Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Higgs mode near superfluid-to-Mott-insulatortransition studied by the quantum Monte Carlo method

Chen Kun Deng You-Jin

Citation:

Higgs mode near superfluid-to-Mott-insulatortransition studied by the quantum Monte Carlo method

Chen Kun, Deng You-Jin
cstr: 32037.14.aps.64.180201
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In additional to the phonon (massless Goldstone mode) in Galilean invariant superfluid, there is another type of mode known as the Higgs amplitude mode in superfluid with emergent Lorentz invariance. In two dimensions, due to the strong decay into phonons, whether this Higgs mode is a detectable excitation with sharp linear response has been controversial for decades. Recent progress gives a positive answer to this question. Here, we review a series of numerical studies of the linear response of a two-dimensional Lorentz invariant superfluid near the superfluid-Mott insulator quantum critical point (SF-MI QCP). Particularly, we introduce a numerical procedure to unbiasedly calculate the linear response properties of strongly correlated systems. The numerical procedure contains two crucial steps, i.e., one is to use a highly efficient quantum Monte Carlo method, the worm algorithm in the imaginary-time path-integral representation, to calculate the imaginary time correlation functions for the system in equilibrium; and then, the other is, based on the imaginary time correlation functions, to use the numerical analytical continuation method for obtaining the real-time (real-frequency) linear response function. Applying this numerical procedure to the two-dimensional Bose Hubbard model near SF-MI QCP, it is found that despite strong damping, the Higgs boson survives as a prominent resonance peak in the kinetic energy response function. Further investigations also suggest a similar but less prominent resonance peak near SF-MI QCP on the MI side, and even on the normal liquid side. Since SF-MI quantum criticality can be realized by ultracold aotms in optical lattice, the Higgs resonance peak can be directly observed in experiment. In addition, we point out that the same Higgs resonance peak exists in all quantum critical systems with the same universality, namely (2 + 1)-dimensional relativistic U(1) criticality, as SF-MI QCP.
      Corresponding author: Chen Kun, chenkun@mail.ustc.edu.cn;yjdeng@ustc.edu.cn ; Deng You-Jin, chenkun@mail.ustc.edu.cn;yjdeng@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11275185).
    [1]

    Sachdev S 2011 Quantum Phase Transitions (2nd Ed.) (Cambridge: Cambridge University Press)

    [2]

    Goldstone J 1961 Nuovo. Cim. 19 154

    [3]

    Weinberg S 1996 The quantum theory of fields(Vol. 2) (Cambridge: Cambridge University Press)

    [4]

    Anderson P W 1963 Phys. Rev 130 439

    [5]

    Higgs P W 1964 Phys. Rev. Lett. 13 508

    [6]

    Pekker D, Varma C M 2015 Annu. Rev. Condens. Matter Phys. 6 269

    [7]

    Sooryakumar R, Klein M V 1980 Phys. Rev. Lett. 45 660

    [8]

    Sooryakumar R, Klein M V 1981 Phys. Rev. B 23 3213

    [9]

    Jaksch D, Bruder C, Cirac J I, Gardiner C W, Zoller P 1998 Phys. Rev. Lett. 81 3108

    [10]

    Fisher M P A, Weichman P B, Grinstein G, Fisher D S 1989 Phys. Rev. B 40 546

    [11]

    Capogrosso-Sansone B, Söyler S G, Prokof'ev N V, Svistunov B V 2008 Phys. Rev. A 77 015602

    [12]

    Bissbort U, Götze S, Li Y, Heinze J, Krauser J S, Weinberg M, Becker C, Sengstock K, Hofstetter W 2011 Phys. Rev. Lett. 106 205303

    [13]

    Regg Ch, Normand B, Matsumoto M, Furrer A, McMorrow D F, Krämer K W, Gdel H U, Gvasaliya S N, Mutka H, Boehm M 2008 Phys. Rev. Lett. 100 205701

    [14]

    Chubukov A V, Sachdev S, Ye J 1994 Phys. Rev. B 49 11919

    [15]

    Sachdev S 1999 Phys. Rev. B 59 14054

    [16]

    Zwerger W 2004 Phys. Rev. Lett. 92 027203

    [17]

    Podolsky D, Auerbach A, Arovas D P 2011 Phys. Rev. B 84 174522

    [18]

    Podolsky D, Sachdev S 2012 Phys. Rev. B 86 054508

    [19]

    Katan Y T, Podolsky D 2015 Phys. Rev. B 91 075132

    [20]

    Endres M, Fukuhara T, Pekker D, Cheneau M, Schauß P, Gross C, Demler E, Kuhr S, Bloch I 2012 Nature 487 454

    [21]

    Pollet L, Prokof'ev N 2012 Phys. Rev. Lett. 109 010401

    [22]

    Gazit S, Podolsky D, Auerbach A 2013 Phys. Rev. Lett. 110 140401

    [23]

    Chen K, Liu L, Deng Y, Pollet L, Prokof'ev N 2013 Phys. Rev. Lett. 110 170403

    [24]

    Gazit S, Podolsky D, Auerbach A, Arovas D P 2013 Phys. Rev. B 88 235108

    [25]

    Rancon A, Dupuis N 2014 Phys. Rev. B 89 180501

    [26]

    Burovski E, Machta J, Prokof'ev N V, Svistunov B V 2006 Phys. Rev. B 74 132502

    [27]

    Campostrini M, Hasenbusch M, Pelissetto A, Vicari E 2006 Phys. Rev. B 74 144506

    [28]

    Prokof'ev N V, Svistunov B V, Tupitsyn I S 1998 Sov. Phys.-JETP 87 310

    [29]

    Prokof'ev N V, Svistunov B V, Tupitsyn I S 1998 Phys. Lett. A 238 253

    [30]

    Caër L D 2010 Understanding Quantum Phase Transitions (Boca Raton: Taylor & Francis)

    [31]

    Mishchenko A S, Prokof'ev N V, Sakamoto A, Svistunov B V 2000 Phys. Rev. B 62 6317

    [32]

    Silver R N, Sivia D S, Gubernatis J E 1990 Phys. Rev. B 41 2380

    [33]

    Jarrell M, Gubernatis J E 1996 Phys. Rep 269 133

    [34]

    Prokof'ev N V, Svistunov B V 2013 Jetp Lett. 97 649

  • [1]

    Sachdev S 2011 Quantum Phase Transitions (2nd Ed.) (Cambridge: Cambridge University Press)

    [2]

    Goldstone J 1961 Nuovo. Cim. 19 154

    [3]

    Weinberg S 1996 The quantum theory of fields(Vol. 2) (Cambridge: Cambridge University Press)

    [4]

    Anderson P W 1963 Phys. Rev 130 439

    [5]

    Higgs P W 1964 Phys. Rev. Lett. 13 508

    [6]

    Pekker D, Varma C M 2015 Annu. Rev. Condens. Matter Phys. 6 269

    [7]

    Sooryakumar R, Klein M V 1980 Phys. Rev. Lett. 45 660

    [8]

    Sooryakumar R, Klein M V 1981 Phys. Rev. B 23 3213

    [9]

    Jaksch D, Bruder C, Cirac J I, Gardiner C W, Zoller P 1998 Phys. Rev. Lett. 81 3108

    [10]

    Fisher M P A, Weichman P B, Grinstein G, Fisher D S 1989 Phys. Rev. B 40 546

    [11]

    Capogrosso-Sansone B, Söyler S G, Prokof'ev N V, Svistunov B V 2008 Phys. Rev. A 77 015602

    [12]

    Bissbort U, Götze S, Li Y, Heinze J, Krauser J S, Weinberg M, Becker C, Sengstock K, Hofstetter W 2011 Phys. Rev. Lett. 106 205303

    [13]

    Regg Ch, Normand B, Matsumoto M, Furrer A, McMorrow D F, Krämer K W, Gdel H U, Gvasaliya S N, Mutka H, Boehm M 2008 Phys. Rev. Lett. 100 205701

    [14]

    Chubukov A V, Sachdev S, Ye J 1994 Phys. Rev. B 49 11919

    [15]

    Sachdev S 1999 Phys. Rev. B 59 14054

    [16]

    Zwerger W 2004 Phys. Rev. Lett. 92 027203

    [17]

    Podolsky D, Auerbach A, Arovas D P 2011 Phys. Rev. B 84 174522

    [18]

    Podolsky D, Sachdev S 2012 Phys. Rev. B 86 054508

    [19]

    Katan Y T, Podolsky D 2015 Phys. Rev. B 91 075132

    [20]

    Endres M, Fukuhara T, Pekker D, Cheneau M, Schauß P, Gross C, Demler E, Kuhr S, Bloch I 2012 Nature 487 454

    [21]

    Pollet L, Prokof'ev N 2012 Phys. Rev. Lett. 109 010401

    [22]

    Gazit S, Podolsky D, Auerbach A 2013 Phys. Rev. Lett. 110 140401

    [23]

    Chen K, Liu L, Deng Y, Pollet L, Prokof'ev N 2013 Phys. Rev. Lett. 110 170403

    [24]

    Gazit S, Podolsky D, Auerbach A, Arovas D P 2013 Phys. Rev. B 88 235108

    [25]

    Rancon A, Dupuis N 2014 Phys. Rev. B 89 180501

    [26]

    Burovski E, Machta J, Prokof'ev N V, Svistunov B V 2006 Phys. Rev. B 74 132502

    [27]

    Campostrini M, Hasenbusch M, Pelissetto A, Vicari E 2006 Phys. Rev. B 74 144506

    [28]

    Prokof'ev N V, Svistunov B V, Tupitsyn I S 1998 Sov. Phys.-JETP 87 310

    [29]

    Prokof'ev N V, Svistunov B V, Tupitsyn I S 1998 Phys. Lett. A 238 253

    [30]

    Caër L D 2010 Understanding Quantum Phase Transitions (Boca Raton: Taylor & Francis)

    [31]

    Mishchenko A S, Prokof'ev N V, Sakamoto A, Svistunov B V 2000 Phys. Rev. B 62 6317

    [32]

    Silver R N, Sivia D S, Gubernatis J E 1990 Phys. Rev. B 41 2380

    [33]

    Jarrell M, Gubernatis J E 1996 Phys. Rep 269 133

    [34]

    Prokof'ev N V, Svistunov B V 2013 Jetp Lett. 97 649

  • [1] WEI Yixin, YANG Changgang, WEI Amin, ZHANG Guofeng, QIN Chengbing, CHEN Ruiyun, HU Jianyong, XIAO Liantuan, JIA Suotang. Physical-layer security of underwater wireless optical communication. Acta Physica Sinica, 2025, 74(6): 064208. doi: 10.7498/aps.74.20241547
    [2] Zhang Jian-Wei, Niu Ying, Yan Run-Qi, Zhang Rong-Qi, Cao Meng, Li Yong-Dong, Liu Chun-Liang, Zhang Jia-Wei. Analysis of effect of bulk vacancy defect on secondary electron emission characteristics of Al2O3. Acta Physica Sinica, 2024, 73(15): 157902. doi: 10.7498/aps.73.20240577
    [3] Zhao Ming-Hui, Liu Zhong-Jun, Ji Shuai, Liu Chen, Ao Qing-Bo. GCMC simulation of supercritical N2 adsorption in single-walled carbon nanotubes. Acta Physica Sinica, 2022, 71(22): 220201. doi: 10.7498/aps.71.20220765
    [4] Li Yuan, Shi Ai-Hong, Chen Guo-Yu, Gu Bing-Dong. Formation of step bunching on 4H-SiC (0001) surfaces based on kinetic Monte Carlo method. Acta Physica Sinica, 2019, 68(7): 078101. doi: 10.7498/aps.68.20182067
    [5] Li Ping, Xu Yu-Tang. Monte Carlo simulation of time-dependent dielectric breakdown of oxide caused by migration of oxygen vacancies. Acta Physica Sinica, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [6] Sun Xian-Ming, Xiao Sai, Wang Hai-Hua, Wan Long, Shen Jin. Transportation of Gaussian light beam in two-layer clouds by Monte Carlo simulation. Acta Physica Sinica, 2015, 64(18): 184204. doi: 10.7498/aps.64.184204
    [7] Li Shu, Lan Ke, Lai Dong-Xian, Liu Jie. Monte Carlo simulation of the radiation transport of spherical holhraum. Acta Physica Sinica, 2015, 64(14): 145203. doi: 10.7498/aps.64.145203
    [8] Li Zheng, Zhou Rui, Zheng Guo-Qing. Quantum criticalities in carrier-doped iron-based superconductors. Acta Physica Sinica, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [9] Wang Xiao-Han, Guo Hong-Xia, Lei Zhi-Feng, Guo Gang, Zhang Ke-Ying, Gao Li-Juan, Zhang Zhan-Gang. Calculation of single event upset based on Monte Carlo and device simulations. Acta Physica Sinica, 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [10] Dai Chun-Juan, Liu Xi-Qin, Liu Zi-Li, Liu Bo-Lu. The Monte Carlo simulation of neutron shielding performance of boron carbide reinforced with aluminum composites. Acta Physica Sinica, 2013, 62(15): 152801. doi: 10.7498/aps.62.152801
    [11] Li Gang, Deng Li, Mo Ze-Yao, Li Shu. Adaptive source biasing sampling for time-dependent radiation transport problems. Acta Physica Sinica, 2011, 60(2): 022401. doi: 10.7498/aps.60.022401
    [12] Bai Lu, Tang Shuang-Qing, Wu Zhen-Sen, Xie Pin-Hua, Wang Shi-Mei. Study of random sample scattering phase functions of polydisperse atmospheric aerosol in ultraviolet band. Acta Physica Sinica, 2010, 59(3): 1749-1755. doi: 10.7498/aps.59.1749
    [13] Ju Zhi-Ping, Cao Wu-Fei, Liu Xiao-Wei. Study of proton beam spreading for a solid beam stopper double scattering method using Monte Carlo simulation. Acta Physica Sinica, 2010, 59(1): 199-202. doi: 10.7498/aps.59.199
    [14] Cai Ming-Hui, Han Jian-Wei, Li Xiao-Yin, Li Hong-Wei, Zhang Zhen-Li. A simulation study of the atmospheric neutron environment in near space. Acta Physica Sinica, 2009, 58(9): 6659-6664. doi: 10.7498/aps.58.6659
    [15] Fu Fang-Zheng, Li Ming. Calculating the threshold of random laser by using Monte Carlo method. Acta Physica Sinica, 2009, 58(9): 6258-6263. doi: 10.7498/aps.58.6258
    [16] Zheng Fei-Teng, Yang Zhong-Hai, Jin Xiao-Lin. The initiation phase of pseudospark discharge in a hollow cathode via PIC/MCC simulation. Acta Physica Sinica, 2008, 57(2): 990-995. doi: 10.7498/aps.57.990
    [17] Guo Bao-Zeng, Gong Na, Shi Jian-Ying, Wang Zhi-Yu. Monte Carlo simulation of the hole transport properties for wurtzite GaN. Acta Physica Sinica, 2006, 55(5): 2470-2475. doi: 10.7498/aps.55.2470
    [18] Jin Xiao-Lin, Yang Zhong-Hai. The PIC/MCC simulation of the ionization processes in electron cyclotron resonance discharge (Ⅰ)——Physical model and theoretical methods. Acta Physica Sinica, 2006, 55(11): 5930-5934. doi: 10.7498/aps.55.5930
    [19] Chen Fa-Xin, Zheng Jian, Yang Jian-Lun. Numerical simulation of neutron thick aperture imaging. Acta Physica Sinica, 2006, 55(11): 5947-5952. doi: 10.7498/aps.55.5947
    [20] Jin Xiao-Lin, Yang Zhong-Hai. The PIC/MCC simulation of the ionization processes in electron cyclotron resonance discharge (Ⅱ)——Numerical simulation and discussion of results. Acta Physica Sinica, 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
Metrics
  • Abstract views:  9013
  • PDF Downloads:  650
  • Cited By: 0
Publishing process
  • Received Date:  17 August 2015
  • Accepted Date:  11 September 2015
  • Published Online:  05 September 2015
  • /

    返回文章
    返回