Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Atomic and electronic structures of silicene and germanene on GaAs(111)

Zhang Xian Guo Zhi-Xin Cao Jue-Xian Xiao Si-Guo Ding Jian-Wen

Citation:

Atomic and electronic structures of silicene and germanene on GaAs(111)

Zhang Xian, Guo Zhi-Xin, Cao Jue-Xian, Xiao Si-Guo, Ding Jian-Wen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • By using first-principles method in the density-functional theory, we clarify the atomic and electronic structures of silicene and germanene on 1×1 GaAs(111). We find stable structures for silicene and germanene on both the As-terminated and Ga-terminated GaAs surfaces. The structures of silicene and germanene are similar to those of the free-standing ones, which present a honeycomb-hexagonal geometry. The cohesive energies of silicene and germanene on both As and Ga sides of GaAs surfaces are comparable to those of their bulk structures and/or those on Ag(111) substrates which have been widely observed in experiment, showing the possibility of synthesizing them on both sides of GaAs surfaces in experiment. The corresponding binding energies are in a range of 0.56-1.37 eV per Si (Ge) atom, 10 times larger than the usual van der Waals interaction, showing the covalent interaction between silicene (germanene) and GaAs surfaces. The band structure calculations show that such a covalent interaction induces the absence of Dirac electrons for silicene and germanene on GaAs surfaces. We then explore the method of recovering the Dirac electrons by using hydrogen (H) intercalation. It is found that the intercalated H atoms are chemically bonded to GaAs surface, and the silicene (germanene) shifts upward distance from GaAs surface increasing from 2.50-2.58 Å to 3.49-3.86 Å, where a covalent van-der-Waals interaction transition happens between silicene (germanene) and GaAs surface. Moreover, the distances between silicene (germanene) and H atoms are 30% and 8% larger than the atomic-radius sum of Si (Ge) and H on As-terminated and Ga-terminated GaAs surfaces, respectively. This shows that the interaction between silicene (germanene) and H on the As-terminated GaAs surface is obviously weaker than the typical covalent interaction, while on the Ga-terminated GaAs surface, it is comparable to the typical covalent interaction. This difference is induced by the difference in electronegativity between As and Ga atoms. We further find that the H intercalation recovers the Dirac electrons well on the As-terminated GaAs(111) due to the weaker Si (Ge)-H interaction, while it does not on the Ga-terminated GaAs(111) due to the stronger Si (Ge)-H interaction. The results are confirmed by performing calculations for silicene (germanene) on larger GaAs(111) surfaces, i.e., the 3×3 GaAs surface. Our study provides the theoretical basis for the preparation and application of silicene and germanene on semiconductor surfaces.
      Corresponding author: Guo Zhi-Xin, zxguo08@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204259, 11374252, 11474245, 51372214), the Natural Science Foundation of Hunan Province, China (Grant No. 2015JJ6106), the Program for New Century Excellent Talents in University, China (Grant No. NCET-12-0722) and the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13093).
    [1]

    Slonczewski J C, Weiss P R 1958 Phys. Rev. 109 272

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M L, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [3]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Son Y W, Cohen M L, Louie S G 2007 Nature 444 347

    [5]

    Okada S, Oshiyama A 2001 Phys. Rev. Lett. 87 146803

    [6]

    Geim A K, Novoselov K S 2007 Nat. Mat. 6 183

    [7]

    Cahangirov S, Topsakal M, Aktrk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804

    [8]

    Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802

    [9]

    Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501

    [10]

    Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y, Wu K 2012 Phys. Rev. Lett. 109 056804

    [11]

    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501

    [12]

    Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A, Gao H J 2013 Nano Lett. 13 685

    [13]

    Li L, Lu S, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S, Gao H J 2014 Adv. Mater. 26 4820

    [14]

    Dàvila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002

    [15]

    Guo Z X, Furuya S, Iwata J I, Oshiyama A 2013 J. Phys. Soc. Jpn. 82 063714

    [16]

    Guo Z X, Furuya S, Iwata J I, Oshiyama A 2013 Phys. Rev. B 87 235435

    [17]

    Guo Z X, Oshiyama A 2014 Phys. Rev. B 89 155418

    [18]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [19]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [20]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [21]

    Klimeš J, Bowler D R, Michaelides A 2011 Phys. Rev. B 83 195131

    [22]

    Woolf D A, Westwood D I, Williams R H 1993 Appl. Phys. Lett. 62 1370

    [23]

    Clementi E, Raimondi D L, Reinhardt W P 1963 J. Chem. Phys. 38 2686

    [24]

    Riedl C, Coletti C, Iwasaki T, Zakharov A A, Starke U 2009 Phys. Rev. Lett. 103 246804

  • [1]

    Slonczewski J C, Weiss P R 1958 Phys. Rev. 109 272

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M L, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [3]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Son Y W, Cohen M L, Louie S G 2007 Nature 444 347

    [5]

    Okada S, Oshiyama A 2001 Phys. Rev. Lett. 87 146803

    [6]

    Geim A K, Novoselov K S 2007 Nat. Mat. 6 183

    [7]

    Cahangirov S, Topsakal M, Aktrk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804

    [8]

    Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802

    [9]

    Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501

    [10]

    Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y, Wu K 2012 Phys. Rev. Lett. 109 056804

    [11]

    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501

    [12]

    Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A, Gao H J 2013 Nano Lett. 13 685

    [13]

    Li L, Lu S, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S, Gao H J 2014 Adv. Mater. 26 4820

    [14]

    Dàvila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002

    [15]

    Guo Z X, Furuya S, Iwata J I, Oshiyama A 2013 J. Phys. Soc. Jpn. 82 063714

    [16]

    Guo Z X, Furuya S, Iwata J I, Oshiyama A 2013 Phys. Rev. B 87 235435

    [17]

    Guo Z X, Oshiyama A 2014 Phys. Rev. B 89 155418

    [18]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [19]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [20]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [21]

    Klimeš J, Bowler D R, Michaelides A 2011 Phys. Rev. B 83 195131

    [22]

    Woolf D A, Westwood D I, Williams R H 1993 Appl. Phys. Lett. 62 1370

    [23]

    Clementi E, Raimondi D L, Reinhardt W P 1963 J. Chem. Phys. 38 2686

    [24]

    Riedl C, Coletti C, Iwasaki T, Zakharov A A, Starke U 2009 Phys. Rev. Lett. 103 246804

  • [1] Zheng Jun, Ma Li, Li Chun-Lei, Yuan Rui-Yang, Guo Ya-Tao, Fu Xu-Ri. Optically controlled silicene and germanene transistors driven by spin-bias. Acta Physica Sinica, 2022, 71(19): 198502. doi: 10.7498/aps.71.20221047
    [2] Ding Jun, Wen Li-Wei, Li Rui-Xue, Zhang Ying. Control of electric properties of silicene heterostructure by reversal of ferroelectric polarization. Acta Physica Sinica, 2022, 71(17): 177303. doi: 10.7498/aps.71.20220815
    [3] Chen Jian, Xiong Kang-Lin, Feng Jia-Gui. Adsorption of CoPc molecules on silicene surface. Acta Physica Sinica, 2022, 71(4): 040501. doi: 10.7498/aps.71.20211607
    [4] Guo Xiao-Meng, Qing Fang-Zhu, Li Xue-Song. Applications of graphene in anti-corrosion of metal surface. Acta Physica Sinica, 2021, 70(9): 098102. doi: 10.7498/aps.70.20210349
    [5] Adsorption of Copc Molecules on Monolayer Silicene. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211607
    [6] Xiao Mei-Xia, Leng Hao, Song Hai-Yang, Wang Lei, Yao Ting-Zhen, He Cheng. Effects of organic molecule adsorption and substrate on electronic structure of germanene. Acta Physica Sinica, 2021, 70(6): 063101. doi: 10.7498/aps.70.20201657
    [7] Xiang Yang, Zheng Jun, Li Chun-Lei, Guo Yong. Spin filter effect of germanene nanoribbon controlled by local exchange field and electric field. Acta Physica Sinica, 2019, 68(18): 187302. doi: 10.7498/aps.68.20190817
    [8] Xiao Ting-Hui, Yu Yang, Li Zhi-Yuan. Graphene-silicon hybrid photonic integrated circuits. Acta Physica Sinica, 2017, 66(21): 217802. doi: 10.7498/aps.66.217802
    [9] Yang Shuo, Cheng Peng, Chen Lan, Wu Ke-Hui. Chemical functionalization of silicene. Acta Physica Sinica, 2017, 66(21): 216805. doi: 10.7498/aps.66.216805
    [10] Qin Zhi-Hui. Recent progress of graphene-like germanene. Acta Physica Sinica, 2017, 66(21): 216802. doi: 10.7498/aps.66.216802
    [11] Wu Hong, Li Feng. Mechanisms on the GeH/ interactions in germanene/germanane bilayer for tuning band structures. Acta Physica Sinica, 2016, 65(9): 096801. doi: 10.7498/aps.65.096801
    [12] Hui Zhi-Xin, He Peng-Fei, Dai Ying, Wu Ai-Hui. Coarse-grain model of silicon functionalized graphene as anode material for lithium ion batteries. Acta Physica Sinica, 2015, 64(14): 143101. doi: 10.7498/aps.64.143101
    [13] Qin Ye-Hong, Tang Chao, Zhang Chun-Xiao, Meng Li-Jun, Zhong Jian-Xin. Molecular dynamics study of ripples in graphene monolayer on silicon surface. Acta Physica Sinica, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [14] Gao Tan-Hua. Structural and electronic properties of hydrogenated bilayer silicene. Acta Physica Sinica, 2015, 64(7): 076801. doi: 10.7498/aps.64.076801
    [15] Ji Qing-Shan, Hao Hong-Yan, Zhang Cun-Xi, Wang Rui. Electric field controlled energy gap and Landau levels in silicene. Acta Physica Sinica, 2015, 64(8): 087302. doi: 10.7498/aps.64.087302
    [16] Huang Yan-Ping, Yuan Jian-Mei, Guo Gang, Mao Yu-Liang. First-principles study on saturated adsorption of alkali metal atoms on silicene. Acta Physica Sinica, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [17] Li Xi-Lian, Liu Gang, Du Tao-Yuan, Zhao Jing, Wu Mu-Sheng, Ouyang Chu-Ying, Xu Bo. Effect of strain on Li adsorption on silicene. Acta Physica Sinica, 2014, 63(21): 217101. doi: 10.7498/aps.63.217101
    [18] An Xing-Tao, Diao Shu-Meng. Transport properties in a gate controlled silicene quantum wire. Acta Physica Sinica, 2014, 63(18): 187304. doi: 10.7498/aps.63.187304
    [19] Wu Jiang-Bin, Zhang Xin, Tan Ping-Heng, Feng Zhi-Hong, Li Jia. Electronic structure of twisted bilayer graphene. Acta Physica Sinica, 2013, 62(15): 157302. doi: 10.7498/aps.62.157302
    [20] Li Li-Min, Pan Hai-Bin, Yan Wen-Sheng, Xu Peng-Shou, Wei Shi-Qiang, Chen Xiu-Fang, Xu Xian-Gang, Kang Chao-Yang, Tang Jun. Preparation of graphene on different-polarity 6H-SiC substrates and the study of their electronic structures. Acta Physica Sinica, 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
Metrics
  • Abstract views:  6427
  • PDF Downloads:  482
  • Cited By: 0
Publishing process
  • Received Date:  03 March 2015
  • Accepted Date:  27 April 2015
  • Published Online:  05 September 2015

/

返回文章
返回