Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GCMC simulation of supercritical N2 adsorption in single-walled carbon nanotubes

Zhao Ming-Hui Liu Zhong-Jun Ji Shuai Liu Chen Ao Qing-Bo

Citation:

GCMC simulation of supercritical N2 adsorption in single-walled carbon nanotubes

Zhao Ming-Hui, Liu Zhong-Jun, Ji Shuai, Liu Chen, Ao Qing-Bo
PDF
HTML
Get Citation
  • The development of supercritical fluid technology is becoming more and more mature. The research on the adsorption behaviors of supercritical fluid in nanoporous materials has theoretical significance and application value for the development and application of supercritical fluid technology. In this paper, the grand canonical Monte Carlo (GCMC) method is used to simulate the adsorption behaviors of N2 in single-walled carbon nanotubes under supercritical condition and subcritical condition, and the isosteric heat of adsorption and integral molar enthalpy change in different adsorption systems are discussed. The results show that the adsorption isotherms of N2 in SWCNT do not strictly follow the layered adsorption mechanism under supercritical condition, as a result of the increase of molecular thermal motion, the degree of free mobility becomes higher, and it is easier for nitrogen molecule to intersperse and jump between different molecular layers. The nitrogen adsorption isotherm has a peak, which decreases gradually with the increase of temperature, while the critical pressure at peak increases with the temperature increasing. Around the critical point temperature (126 K), a small change in pressure can cause large fluctuations in the bulk gas phase density, resulting in a sharp drop in the adsorption isotherm after peaking. What is different from the subcritical condition is that the adsorption peak of local density distribution curve of the fluid under supercritical condition cannot represent the increase of excess adsorption capacity, and the influence of gas phase density on the adsorption process cannot be ignored. By studying the adsorption integral molar enthalpy under the supercritical condition, it is found that the excess integral molar enthalpy decreases with the pore size increasing; the adsorption integral molar enthalpy decreases with the augment of pore size at lower pressure, but due to a fact that the proportion of gas phase fluid in large-pore SWCNTs increases at higher pressure, on the contrary, it increases with the pore size at higher pressure increasing.
      Corresponding author: Liu Zhong-Jun, zjliu@xsyu.edu.cn ; Ao Qing-Bo, panpan0605@163.com
    • Funds: Project supported by the Youth Innovation Team Program of Xi’an Shiyou University, China (Grant No. 2019NKYCXTD12), the Service Local Special Project of the Scientific Research Program of Education Department of Shaanxi Province, China (Grant No. 20JC028), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2021JM-410)
    [1]

    Jessop P G, Ikariya T, Noyori R 1995 Science 269 1065Google Scholar

    [2]

    Carolina D A A, Juliane V, Gabriela d S A A, Baião D A L, Dupas H M, Julian M 2022 Food Chem. X 13

    [3]

    王琳, 许大壮, 代奇轩, 楚成超, 李东, 刘刚 2021 科学通报 66 1187Google Scholar

    Wang L, Xu D Z, Dai Q X, Chu C C, Li D, Liu G 2021 Chin. Sci Bull. 66 1187Google Scholar

    [4]

    Jair K E, Nunes C P I, Grazielle N N, Renata V, A. M M A, Antônio d S E, Adeodato V M G 2021 J. Supercrit. Fluids

    [5]

    王博, 冯东 2021 化工进展 40 3270

    Wang B, Feng D 2021 Chem. Ind. Eng. Prog. 40 3270

    [6]

    Gusev V Y, O'Brien J A, Seaton N A 1997 Langmuir 13 2815Google Scholar

    [7]

    Zhou L, Zhou Y, Li M, Chen P, Wang Y 2000 Langmuir 16 5955Google Scholar

    [8]

    Ansari H, Joss L, Hwang J, Trusler J P M, Maitland G, Pini R 2020 Microporous Mesoporous Mater. 308 110537Google Scholar

    [9]

    Pini R, Ansari H, Hwang J 2021 Adsorpt. J. Int. Adsorpt. Soc. 27 659Google Scholar

    [10]

    Yang Q L, Xue J H, Li W, Hu B A, Ma Q, Zhan K L, Du X H, Chen Z H 2022 Chem. Eng. J. 433 133492Google Scholar

    [11]

    Tan S J, Liu L, Chew J W 2021 Langmuir 37 6754Google Scholar

    [12]

    Ravikovitch P I, Vishnyakov A, Neimark A V 2001 Phys. Rev. E 64 011602Google Scholar

    [13]

    Dickinson E 1982 Computer Simulation and the Statistical Mechanics of Adsorption (New York: Academic Press) p416

    [14]

    Tjatjopoulos G J, Feke D L, Mann J A 1988 J. Phys. Chem. 92 4006Google Scholar

    [15]

    Fan C Y, Birkett G, Do D D 2010 J. Colloid Interface Sci. 342 485Google Scholar

    [16]

    Fan C Y, Do D D, Li Z L, Nicholson D 2010 Langmuir 26 15852Google Scholar

    [17]

    范春艳 2010 博士学位论文 (青岛: 中国石油大学 (华东)

    Fan C Y 2010 Ph. D. Dissertation (Qingdao: China University of Petroleum (East China) (in Chinese)

    [18]

    Do D D, Do H D 2006 J. Phys. Chem. B 110 17531Google Scholar

    [19]

    Do D D, Do H D 2007 J. Colloid Interface Sci. 316 317Google Scholar

    [20]

    Do D D, Do H D 2005 J. Chem. Phys. 123 084701Google Scholar

    [21]

    Do D D, Nicholson D, Do H D 2008 J. Colloid Interface Sci. 325 7Google Scholar

    [22]

    刘忠军 2011 博士学位论文 (沈阳: 东北大学)

    Liu Z J 2011 Ph. D. Dissertation (Shenyang: Northeastern University) (in Chinese)

  • 图 1  流体分子与圆柱孔的相对位置图

    Figure 1.  Schematic diagram of fluid molecules and cylindrical pore.

    图 2  (a) 不同温度下(77.3, 100, 126, 150, 200, 250, 300和400 K)SWCNT (R = 1.831 nm)内的氮气吸附等温线; (b) 超临界状态下本体气相密度随压力变化曲线

    Figure 2.  (a) Adsorption isotherms of N2 in SWCNT (R = 1.831 nm) at different temperatures (77.3, 100, 126, 150, 200, 250, 300 and 400 K); (b) variation curve of bulk gas density with pressure under supercritical conditions.

    图 3  氮气过剩吸附量随本体气相密度的变化曲线

    Figure 3.  Isotherms of nitrogen adsorption in terms of excess adsorption capacity versus gas bulk gas density.

    图 4  孔半径方向上LJ局部密度分布与压力关系 (a) 77.3 K; (b) 300 K

    Figure 4.  LJ local density distribution versus the pressure in pore radii direction: (a) 77.3 K; (b) 300 K.

    图 5  SWCNT内氮气吸附过程瞬间构型图 (a) 77.3 K温度下, 压力分别为0.04, 3, 13和15 kPa时氮气分子的瞬间构型, 压力点分别对应于图2中标示点A, B, C和D; (b) 300 K温度下, 压力分别为1, 3, 18和100 MPa时氮气分子的瞬间构型

    Figure 5.  The snapshots of N2 adsorption process in SWCNT: (a) N2 molecules at the temperature of 77.3 K, and the pressure points correspond to the marked points A, B, C and D in the Fig. 2; (b) N2 molecules at the temperature of 300 K under the pressure of 1, 3, 18 and 100 MPa, respectively.

    图 6  77.3 (a)和300 K (b)温度下孔径方向上特殊压力点下的局部密度分布. 图(a)中A, B, C和D分别对应于图2中的标示压力点; 图(b)中平行虚线为对应压力下本体流体气相密度

    Figure 6.  Local density distribution at special pressure points in the pore radii direction at 77.3 (a) and 300 K (b); A, B, C and D in Figure (a)correspond to the marked pressure points in the Fig.2 respectively; the dash-dotted horizontal line in Figure (b) refers to the bulk gas density at the corresponding pressure.

    图 7  200 (a)和400 K (b) 时氮气在SWCNT内孔径方向上的局部密度分布曲线, 平行虚线为对应压力下本体流体气相密度

    Figure 7.  Local density distribution curve of N2 in the pore radii direction of SWCNT at 200 (a) and 400 K (b), the dash-dotted horizontal line refers to the bulk gas density at the corresponding pressure.

    图 8  77.3 (a)和300 K(b)温度下层压缩性和压力的变化关系对数曲线, 图中对应于右边Y轴的点划线为相应温度下的吸附等温线

    Figure 8.  The layer compressibility versus pressure logarithmic curve at 77.3 (a) and 300 K (b), and the Dash-dotted line corresponding to the right Y axis is the adsorption isotherm at the corresponding temperature.

    图 9  氮气在77.3, 150, 300和400 K时在SWCNT内吸附的积分摩尔焓, 灰色虚线为等量吸附热, 绿色点划线与右边Y轴对应为相对应温度下的过剩吸附量

    Figure 9.  Integral molar enthalpy of nitrogen adsorption in SWCNT at 77.3, 150, 300 and 400 K, The gray dotted line indicates the Isosteric heat of adsorption, and the green dash-dotted line corresponding to the right Y axis is the adsorption isotherm at the corresponding temperature.

    图 10  77.3和150 K时氮气在R = 0.7464, 1.153, 1.56和2 nm SWCNT内的吸附等温线

    Figure 10.  Adsorption isotherms of N2 in R = 0.7464, 1.153, 1.56 and 2 nm SWCNT at 77.3 and 150 K.

    图 11  (a) 77 K温度下氮气在不同孔径SWCNT内的等量吸附热随过剩吸附量的变化关系; (b) 150 K温度下过剩积分摩尔焓随压力的变化关系曲线, 插入图为吸附积分摩尔焓随压力的变化关系

    Figure 11.  (a) Isosteric heat of N2 adsorption versus excess adsorption at 77 K, in SWCNTs with different radii 0.7464, 1.153, 1.56, 2 nm; (b) the integral molar enthalpy versus pressure at 150 K, and the insertion diagram shows the variation relationship of adsorption integral molar enthalpy with pressure.

  • [1]

    Jessop P G, Ikariya T, Noyori R 1995 Science 269 1065Google Scholar

    [2]

    Carolina D A A, Juliane V, Gabriela d S A A, Baião D A L, Dupas H M, Julian M 2022 Food Chem. X 13

    [3]

    王琳, 许大壮, 代奇轩, 楚成超, 李东, 刘刚 2021 科学通报 66 1187Google Scholar

    Wang L, Xu D Z, Dai Q X, Chu C C, Li D, Liu G 2021 Chin. Sci Bull. 66 1187Google Scholar

    [4]

    Jair K E, Nunes C P I, Grazielle N N, Renata V, A. M M A, Antônio d S E, Adeodato V M G 2021 J. Supercrit. Fluids

    [5]

    王博, 冯东 2021 化工进展 40 3270

    Wang B, Feng D 2021 Chem. Ind. Eng. Prog. 40 3270

    [6]

    Gusev V Y, O'Brien J A, Seaton N A 1997 Langmuir 13 2815Google Scholar

    [7]

    Zhou L, Zhou Y, Li M, Chen P, Wang Y 2000 Langmuir 16 5955Google Scholar

    [8]

    Ansari H, Joss L, Hwang J, Trusler J P M, Maitland G, Pini R 2020 Microporous Mesoporous Mater. 308 110537Google Scholar

    [9]

    Pini R, Ansari H, Hwang J 2021 Adsorpt. J. Int. Adsorpt. Soc. 27 659Google Scholar

    [10]

    Yang Q L, Xue J H, Li W, Hu B A, Ma Q, Zhan K L, Du X H, Chen Z H 2022 Chem. Eng. J. 433 133492Google Scholar

    [11]

    Tan S J, Liu L, Chew J W 2021 Langmuir 37 6754Google Scholar

    [12]

    Ravikovitch P I, Vishnyakov A, Neimark A V 2001 Phys. Rev. E 64 011602Google Scholar

    [13]

    Dickinson E 1982 Computer Simulation and the Statistical Mechanics of Adsorption (New York: Academic Press) p416

    [14]

    Tjatjopoulos G J, Feke D L, Mann J A 1988 J. Phys. Chem. 92 4006Google Scholar

    [15]

    Fan C Y, Birkett G, Do D D 2010 J. Colloid Interface Sci. 342 485Google Scholar

    [16]

    Fan C Y, Do D D, Li Z L, Nicholson D 2010 Langmuir 26 15852Google Scholar

    [17]

    范春艳 2010 博士学位论文 (青岛: 中国石油大学 (华东)

    Fan C Y 2010 Ph. D. Dissertation (Qingdao: China University of Petroleum (East China) (in Chinese)

    [18]

    Do D D, Do H D 2006 J. Phys. Chem. B 110 17531Google Scholar

    [19]

    Do D D, Do H D 2007 J. Colloid Interface Sci. 316 317Google Scholar

    [20]

    Do D D, Do H D 2005 J. Chem. Phys. 123 084701Google Scholar

    [21]

    Do D D, Nicholson D, Do H D 2008 J. Colloid Interface Sci. 325 7Google Scholar

    [22]

    刘忠军 2011 博士学位论文 (沈阳: 东北大学)

    Liu Z J 2011 Ph. D. Dissertation (Shenyang: Northeastern University) (in Chinese)

  • [1] Bowen Yu, Xiaotian He, Jinliang Xu. Numerical simulation of fluid-structure coupled heat transfer characteristics of supercritical CO2 pool heat transfer*. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231953
    [2] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211631
    [3] Li Yuan, Shi Ai-Hong, Chen Guo-Yu, Gu Bing-Dong. Formation of step bunching on 4H-SiC (0001) surfaces based on kinetic Monte Carlo method. Acta Physica Sinica, 2019, 68(7): 078101. doi: 10.7498/aps.68.20182067
    [4] Li Ping, Xu Yu-Tang. Monte Carlo simulation of time-dependent dielectric breakdown of oxide caused by migration of oxygen vacancies. Acta Physica Sinica, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [5] Lin Wen-Qiang, Xu Bin, Chen Liang, Zhou Feng, Chen Jun-Lang. Molecular dynamics simulations of the adsorption of bisphenol A on graphene oxide. Acta Physica Sinica, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [6] Wei Jin-Jin, Zhou Dong-Fang, Yu Dao-Jie, Hu Tao, Hou De-Ting, Zhang De-Wei, Lei Xue, Hu Jun-Jie. Seed electron production from O- detachment in high power microwave air breakdown. Acta Physica Sinica, 2016, 65(5): 055202. doi: 10.7498/aps.65.055202
    [7] Huang Yan-Ping, Yuan Jian-Mei, Guo Gang, Mao Yu-Liang. First-principles study on saturated adsorption of alkali metal atoms on silicene. Acta Physica Sinica, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [8] Chen Kun, Deng You-Jin. Higgs mode near superfluid-to-Mott-insulatortransition studied by the quantum Monte Carlo method. Acta Physica Sinica, 2015, 64(18): 180201. doi: 10.7498/aps.64.180201
    [9] Sun Xian-Ming, Xiao Sai, Wang Hai-Hua, Wan Long, Shen Jin. Transportation of Gaussian light beam in two-layer clouds by Monte Carlo simulation. Acta Physica Sinica, 2015, 64(18): 184204. doi: 10.7498/aps.64.184204
    [10] Li Shu, Lan Ke, Lai Dong-Xian, Liu Jie. Monte Carlo simulation of the radiation transport of spherical holhraum. Acta Physica Sinica, 2015, 64(14): 145203. doi: 10.7498/aps.64.145203
    [11] Wang Xiao-Han, Guo Hong-Xia, Lei Zhi-Feng, Guo Gang, Zhang Ke-Ying, Gao Li-Juan, Zhang Zhan-Gang. Calculation of single event upset based on Monte Carlo and device simulations. Acta Physica Sinica, 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [12] Dai Chun-Juan, Liu Xi-Qin, Liu Zi-Li, Liu Bo-Lu. The Monte Carlo simulation of neutron shielding performance of boron carbide reinforced with aluminum composites. Acta Physica Sinica, 2013, 62(15): 152801. doi: 10.7498/aps.62.152801
    [13] Huang Ping, Yang Chun. Theoretical research of TiO2 adsorption on GaN(0001) surface. Acta Physica Sinica, 2011, 60(10): 106801. doi: 10.7498/aps.60.106801
    [14] Li Gang, Deng Li, Mo Ze-Yao, Li Shu. Adaptive source biasing sampling for time-dependent radiation transport problems. Acta Physica Sinica, 2011, 60(2): 022401. doi: 10.7498/aps.60.022401
    [15] Zhang Jian-Jun, Zhang Hong. A low coverage investigation on Al adsorption on the (111) surface of Pt, Ir and Au. Acta Physica Sinica, 2010, 59(6): 4143-4149. doi: 10.7498/aps.59.4143
    [16] Ju Zhi-Ping, Cao Wu-Fei, Liu Xiao-Wei. Study of proton beam spreading for a solid beam stopper double scattering method using Monte Carlo simulation. Acta Physica Sinica, 2010, 59(1): 199-202. doi: 10.7498/aps.59.199
    [17] Yang Pei-Fang, Hu Juan-Mei, Teng Bo-Tao, Wu Feng-Min, Jiang Shi-Yu. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [18] Fu Fang-Zheng, Li Ming. Calculating the threshold of random laser by using Monte Carlo method. Acta Physica Sinica, 2009, 58(9): 6258-6263. doi: 10.7498/aps.58.6258
    [19] Wei Yan-Wei, Yang Zong-Xian. The adsorption of Au on Zr-doped CeO2(110) surface: A first-principle study. Acta Physica Sinica, 2008, 57(11): 7139-7144. doi: 10.7498/aps.57.7139
    [20] Yang Chun, Li Yan-Rong, Yan Qi-Li, Liu Yong-Hua. Effects of atomic defects of α-Al2O3(0001) on ZnO adsorption. Acta Physica Sinica, 2005, 54(5): 2364-2368. doi: 10.7498/aps.54.2364
Metrics
  • Abstract views:  2675
  • PDF Downloads:  45
  • Cited By: 0
Publishing process
  • Received Date:  21 April 2022
  • Accepted Date:  04 July 2022
  • Available Online:  08 November 2022
  • Published Online:  20 November 2022

/

返回文章
返回