搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单/双层ZrSiS光学性质及表面等离激元性质研究

樊浩江 卫临方 雍鑫 马向超 刘德连

引用本文:
Citation:

单/双层ZrSiS光学性质及表面等离激元性质研究

樊浩江, 卫临方, 雍鑫, 马向超, 刘德连

Optical and surface plasmon polariton properties of monolayer and bilayer ZrSiS

Fan Haojiang, Wei Linfang, Yong Xin, Ma Xiangchao, Liu Delian
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 拓扑节线半金属ZrSiS因其独特的电子结构而在体相材料中展现出丰富的物理现象。然而,对其低维形式(如单层和双层)的光学与表面等离激元性质的研究尚不充分。基于第一性原理计算,本工作系统地研究了单层和双层 ZrSiS 的电子能带结构、光电导率、光学性质和表面等离子体激元极化激元(SPP)特性。计算结果表明,层状 ZrSiS 由于其拓扑节线能带而表现出独特的光电导特性,在红外区域显示出显著的带内响应,同时在可见光范围内显示出明显的带间响应。此外其光学性质表明,单层和双层结构都具有很高的光吸收率(显著超过石墨烯)以及从红外到可见光谱的可调反射/透射窗口。此外,我们发现单层和双层ZrSiS在表面等离激元特性上支持从红外到可见光范围的表面等离激元(单层:0.5 - 4 eV;双层:0.4 - 2.5 eV)。这些表面等离激元相较于体材料表现出更为出色的局域化特性。综上所述,层状 ZrSiS 在纳米光子学、高性能红外光电探测器以及可调谐等离子体器件的应用方面具有巨大潜力。
    Topological nodal-line semimetals have emerged as a fascinating class of materials due to their protected band crossings and unique electronic properties. Among them, ZrSiS stands out as a typical system with nodal-line and high carrier mobility. While its bulk properties have been extensively studied, the optical and plasmonic behaviors of its monolayer and bilayer ZrSiS remain largely unexplored. Understanding these low-dimensional forms is crucial for harnessing their potential in nanophotonics and optoelectronic devices. This work, based on first-principles calculations, systematically investigates the electronic band structure, optoelectronic conductivity, optical response, and surface plasmon polariton (SPP) characteristics of monolayer and bilayer ZrSiS. The results were compared with those of bulk materials and typical two-dimensional materials argentene to explore their advantages and disadvantages in all aspects and application prospects. Our results show that layered ZrSiS exhibits distinctive conductivity features arising from its topological nodal-line bands, displaying a significant intraband response in the infrared regime and interband response in the visible range. Analysis of the optical properties reveals that both mono/bilayer structures possess high absorption (significantly exceeding that of graphene) and tunable reflection/transmission windows from the infrared to visible spectrum. Furthermore, regarding plasmonic properties, we find that monolayer and bilayer ZrSiS support SPP in the infrared to visible range (monolayer: 0.5-4 eV; bilayer: 0.4-2.5 eV). These SPP are highly localized, with confinement ratios several times larger than those of bulk ZrSiS, while maintaining propagation lengths on the order of micrometers in the infrared regime. In conclusion, monolayer and bilayer ZrSiS combine tunable electronic structure, high optical absorption, and strongly confined surface plasmons, making them promising candidates for advanced nanophotonic and infrared optoelectronic applications. Their layer-dependent properties offer additional degrees of freedom for device design, paving the way for next-generation tunable plasmonic and photonic devices.
  • [1]

    NOVOSELOV K S, JIANG D, SCHEDIN F, T J Booth, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. 102 10451

    [2]

    ARMITAGE N P, MELE E J, VISHWANATH A 2018 Rev. Mod. Phys. 90 015001

    [3]

    Huang H Q, Liu J P, Vanderbilt D, Duan W H. 2016 Phys. Rev. B 93 201114

    [4]

    Weng H M, Dai X, Fang Z 2016 J. Phys.: Condens. Matter 28 303001

    [5]

    Fang C, Chen Y G, Kee H Y, Fu L 2015 Phys. Rev. B 92, 081201

    [6]

    Hussain G Rao X, Li N, Chu W J, Liu X G, Zhao X, Sun X F 2020 Phys. Lett. A 384 126938

    [7]

    Lv B Q, Qian T, Ding H. 2021 Rev. Mod. Phys. 93 025002

    [8]

    Neupane M, Belopolski I, Hosen M M, Sanchez D S, Szlawska M, Xu S Y, Dimitri K, Dhakal N, Maldonado P, Oppeneer P M, Kaczorowski D, Chou F C, Hasan M Z, Durakiewicz T 2016 Phys. Rev. B 93 201104

    [9]

    Xue S W, Wang M Y, Li Y , Zhang S Y, Jia X, Zhou J H, Shi Y G, Zhu X T, Yao Y G, Guo J 2021 Phys. Rev. Lett. 127 186802

    [10]

    Wang X F, Pan X C, Gao M, Zhang Y, Li Z Q, Chen X H, Jia J F 2016 Adv. Electron. Mater. 2 1600228

    [11]

    Topp A, Queiroz R, Grüneis A, Schmidt S, Schüller M, Hirai T, Ito T, Kitagawa T, Tokura Y, Ekkehardt W, Rosner M 2017 Phys. Rev. X 7 041073

    [12]

    Ansari L, Monaghan S, McEvoy N, O'Brien A, Dwyer G, Horgan R R, McGuinness C P, Boyle S D, Nolan M, Dunleavy C, Murphy H, McCarthy E, Hubbard S M, Dubois R, O'Sullivan C, Falconer J, Kelly M J, Morris M A 2019 npj 2D Mater. Appl. 3 33

    [13]

    Xu Q, Song Z, Nie S, Zhang C, Liu C, Wang Y, Chen X, Zhao L, Liu J, Dong X, Ma J, Feng D, Wang Z 2015 Phys. Rev. B 92 205310

    [14]

    Sundararaman R, Letchworth-Weaver K, Schwarz K A, Pitzler M, Burnett K, Ernstorfer R S, Arouca E N, Bao J, Ramprakash S, Vasudevan S, Bogle S, Buber J, Eigenbrod C, Franz E, Ghosh S, Gunasekaran M, Hahn S, Han S, Hanson R, Hatzikiriakos S, Hong D, Jiang T, Kang S, Kim C, Kim J, Kim S, Kim Y, King S, Kong J, Kumar N, Kumar S, Lee H, Lee J, Lee S, Lee Y, Levine J, Li G, Li J, Liu H, Liu J, Liu S, Liu X, Luo Y, Mamonov A, Manoharan S, Martinez G, Martinez R, Mathur N, Meng F, Mohanraj J, Murugesan M, Nam S, Narayanan V, Nguyen T, Noh K, Oh S, Park H, Park J, Park S, Park Y, Pathak S, Pillai R, Pohl V, Prasad S, Prasanth S, Pu J, Qian D, Rajagopalan S, Ramachandran S, Ramakrishnan S, Ramanathan S, Rani S, Rathod V, Ravi S, Reddy A, Reddy P, Roh S, Rosenberg E, Sakthivel P, Samanta A, Santhosh M, Saravanan M, Sarkar A, Sarkar S, Saxena A, Saxena S, Schmidt M, Schneider T, Schwab M, Shan X, Sharma A, Sharma P, Sharma S, Shekhar C, Shen H, Shen J, Shen Z, Shi D, Shi J, Shi Y, Shin H, Shin J, Shin K, Shin S, Singh A, Singh G, Singh J, Singh K, Singh R, Singh S, Srinivasan K, Srinivasan S, Srivastava A, Srivastava P, Srivastava R, Subramanian S, Sudhakar C, Sundaram B, Suresh K, Swaminathan S, Swaroop S, Tang H, Tang J, Tang S, Thangaraj P, Thomas J, Thomas S, Tiwari A, Tiwari R, Tong L, Tong X, Torres M, Tummala R, Vadlamani R, Vallabhaneni S, Varma S, Venkatesan R, Venkataraman S, Venkateshwarlu K, Vijayakumar P, Vinod K, Wang C, Wang H, Wang J, Wang L, Wang M, Wang Q, Wang S, Wang X, Wang Y, Wang Z, Wei G, Wei H, Wei J, Wei L, Wei M, Wei Q, Wei S, Wei X, Wei Y, Wei Z, Wen C, Wen H, Wen J, Wen L, Wen M, Wen Q, Wen S, Wen X, Wen Y, Wen Z, Xiao D, Xiao H, Xiao J, Xiao L, Xiao M, Xiao Q, Xiao S, Xiao X, Xiao Y, Xiao Z, Xu C, Xu H, Xu J, Xu L, Xu M, Xu Q, Xu S, Xu X, Xu Y, Xu Z, Yang C, Yang H, Yang J, Yang L, Yang M, Yang Q, Yang S, Yang X, Yang Y, Yang Z, Ye C, Ye H, Ye J, Ye L, Ye M, Ye Q, Ye S, Ye X, Ye Y, Ye Z, Yi C, Yi H, Yi J, Yi L, Yi M, Yi Q, Yi S, Yi X, Yi Y, Yi Z, Yin C, Yin H, Yin J, Yin L, Yin M, Yin Q, Yin S, Yin X, Yin Y, Yin Z, Yoon C, Yoon H, Yoon J, Yoon L, Yoon M, Yoon Q, Yoon S, Yoon X, Yoon Y, Yoon Z, Zhang C, Zhang H, Zhang J, Zhang L, Zhang M, Zhang Q, Zhang S, Zhang X, Zhang Y, Zhang Z, Zhao C, Zhao H, Zhao J, Zhao L, Zhao M, Zhao Q, Zhao S, Zhao X, Zhao Y, Zhao Z, Zhou C, Zhou H, Zhou J, Zhou L, Zhou M, Zhou Q, Zhou S, Zhou X, Zhou Y, Zhou Z 2017 SoftwareX 6 278

    [15]

    Sundararaman R, Arias T 2013 Phys. Rev. B 87 165122

    [16]

    Fan H, Ma X, Wei L, Zhang Y, Li J, Wang Z, Liu X, Chen D 2025 Opt. Express 33 3361

    [17]

    Jian C, Ma X, Zhang J, Li Y, Wang S, Zhao H, Chen L, Liu W 2022 Nanophotonics 11 531

    [18]

    Zhang C X, Ma X C, Zhang J Q 2022 Acta. Phys. Sin. 71 227801(in Chinese) [张彩霞, 马向超, 张建奇 2020 物理学报 71 227801]

    [19]

    Sundararaman R, Christensen T, Ping Y, Zhang S, Liu H, Wang J, Chen X 2018 Phys. Rev. Mater. 4 074011

    [20]

    Schoop L M, Ali M N, Straßer C, Park J, Sun Y, Yan B, Neupane M, Wieder B J, Denlinger J D, Liu C, Qian D, Chou F C, Ong N P, Lin H, Wang L, Hasan M Z 2016 Nat. Commun. 7 11696

    [21]

    Falkovsky L A 2008 J. Phys.: Conf. Ser. 129 012004

    [22]

    Dawlaty J M, Shivaramana S, Strait J, Allen M J, Williams E D, Wei S H, Chen C J 2008 Appl. Phys. Lett. 93 133107

    [23]

    Zhu Y, Xu H, Yu P, Li J, Wang Z, Liu X, Chen D 2021 Appl. Phys. Rev. 8 021305

    [24]

    Linic S, Chavez S, Elias R J N M 2021 Nat. Mater. 20 632

    [25]

    MAIER S A(translated by Zhang T, Wang Q L, Zhang X Y, Li C) 2014 Plasmonics: Fundamentals and Applications (NanJing: Southeast University Press)pp20 (in Chinese)[麦尔 S.A著 (张彤,王琦龙,张晓阳,李晨译) 2014 等离激元学基础与应用(南京:东南大学出版社)第20页]

  • [1] 李鹏飞, 韩丽君, 张琳, 惠宁菊. 石墨烯狄拉克等离激元调控的第一性原理研究. 物理学报, doi: 10.7498/aps.74.20250913
    [2] 尹开慧, 朱洪强, 徐凤霞, 吴泽邦, 高田军, 杨英, 冯庆, 岳远霞, 贾伟尧. 稀土元素掺杂含单碲空位缺陷单层WTe2光学性质的第一性原理. 物理学报, doi: 10.7498/aps.74.20251196
    [3] 李祗烁, 曹欣睿, 吴顺情, 吴建洋, 文玉华, 朱梓忠. 单层Janus MoSSe在不同手性角单轴拉伸应变下力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.74.20250437
    [4] 黄俊刚, 方艺梅, 江银河, 郑凯, 陈凯轩, 程梅娟, 林秋宝. 硫掺杂氧化锌纳米线电子性质和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.74.20250495
    [5] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, doi: 10.7498/aps.70.20212290
    [6] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, doi: 10.7498/aps.71.20212290
    [7] 张彩霞, 马向超, 张建奇. Au(111)薄膜表面等离激元和热载流子输运性质的理论研究. 物理学报, doi: 10.7498/aps.71.20221166
    [8] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20210268
    [9] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, doi: 10.7498/aps.68.20191258
    [10] 吴立祥, 李鑫, 杨元杰. 基于双层阿基米德螺线的表面等离激元涡旋产生方法. 物理学报, doi: 10.7498/aps.68.20190747
    [11] 唐士惠, 操秀霞, 何林, 祝文军. 空位缺陷和相变对冲击压缩下蓝宝石光学性质的影响. 物理学报, doi: 10.7498/aps.65.146201
    [12] 高敏, 舒文路, 叶强, 何林, 祝文军. 下地幔压力条件下(Mg0.97, Fe0.03)O方镁铁矿的光学性质. 物理学报, doi: 10.7498/aps.64.119101
    [13] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.62.073101
    [14] 杜玉杰, 常本康, 张俊举, 李飙, 王晓晖. GaN(0001)表面电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.61.067101
    [15] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.61.036105
    [16] 焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮. 闪锌矿GaN弹性性质、电子结构和光学性质外压力效应的理论研究. 物理学报, doi: 10.7498/aps.60.117103
    [17] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究. 物理学报, doi: 10.7498/aps.59.2051
    [18] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.59.4930
    [19] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究. 物理学报, doi: 10.7498/aps.59.3426
    [20] 李晓凤, 姬广富, 彭卫民, 申筱濛, 赵峰. 高压下固态Kr弹性性质、电子结构和光学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.58.2660
计量
  • 文章访问数:  40
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-23

/

返回文章
返回