K, Jahnke K D, Rogers L J, Naydenov B, Jelezko F, Yamasaki S, Nagamachi S, Inubushi T, Mizuochi N, Hatano M 2015 Sci. Rep. 5 12882
[37] Vlaming S M, Eisfeld A 2014 J. Phys. D: Appl. Phys. 47 305301
[38] Kasha M, Rawls H R, El-Bayoumi M A 1965 Pure Appl. Chem. 11 371
[39] Krishna V, Tully J C 2006 J. Chem. Phys. 125 054706
[40] Yao P, Vlack C V, Reza A, Patterson M, Dignam M M, Hughes S 2009 Phys. Rev. 80 195106
-
[1] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
[2] Ozbay E 2006 Science 311 189
[3] Lee T H, Gonzalez J I, Zheng J, Dickson R M 2005 Acc. Chem. Res. 38 534
[4] Lee T H, Gonzalez J I, Dickson R M 2002 Proc. Natl. Acad. Sci. USA 99 10272
[5] Gonzalez J I, Vosch T, Dickson R M 2006 Phys. Rev. B 74 064305
[6] Duan X, Huang Y, Agarwal R, Lieber C M 2003 Nature 421 241
[7] Chen J, Perebeinos V, Freitag M, Tsang J, Fu Q, Liu J, Avouris P 2005 Science 310 1171
[8] Misewich J A, Martel R, Avouris Ph. Tsang J C, Heinze S, Tersoff J 2003 Science 300 783
[9] Marquardt C W, Grunder S, Błaszczyk A, Dehm S, Hennrich F, Löhneysen H V, Mayor M, Krupke R 2010 Nat. Nanotechnol. 5 863
[10] Gimzewski J K, Sass J K, Schlitter R R, Schott J 1989 Europhys. Lett. 8 435
[11] Berndt R, Gaisch R, Gimzewski J K, Reihl B, Schlittler R R, Schneider W D, Tschudy M 1993 Science 262 1425
[12] Qiu X H, Nazin G V, Ho W 2003 Science 299 542
[13] Chen C, Chu P, Bobisch C A, Mills D L, Ho W 2010 Phys. Rev. Lett. 105 217402
[14] Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, Hou J G 2016 Nature 531 623
[15] Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, Kim Y 2016 Nature 538 364
[16] Doppagne B, Chong M C, Bulou H, Boeglin A, Scheurer F, Schull G 2018 Science 361 251
[17] Kuhnke K, Große C, Merino P, Kern K 2017 Chem. Rev. 117 5174
[18] Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L, Hou J G 2010 Nat. Photon. 4 50
[19] Dong Z C, Guo X L, Trifonov A S, Dorozhkin P S, Miki K, Kimura K, Yokoyama S, Mashiko S 2004 Phys. Rev. Lett. 92 086801
[20] Zhang L, Yu Y J, Chen L G, Luo Y, Yang B, Kong F F, Chen G, Zhang Y, Zhang Q, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 580
[21] Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 15225
[22] Ćavar E, Blm M C, Pivetta M, Patthey F, Chergui M, Schneider W D 2005 Phys. Rev. Lett. 95 196102
[23] Zhu S E, Kuang Y M, Geng F, Zhu J Z, Wang C Z, Yu Y J, Luo Y, Xiao Y, Liu K Q, Meng Q S, Zhang L, Jiang S, Zhang Y, Wang G W, Dong Z C, Hou J G 2013 J. Am. Chem. Soc. 135 15794
[24] Chong M C, Reecht G, Bulou H, Boeglin H A, Scheurer F, Mathevet F, Schull G 2016 Phys. Rev. Lett. 116 036802
[25] Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
[26] Luk’yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nat. Mater. 9 707
[27] Vardi Y, Cohen-Hoshen E, Shalem G, Bar-Joseph I 2016 Nano Lett. 16 748
[28] Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, Kim Y 2017 Phys. Rev. Lett. 119 013901
[29] Zhang Y, Zhang Y, Dong Z C 2018 AAPPS Bull. 28 19
[30] Nothaft M, Höhla S, Jelezko F, Frhauf N, Pflaum J, Wrachtrup J 2012 Nat. Commun. 3 628
[31] Perronet K, Schull G, Raimond P, Charra F 2006 Europhys. Lett. 74 313
[32] Silly F, Charra F 2000 Appl. Phys. Lett. 77 3648
[33] Barnes W L 1998 J. Mod. Opt. 45 661
[34] Merino P, Große C, Rosßawska A, Kuhnke K, Kern K 2015 Nat. Commun. 6 8461
[35] Rezus Y L A, Walt S G, Lettow R, Renn A, Zumofen G, Götzinger S, Sandoghdar V 2012 Phys. Rev. Lett. 108 093601
[36] Iwasaki T, Ishibashi F, Miyamoto Y, Doi Y, Kobayashi S, Miyazaki T, Tahara K, Jahnke K D, Rogers L J, Naydenov B, Jelezko F, Yamasaki S, Nagamachi S, Inubushi T, Mizuochi N, Hatano M 2015 Sci. Rep. 5 12882
[37] Vlaming S M, Eisfeld A 2014 J. Phys. D: Appl. Phys. 47 305301
[38] Kasha M, Rawls H R, El-Bayoumi M A 1965 Pure Appl. Chem. 11 371
[39] Krishna V, Tully J C 2006 J. Chem. Phys. 125 054706
[40] Yao P, Vlack C V, Reza A, Patterson M, Dignam M M, Hughes S 2009 Phys. Rev. 80 195106
Catalog
Metrics
- Abstract views: 7889
- PDF Downloads: 306
- Cited By: 0