Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Single-molecule electroluminescence and its relevant latest progress

Zhang Yao Zhang Yang Dong Zhen-Chao

Citation:

Single-molecule electroluminescence and its relevant latest progress

Zhang Yao, Zhang Yang, Dong Zhen-Chao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Research on the interaction and interconversion between electrons and photons on an individual molecular scale can provide scientific basis for the future developing of information and energy technology. Scanning tunneling microscope(STM) can offer abilities beyond atomic-resolution imaging and manipulation, and its highly localized tunneling electrons can also be used for exciting the molecules inside the tunnel junction, generating molecule-specific light emission, and thus enabling the investigation of molecular optoelectronic behavior in local nano-environment. In this paper, we present an overview of our recent research progress related to the single-molecule electroluminescence of zinc phthalocyanine (ZnPc) molecules. First, we demonstrate the realization of single-molecule electroluminescence from an isolated ZnPc by adopting a combined strategy of both efficient electronic decoupling and nanocavity plasmonic enhancement. By further combining the photon correlation measurements via the Hanbury-Brown-Twiss interferometry with STM induced luminescence technique, we demonstrate and confirm the single-photon emission nature of such an electrically driven single-molecule electroluminescence. Second, by developing the sub-nanometer resolved electroluminescence imaging technique, we demonstrate the real-space visualization of the coherent intermolecular dipole-dipole coupling of an artificially constructed non-bonded ZnPc dimer. By mapping the spatial distribution of the photon yield for the excitonic coupling in a well-defined molecular architecture, we can reveal the local optical response of the system and the dependence of the local optical response on the relative orientation and phase of the transition dipoles of the individual molecules in the dimer. Third, by using a single molecular emitter as a distinctive optical probe to coherently couple with the highly confined plasmonic nanocavity, we demonstrate the Fano resonance and photonic Lamb shift at a single-molecule level. The ability to spatially control the single-molecule Fano resonance with sub-nanometer precision can reveal the coherent and highly confined nature of the broadband nanocavity plasmon, as well as the coupling strength and the anisotropy of the field-matter interaction. These results not only shed light on the fabrication of electrically driven nano-emitters and single-photon sources, but also open up a new avenue to the study of intermolecular energy transfer, field-matter interaction, and molecular optoelectronics, all at the single-molecule level.
      Corresponding author: Dong Zhen-Chao, zcdong@ustc.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921402, 2016YFA0200601), the National Natural Science Foundation of China (Grant Nos. 91021004, 11327805, 21333010, 91421314, 21790352), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB01020200), and the Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY090100).
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Ozbay E 2006 Science 311 189

    [3]

    Lee T H, Gonzalez J I, Zheng J, Dickson R M 2005 Acc. Chem. Res. 38 534

    [4]

    Lee T H, Gonzalez J I, Dickson R M 2002 Proc. Natl. Acad. Sci. USA 99 10272

    [5]

    Gonzalez J I, Vosch T, Dickson R M 2006 Phys. Rev. B 74 064305

    [6]

    Duan X, Huang Y, Agarwal R, Lieber C M 2003 Nature 421 241

    [7]

    Chen J, Perebeinos V, Freitag M, Tsang J, Fu Q, Liu J, Avouris P 2005 Science 310 1171

    [8]

    Misewich J A, Martel R, Avouris Ph. Tsang J C, Heinze S, Tersoff J 2003 Science 300 783

    [9]

    Marquardt C W, Grunder S, Błaszczyk A, Dehm S, Hennrich F, Löhneysen H V, Mayor M, Krupke R 2010 Nat. Nanotechnol. 5 863

    [10]

    Gimzewski J K, Sass J K, Schlitter R R, Schott J 1989 Europhys. Lett. 8 435

    [11]

    Berndt R, Gaisch R, Gimzewski J K, Reihl B, Schlittler R R, Schneider W D, Tschudy M 1993 Science 262 1425

    [12]

    Qiu X H, Nazin G V, Ho W 2003 Science 299 542

    [13]

    Chen C, Chu P, Bobisch C A, Mills D L, Ho W 2010 Phys. Rev. Lett. 105 217402

    [14]

    Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, Hou J G 2016 Nature 531 623

    [15]

    Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, Kim Y 2016 Nature 538 364

    [16]

    Doppagne B, Chong M C, Bulou H, Boeglin A, Scheurer F, Schull G 2018 Science 361 251

    [17]

    Kuhnke K, Große C, Merino P, Kern K 2017 Chem. Rev. 117 5174

    [18]

    Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L, Hou J G 2010 Nat. Photon. 4 50

    [19]

    Dong Z C, Guo X L, Trifonov A S, Dorozhkin P S, Miki K, Kimura K, Yokoyama S, Mashiko S 2004 Phys. Rev. Lett. 92 086801

    [20]

    Zhang L, Yu Y J, Chen L G, Luo Y, Yang B, Kong F F, Chen G, Zhang Y, Zhang Q, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 580

    [21]

    Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 15225

    [22]

    Ćavar E, Blm M C, Pivetta M, Patthey F, Chergui M, Schneider W D 2005 Phys. Rev. Lett. 95 196102

    [23]

    Zhu S E, Kuang Y M, Geng F, Zhu J Z, Wang C Z, Yu Y J, Luo Y, Xiao Y, Liu K Q, Meng Q S, Zhang L, Jiang S, Zhang Y, Wang G W, Dong Z C, Hou J G 2013 J. Am. Chem. Soc. 135 15794

    [24]

    Chong M C, Reecht G, Bulou H, Boeglin H A, Scheurer F, Mathevet F, Schull G 2016 Phys. Rev. Lett. 116 036802

    [25]

    Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257

    [26]

    Luk’yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nat. Mater. 9 707

    [27]

    Vardi Y, Cohen-Hoshen E, Shalem G, Bar-Joseph I 2016 Nano Lett. 16 748

    [28]

    Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, Kim Y 2017 Phys. Rev. Lett. 119 013901

    [29]

    Zhang Y, Zhang Y, Dong Z C 2018 AAPPS Bull. 28 19

    [30]

    Nothaft M, Höhla S, Jelezko F, Frhauf N, Pflaum J, Wrachtrup J 2012 Nat. Commun. 3 628

    [31]

    Perronet K, Schull G, Raimond P, Charra F 2006 Europhys. Lett. 74 313

    [32]

    Silly F, Charra F 2000 Appl. Phys. Lett. 77 3648

    [33]

    Barnes W L 1998 J. Mod. Opt. 45 661

    [34]

    Merino P, Große C, Rosßawska A, Kuhnke K, Kern K 2015 Nat. Commun. 6 8461

    [35]

    Rezus Y L A, Walt S G, Lettow R, Renn A, Zumofen G, Götzinger S, Sandoghdar V 2012 Phys. Rev. Lett. 108 093601

    [36]

    Iwasaki T, Ishibashi F, Miyamoto Y, Doi Y, Kobayashi S, Miyazaki T, Tahara K, Jahnke K D, Rogers L J, Naydenov B, Jelezko F, Yamasaki S, Nagamachi S, Inubushi T, Mizuochi N, Hatano M 2015 Sci. Rep. 5 12882

    [37]

    Vlaming S M, Eisfeld A 2014 J. Phys. D: Appl. Phys. 47 305301

    [38]

    Kasha M, Rawls H R, El-Bayoumi M A 1965 Pure Appl. Chem. 11 371

    [39]

    Krishna V, Tully J C 2006 J. Chem. Phys. 125 054706

    [40]

    Yao P, Vlack C V, Reza A, Patterson M, Dignam M M, Hughes S 2009 Phys. Rev. 80 195106

  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Ozbay E 2006 Science 311 189

    [3]

    Lee T H, Gonzalez J I, Zheng J, Dickson R M 2005 Acc. Chem. Res. 38 534

    [4]

    Lee T H, Gonzalez J I, Dickson R M 2002 Proc. Natl. Acad. Sci. USA 99 10272

    [5]

    Gonzalez J I, Vosch T, Dickson R M 2006 Phys. Rev. B 74 064305

    [6]

    Duan X, Huang Y, Agarwal R, Lieber C M 2003 Nature 421 241

    [7]

    Chen J, Perebeinos V, Freitag M, Tsang J, Fu Q, Liu J, Avouris P 2005 Science 310 1171

    [8]

    Misewich J A, Martel R, Avouris Ph. Tsang J C, Heinze S, Tersoff J 2003 Science 300 783

    [9]

    Marquardt C W, Grunder S, Błaszczyk A, Dehm S, Hennrich F, Löhneysen H V, Mayor M, Krupke R 2010 Nat. Nanotechnol. 5 863

    [10]

    Gimzewski J K, Sass J K, Schlitter R R, Schott J 1989 Europhys. Lett. 8 435

    [11]

    Berndt R, Gaisch R, Gimzewski J K, Reihl B, Schlittler R R, Schneider W D, Tschudy M 1993 Science 262 1425

    [12]

    Qiu X H, Nazin G V, Ho W 2003 Science 299 542

    [13]

    Chen C, Chu P, Bobisch C A, Mills D L, Ho W 2010 Phys. Rev. Lett. 105 217402

    [14]

    Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, Hou J G 2016 Nature 531 623

    [15]

    Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, Kim Y 2016 Nature 538 364

    [16]

    Doppagne B, Chong M C, Bulou H, Boeglin A, Scheurer F, Schull G 2018 Science 361 251

    [17]

    Kuhnke K, Große C, Merino P, Kern K 2017 Chem. Rev. 117 5174

    [18]

    Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L, Hou J G 2010 Nat. Photon. 4 50

    [19]

    Dong Z C, Guo X L, Trifonov A S, Dorozhkin P S, Miki K, Kimura K, Yokoyama S, Mashiko S 2004 Phys. Rev. Lett. 92 086801

    [20]

    Zhang L, Yu Y J, Chen L G, Luo Y, Yang B, Kong F F, Chen G, Zhang Y, Zhang Q, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 580

    [21]

    Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 15225

    [22]

    Ćavar E, Blm M C, Pivetta M, Patthey F, Chergui M, Schneider W D 2005 Phys. Rev. Lett. 95 196102

    [23]

    Zhu S E, Kuang Y M, Geng F, Zhu J Z, Wang C Z, Yu Y J, Luo Y, Xiao Y, Liu K Q, Meng Q S, Zhang L, Jiang S, Zhang Y, Wang G W, Dong Z C, Hou J G 2013 J. Am. Chem. Soc. 135 15794

    [24]

    Chong M C, Reecht G, Bulou H, Boeglin H A, Scheurer F, Mathevet F, Schull G 2016 Phys. Rev. Lett. 116 036802

    [25]

    Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257

    [26]

    Luk’yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nat. Mater. 9 707

    [27]

    Vardi Y, Cohen-Hoshen E, Shalem G, Bar-Joseph I 2016 Nano Lett. 16 748

    [28]

    Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, Kim Y 2017 Phys. Rev. Lett. 119 013901

    [29]

    Zhang Y, Zhang Y, Dong Z C 2018 AAPPS Bull. 28 19

    [30]

    Nothaft M, Höhla S, Jelezko F, Frhauf N, Pflaum J, Wrachtrup J 2012 Nat. Commun. 3 628

    [31]

    Perronet K, Schull G, Raimond P, Charra F 2006 Europhys. Lett. 74 313

    [32]

    Silly F, Charra F 2000 Appl. Phys. Lett. 77 3648

    [33]

    Barnes W L 1998 J. Mod. Opt. 45 661

    [34]

    Merino P, Große C, Rosßawska A, Kuhnke K, Kern K 2015 Nat. Commun. 6 8461

    [35]

    Rezus Y L A, Walt S G, Lettow R, Renn A, Zumofen G, Götzinger S, Sandoghdar V 2012 Phys. Rev. Lett. 108 093601

    [36]

    Iwasaki T, Ishibashi F, Miyamoto Y, Doi Y, Kobayashi S, Miyazaki T, Tahara K, Jahnke K D, Rogers L J, Naydenov B, Jelezko F, Yamasaki S, Nagamachi S, Inubushi T, Mizuochi N, Hatano M 2015 Sci. Rep. 5 12882

    [37]

    Vlaming S M, Eisfeld A 2014 J. Phys. D: Appl. Phys. 47 305301

    [38]

    Kasha M, Rawls H R, El-Bayoumi M A 1965 Pure Appl. Chem. 11 371

    [39]

    Krishna V, Tully J C 2006 J. Chem. Phys. 125 054706

    [40]

    Yao P, Vlack C V, Reza A, Patterson M, Dignam M M, Hughes S 2009 Phys. Rev. 80 195106

  • [1] Liu Yan-Xin, Wang Zhi-Hui, Guan Shi-Jun, Wang Qin-Xia, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai. Experimental realization of one-dimensional single-atom array based on microscale optical dipole traps. Acta Physica Sinica, 2024, 73(10): 103701. doi: 10.7498/aps.73.20240135
    [2] Liu Yao, He Jun, Su Nan, Cai Ting, Liu Zhi-Hui, Diao Wen-Ting, Wang Jun-Min. A 509 nm pulsed laser system for Rydberg excitation of cesium atoms. Acta Physica Sinica, 2023, 72(6): 060303. doi: 10.7498/aps.72.20222286
    [3] Yu Gui-Fang, Li Zhi-Hao, Xiao Tian-Qi, Feng Tian-Feng, Zhou Xiao-Qi. Mode-dispersion phase matching single photon source based on thin-film lithium niobate. Acta Physica Sinica, 2023, 72(15): 154204. doi: 10.7498/aps.72.20230743
    [4] Tian Xiao-Jun, Kong Fan-Fang, Jing Shi-Hao, Yu Yun-Jie, Zhang Yao, Zhang Yang, Dong Zhen-Chao. Probing vibronic coupling of a transiently charged state of a single molecule through subnanometer resolved electroluminescence imaging. Acta Physica Sinica, 2022, 71(6): 063301. doi: 10.7498/aps.71.20212003
    [5] Meng Jie, Xu Le-Chen, Zhang Cheng-Jun, Zhang Chun-Hui, Wang Qin. Overview of applications of heralded single photon source in quantum key distribution. Acta Physica Sinica, 2022, 71(17): 170304. doi: 10.7498/aps.71.20220344
    [6] Yao Jie, Zhao Ai-Di. Advances in detection and regulation of surface-supported molecular quantum states. Acta Physica Sinica, 2022, 71(6): 060701. doi: 10.7498/aps.71.20212324
    [7] Shang Xiang-Jun, Li Shu-Lun, Ma Ben, Chen Yao, He Xiao-Wu, Ni Hai-Qiao, Niu Zhi-Chuan. Optical fiber coupling of quantum dot single photon sources. Acta Physica Sinica, 2021, 70(8): 087801. doi: 10.7498/aps.70.20201605
    [8] Wu Rui-Xiang, Zhang Guo-Feng, Qiao Zhi-Xing, Chen Rui-Yun. Dipole orientation polarization property of single-molecule manipulated by external electric field. Acta Physica Sinica, 2019, 68(12): 128201. doi: 10.7498/aps.68.20190361
    [9] Liu Bei, Jin Gang, He Jun, Wang Jun-Min. 852-nm triggered single-photon source based on trapping and manipulation of a single cesium atom confined in a microscopic optical dipole trap. Acta Physica Sinica, 2016, 65(23): 233701. doi: 10.7498/aps.65.233701
    [10] Li Rui. The mechanisms of electric-dipole spin resonance in quasi-one-dimensional semiconductor quantum dot. Acta Physica Sinica, 2015, 64(16): 167303. doi: 10.7498/aps.64.167303
    [11] Wang Cheng, Xu Peng, He Xiao-Dong, Wang Jin, Zhan Ming-Sheng. Transferring single-atoms between two red-detuned far-off-resonance optical dipole traps. Acta Physica Sinica, 2012, 61(20): 203701. doi: 10.7498/aps.61.203701
    [12] Han Qing-Yao, Tang Jun-Chao, Zhang Chao, Wang Chuan, Ma Hai-Qiang, Yu Li, Jiao Rong-Zhen. The effects of local density of states on surface plasmon polaritons. Acta Physica Sinica, 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
    [13] Ma Hai-Qiang, Li Lin-Xia, Wang Su-Mei, Wu Zhang-Bin, Jiao Rong-Zhen. An all-fiber method to measure the wave-particle duality of light. Acta Physica Sinica, 2010, 59(1): 75-79. doi: 10.7498/aps.59.75
    [14] Zhang Guo-Feng, Cheng Feng-Yu, Jia Suo-Tang, Sun Jian-Hu, Xiao Lian-Tuan, Zhang Fang. Experiment study of orientation and reorientation quantum dynamics of single dye molecules at room temperature. Acta Physica Sinica, 2009, 58(4): 2364-2368. doi: 10.7498/aps.58.2364
    [15] Chen Wei, Xing Ming-Xin, Ren Gang, Wang Ke, Du Xiao-Yu, Zhang Ye-Jin, Zheng Wan-Hua. Design of high polarization and single-mode photonic crystal laser. Acta Physica Sinica, 2009, 58(6): 3955-3960. doi: 10.7498/aps.58.3955
    [16] Ma Hai-Qiang, Wang Su-Mei, Wu Ling-An. A single photon source based on entangled photon pairs. Acta Physica Sinica, 2009, 58(2): 717-721. doi: 10.7498/aps.58.717
    [17] Wang Xiao-Bo, Huang Tao, Shao Jun-Hu, Jiang Yu-Qiang, Xiao Lian-Tuan, Jia Suo-Tang. Determination of signal-to-background ratio of single molecular photon source based on photon counting statistics. Acta Physica Sinica, 2005, 54(2): 617-621. doi: 10.7498/aps.54.617
    [18] Xia You-Lin, Ye Chao-Hui. . Acta Physica Sinica, 1995, 44(6): 970-976. doi: 10.7498/aps.44.970
    [19] ZHAN YOU-BANG. ATOMIC DIPOLE SQUEEZING IN OFF RESONANCE TWO-PHOTON JAYNES-CUMMINGS MODEL. Acta Physica Sinica, 1994, 43(6): 895-903. doi: 10.7498/aps.43.895
    [20] XIA YOU-LIN, YE CHAO-HUI. OFFSET EFFECTS OF 14N NUCLEAR QUADRUPOLAR RESONANCE. Acta Physica Sinica, 1994, 43(8): 1371-1379. doi: 10.7498/aps.43.1371
Metrics
  • Abstract views:  7520
  • PDF Downloads:  300
  • Cited By: 0
Publishing process
  • Received Date:  16 September 2018
  • Accepted Date:  26 October 2018
  • Published Online:  20 November 2019

/

返回文章
返回