Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulations of the adsorption of bisphenol A on graphene oxide

Lin Wen-Qiang Xu Bin Chen Liang Zhou Feng Chen Jun-Lang

Citation:

Molecular dynamics simulations of the adsorption of bisphenol A on graphene oxide

Lin Wen-Qiang, Xu Bin, Chen Liang, Zhou Feng, Chen Jun-Lang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The elimination of bisphenol A (BPA) from water solution is of great importance, since BPA can cause the functional abnormalities of human endocrine system. One feasible removal method is the adsorption by graphene oxide (GO). However, the interactions between BPA and GO at an atomic level are still unclear. In this study, molecular dynamics simulations are performed to investigate the adsorption of BPA on the GO surface. The results show that all BPA molecules are attached to both sides of GO. The adsorption conformations of BPA in the closest layer to GO surface mainly exhibit two patterns. One is that the benzene rings of BPA are parallel to the basal plane of GO to form - structures, and the other is the two hydroxyl groups of BPAs interacting with the oxygen-contained groups on GO to form hydrogen bonds. Exploration of the detailed interactions between BPA and GO indicates that the hydrophobic - stacking interaction is the dominant force in the adsorption of BPA on GO, while hydrogen bonding enhances the binding of BPA on GO surface. Eventually, potential of mean forces (PMF) of BPA and water molecules on GO are calculated by umbrella sampling. The binding energy of BPA on GO reaches 30 kJ/mol, six times as large as that of water on GO, which is only about 5 kJ/mol. Our simulations further confirm that GO owns strong adsorption capacity and GO can be used as sorbent to eliminate BPA in water solution.
      Corresponding author: Chen Jun-Lang, chenjunlang7955@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574272), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY16A040014), and the Scientific Research and Developed Fund of Zhejiang A F University (Grant No. 2015FR022).
    [1]

    Staples C A, Dorn P B, Klecka G M, OBlook S T, Harris L R 1998 Chemosphere 36 2149

    [2]

    Staplesa C A, Dorn P B, Klecka G M, OBlock S T, Branson D R, Harris L R 2000 Chemosphere 40 521

    [3]

    Chang H S, Choo K H, Lee B, Choi S J 2009 J. Hazard Mater. 72 1

    [4]

    Kang J H, Kondo F, Katayama Y 2006 Toxicology 226 79

    [5]

    Deng H M, Liang C Y, Chen Y H 2009 Environ. Poll. Contrl. 31 70 (in Chinese) [邓红梅, 梁春营, 陈永亨 2009 环境污染与防治 31 70]

    [6]

    Deng M X, Wu D S, Zhan L 2001 J. Environ. Health 18 134 (in Chinese) [邓茂先, 吴德生, 詹立 2001 环境与健康杂志 18 134]

    [7]

    Yang D, Li D D, Liu S S, Yan Y Q 2008 Morden Preventive Medicine 35 3280 (in Chinese) [杨丹, 李丹丹, 刘姗姗, 严云勤 2008 现代预防医学 35 3280]

    [8]

    Chen L, Xu X H, Tian D 2009 Sci. China: Ser. C 39 1111 (in Chinese) [陈蕾, 徐晓虹, 田栋 2009 中国科学C辑: 生命科学 39 1111]

    [9]

    Chung C, Kim Y K, Shin D, Ryoo S R, Hong B H, Min D H 2013 Accounts Chem. Res. 46 2211

    [10]

    Mao H Y, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran A A, Mahmoudi M 2013 Chem. Rev. 113 3407

    [11]

    Wang Y, Li Z, Wang J, Li J, Lin Y 2011 Trends Biotechnol. 29 205

    [12]

    Lerf A, He H, Forster M, Klinowski J 1998 J. Phys. Chem. B 102 4477

    [13]

    Dreyer D R, Park S, Bielawski C W, Ruoff R S 2010 Chem. Soc. Rev. 39 228

    [14]

    Mkhoyan K A, Contryman A W, Silcox J, Stewart D A, Eda G, Mattevi C, Miller S, Chhowalla M 2009 Nano Lett. 9 1058

    [15]

    Lu C H, Yang H H, Zhu C L, Chen X, Chen G N 2009 Angew. Chem. 121 4879

    [16]

    He S L, Song B, Li D, Zhu C F, Qi W P, Wen Y Q, Wang L H, Song S P, Fang H P, Fan C H 2010 Adv. Funct. Mater. 20 453

    [17]

    Liu Z, Robinson J T, Sun X M, Dai H J 2008 J. Am. Chem. Soc. 130 10876

    [18]

    Sun X M, Liu Z, Welsher K, Robinson J T, Goodwin A, Zaric S, Dai H J 2008 Nano Res 1 203

    [19]

    Xu J, Wang L, Zhu Y F 2012 Langmuir 28 8418

    [20]

    Xu J, Zhu Y F 2013 Acta Phys. -Chim. Sin. 29 829

    [21]

    Zhang Y X, Cheng Y X, Chen N N, Zhou Y Y, Li B Y, Gu W, Shi X H, Xian Y Z 2014 J. Colloid Interf. Sci. 421 85

    [22]

    Cortes-Arriagada D, Sanhueza L, Santander-Nelli M 2013 J. Mol. Model. 19 3569

    [23]

    Berendsen H J C, van der Spoel D, Drunen R V 1995 Comput. Phys. Commun. 91 43

    [24]

    Hess B, Kutzner C, van der Spoel D, Lindahl E 2008 J. Chem. Theory Comput. 4 435

    [25]

    Schuttelkopf A W, van Aalten D M F 2004 Acta Cryst. D 60 1355

    [26]

    Becke A D 1988 Phys. Rev. A 38 3098

    [27]

    Frisch M J, Trucks G W, Schlegel H B 2003 Gaussian 03, Revision B.02 Gaussian, Inc: Pittsburgh, PA

    [28]

    Shih C J, Lin S C, Sharma R, Strano M S, Blankschtein D 2012 Langmuir 28 235

    [29]

    Tu Y S, L M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z R, Huang Q, Fan C H, Fang H P, Zhou R H 2013 Nat. Nanotech. 8 594

    [30]

    Zeng S W, Chen L, Wang Y, Chen J L 2015 J. Phys. D: Appl. Phys. 48 275402

    [31]

    Patra N, Wang B Y, Kral P 2009 Nano Lett. 9 3766

    [32]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Phys. Chem. 79 926

    [33]

    Bussi G, Donadio D, Parrinello M 2007 J. Chem. Phys. 126 014101

    [34]

    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577

    [35]

    Darden T, York D, Pedersen L 1993 J. Chem. Phys. 98 10089

    [36]

    Hess B, Bekker H, Berendsen H J C, Fraaije J G E M 1997 J. Comput. Chem. 18 1463

    [37]

    Humphrey W, Dalke A, Schulten K 1996 J. Molec. Graphics 14 33

    [38]

    Hub J S, de Groot B L, van der Spoel D 2010 J. Chem. Theory Comput. 6 3713

  • [1]

    Staples C A, Dorn P B, Klecka G M, OBlook S T, Harris L R 1998 Chemosphere 36 2149

    [2]

    Staplesa C A, Dorn P B, Klecka G M, OBlock S T, Branson D R, Harris L R 2000 Chemosphere 40 521

    [3]

    Chang H S, Choo K H, Lee B, Choi S J 2009 J. Hazard Mater. 72 1

    [4]

    Kang J H, Kondo F, Katayama Y 2006 Toxicology 226 79

    [5]

    Deng H M, Liang C Y, Chen Y H 2009 Environ. Poll. Contrl. 31 70 (in Chinese) [邓红梅, 梁春营, 陈永亨 2009 环境污染与防治 31 70]

    [6]

    Deng M X, Wu D S, Zhan L 2001 J. Environ. Health 18 134 (in Chinese) [邓茂先, 吴德生, 詹立 2001 环境与健康杂志 18 134]

    [7]

    Yang D, Li D D, Liu S S, Yan Y Q 2008 Morden Preventive Medicine 35 3280 (in Chinese) [杨丹, 李丹丹, 刘姗姗, 严云勤 2008 现代预防医学 35 3280]

    [8]

    Chen L, Xu X H, Tian D 2009 Sci. China: Ser. C 39 1111 (in Chinese) [陈蕾, 徐晓虹, 田栋 2009 中国科学C辑: 生命科学 39 1111]

    [9]

    Chung C, Kim Y K, Shin D, Ryoo S R, Hong B H, Min D H 2013 Accounts Chem. Res. 46 2211

    [10]

    Mao H Y, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran A A, Mahmoudi M 2013 Chem. Rev. 113 3407

    [11]

    Wang Y, Li Z, Wang J, Li J, Lin Y 2011 Trends Biotechnol. 29 205

    [12]

    Lerf A, He H, Forster M, Klinowski J 1998 J. Phys. Chem. B 102 4477

    [13]

    Dreyer D R, Park S, Bielawski C W, Ruoff R S 2010 Chem. Soc. Rev. 39 228

    [14]

    Mkhoyan K A, Contryman A W, Silcox J, Stewart D A, Eda G, Mattevi C, Miller S, Chhowalla M 2009 Nano Lett. 9 1058

    [15]

    Lu C H, Yang H H, Zhu C L, Chen X, Chen G N 2009 Angew. Chem. 121 4879

    [16]

    He S L, Song B, Li D, Zhu C F, Qi W P, Wen Y Q, Wang L H, Song S P, Fang H P, Fan C H 2010 Adv. Funct. Mater. 20 453

    [17]

    Liu Z, Robinson J T, Sun X M, Dai H J 2008 J. Am. Chem. Soc. 130 10876

    [18]

    Sun X M, Liu Z, Welsher K, Robinson J T, Goodwin A, Zaric S, Dai H J 2008 Nano Res 1 203

    [19]

    Xu J, Wang L, Zhu Y F 2012 Langmuir 28 8418

    [20]

    Xu J, Zhu Y F 2013 Acta Phys. -Chim. Sin. 29 829

    [21]

    Zhang Y X, Cheng Y X, Chen N N, Zhou Y Y, Li B Y, Gu W, Shi X H, Xian Y Z 2014 J. Colloid Interf. Sci. 421 85

    [22]

    Cortes-Arriagada D, Sanhueza L, Santander-Nelli M 2013 J. Mol. Model. 19 3569

    [23]

    Berendsen H J C, van der Spoel D, Drunen R V 1995 Comput. Phys. Commun. 91 43

    [24]

    Hess B, Kutzner C, van der Spoel D, Lindahl E 2008 J. Chem. Theory Comput. 4 435

    [25]

    Schuttelkopf A W, van Aalten D M F 2004 Acta Cryst. D 60 1355

    [26]

    Becke A D 1988 Phys. Rev. A 38 3098

    [27]

    Frisch M J, Trucks G W, Schlegel H B 2003 Gaussian 03, Revision B.02 Gaussian, Inc: Pittsburgh, PA

    [28]

    Shih C J, Lin S C, Sharma R, Strano M S, Blankschtein D 2012 Langmuir 28 235

    [29]

    Tu Y S, L M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z R, Huang Q, Fan C H, Fang H P, Zhou R H 2013 Nat. Nanotech. 8 594

    [30]

    Zeng S W, Chen L, Wang Y, Chen J L 2015 J. Phys. D: Appl. Phys. 48 275402

    [31]

    Patra N, Wang B Y, Kral P 2009 Nano Lett. 9 3766

    [32]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Phys. Chem. 79 926

    [33]

    Bussi G, Donadio D, Parrinello M 2007 J. Chem. Phys. 126 014101

    [34]

    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577

    [35]

    Darden T, York D, Pedersen L 1993 J. Chem. Phys. 98 10089

    [36]

    Hess B, Bekker H, Berendsen H J C, Fraaije J G E M 1997 J. Comput. Chem. 18 1463

    [37]

    Humphrey W, Dalke A, Schulten K 1996 J. Molec. Graphics 14 33

    [38]

    Hub J S, de Groot B L, van der Spoel D 2010 J. Chem. Theory Comput. 6 3713

  • [1] Zhu Hong-Qiang, Luo Lei, Wu Ze-Bang, Yin Kai-Hui, Yue Yuan-Xia, Yang Ying, Feng Qing, Jia Wei-Yao. Theoretical calculation study on enhancing the sensitivity and optical properties of graphene adsorption of nitrogen dioxide via doping. Acta Physica Sinica, 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [2] Liu Qing-Yang, Xu Qing-Song, Li Rui. Effect of N-doping on tribological properties of graphene by molecular dynamics simulation. Acta Physica Sinica, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [3] Zhao Ming-Hui, Liu Zhong-Jun, Ji Shuai, Liu Chen, Ao Qing-Bo. GCMC simulation of supercritical N2 adsorption in single-walled carbon nanotubes. Acta Physica Sinica, 2022, 71(22): 220201. doi: 10.7498/aps.71.20220765
    [4] Wu Hong-Fen, Feng Pan-Jun, Zhang Shuo, Liu Da-Peng, Gao Miao, Yan Xun-Wang. First-principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [5] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211631
    [6] Li Xing-Xin, Li Si-Ping. Manipulations on mechanical properties of multilayer folded graphene by annealing temperature: a molecular dynamics simulation study. Acta Physica Sinica, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [7] Wang Chao, Zhou Yan-Li, Wu Fan, Chen Ying-Cai. Monte Carlo simulation on the adsorption of polymer chains on polymer brushes. Acta Physica Sinica, 2020, 69(16): 168201. doi: 10.7498/aps.69.20200411
    [8] Chen Chao, Duan Fang-Li. Effect of functional groups on crumpling behavior and structure of graphene oxide. Acta Physica Sinica, 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [9] Li Hong, Ai Qian-Wen, Wang Peng-Jun, Gao He-Bei, Cui Yi, Luo Meng-Bo. Computer simulation of adsorption properties of polymer on surface under external driving force. Acta Physica Sinica, 2018, 67(16): 168201. doi: 10.7498/aps.67.20180468
    [10] Yang Wen-Long, Han Jun-Sheng, Wang Yu, Lin Jia-Qi, He Guo-Qiang, Sun Hong-Guo. Molecular dynamics simulation on the glass transition temperature and mechanical properties of polyimide/functional graphene composites. Acta Physica Sinica, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [11] Pang Zong-Qiang, Zhang Yue, Rong Zhou, Jiang Bing, Liu Rui-Lan, Tang Chao. Adsorption and dissociation of water on oxygen pre-covered Cu (110) observed with scanning tunneling microscopy. Acta Physica Sinica, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [12] Sun Jian-Ping, Zhou Ke-Liang, Liang Xiao-Dong. Density functional study on the adsorption characteristics of O, O2, OH, and OOH of B-, P-doped, and B, P codoped graphenes. Acta Physica Sinica, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [13] Cao Hai-Yan, Bi Heng-Chang, Xie Xiao, Su Shi, Sun Li-Tao. Functional tissues based on graphene oxide: facile preparation and dye adsorption properties. Acta Physica Sinica, 2016, 65(14): 146802. doi: 10.7498/aps.65.146802
    [14] Huang Yan-Ping, Yuan Jian-Mei, Guo Gang, Mao Yu-Liang. First-principles study on saturated adsorption of alkali metal atoms on silicene. Acta Physica Sinica, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [15] Sun Jian-Ping, Miao Ying-Meng, Cao Xiang-Chun. Density functional theory studies of O2 and CO adsorption on the graphene doped with Pd. Acta Physica Sinica, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [16] Gao Yan, Chen Rui-Yun, Wu Rui-Xiang, Zhang Guo-Feng, Xiao Lian-Tuan, Jia Suo-Tang. Electric field induced polarization dynamics of graphene oxide. Acta Physica Sinica, 2013, 62(23): 233601. doi: 10.7498/aps.62.233601
    [17] Liu Xiu-Ying, Li Xiao-Feng, Zhang Li-Ying, Fan Zhi-Qin, Ma Xing-Ke. The theoretical study on CH4 adsorption in different zeolites. Acta Physica Sinica, 2012, 61(14): 146802. doi: 10.7498/aps.61.146802
    [18] Huang Ping, Yang Chun. Theoretical research of TiO2 adsorption on GaN(0001) surface. Acta Physica Sinica, 2011, 60(10): 106801. doi: 10.7498/aps.60.106801
    [19] Yan Chao, Duan Jun-Hong, He Xing-Dao. Molecular dynamics simulation of low-energy bombardment on Pt(111) surface. Acta Physica Sinica, 2010, 59(12): 8807-8813. doi: 10.7498/aps.59.8807
    [20] Zhang Xian-Ren, Shen Zhi-Gang, Chen Jian-Feng, Wang Wen-Chuan. Adsorption of linear ethane molecules in MCM-41 by molecular simulation. Acta Physica Sinica, 2003, 52(1): 163-168. doi: 10.7498/aps.52.163
Metrics
  • Abstract views:  8886
  • PDF Downloads:  719
  • Cited By: 0
Publishing process
  • Received Date:  12 March 2016
  • Accepted Date:  14 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回