Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Density functional study on the adsorption characteristics of O, O2, OH, and OOH of B-, P-doped, and B, P codoped graphenes

Sun Jian-Ping Zhou Ke-Liang Liang Xiao-Dong

Citation:

Density functional study on the adsorption characteristics of O, O2, OH, and OOH of B-, P-doped, and B, P codoped graphenes

Sun Jian-Ping, Zhou Ke-Liang, Liang Xiao-Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Over past years, the excessive use of fossil fuel has posed serious problems such as greenhouse effect and environmental pollution, which threaten human life. Regarded as an ideal substitution for traditional internal combustion engine, low temperature proton exchange membrane fuel cell (PEMFC) converts chemical energy through electrode reaction directly into electrical energy with high efficiency and low pollution. However, the main problem behind the industrialization of PEMFC, is that oxygen reduction reaction (ORR) occurring on the cathode needs precious metal platinum (Pt) as catalyst, which has a limited reserve and is costly. Owing to high activity and stability, the graphenes doped with non-metal B and P, have proven to be excellent alternatives to Pt experimentally. However, the relevant theoretical work is scarce.Adsorptions of the ORR intermediates, i.e., O, O2, OH, and OOH, of doped graphenes are essential for the cathode reaction, which also bring some difficulties to the next step reaction. Therefore, in this paper, based on density functional theory, the adsorption characteristics of O, O2, OH, and OOH of B-doped, P-doped and B, P-codoped graphenes are studied using first-principles calculation code VASP first. By analyzing the adsorption energies, bond lengths, densities of states and charge transfers, the influences of the different dopants on the intermediates are evaluated. Then, the ORR steps are discussed, and the free energy change of each step is further given. The results show that for B-doped and P-doped graphenes, the adsorption energies of various intermediates exhibit similar linear relationships. The adsorption energy of OOH of P-doped graphene (3.26 eV) is much larger than that in B-doped grapheme (0.73 eV). The large adsorption energy of P-doped graphene is beneficial to the fracture reaction of OO bond in OOH, while the small adsorption energy of B-doped graphene can promote the reaction of OH converting into water. Owing to the synergistic effect, the graphene codoped with B and P possesses better catalyzing ability than single B-and P-doped ones. The results are helpful for understanding the excellent performances of codoped graphenes.
      Corresponding author: Sun Jian-Ping, sunjp@ncepu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 12MS26) and the National Natural Science Foundation of China (Grant No. 61372050).
    [1]

    Shao A F, Wang Z B, Chu Y Y, Jiang Z Z, Yin G P, Liu Y 2010 Fuel Cells 10 472

    [2]

    Nagashree K L, Raviraj N H, Ahmed M F 2010 Electrochim. Acta 55 2629

    [3]

    Gasteiger H A, Markovic N M 2009 Science 324 48

    [4]

    Gong K P, Du F, Xia Z H, Durstock M, Dai L M 2009 Science 323 760

    [5]

    Liu X, Li L, Meng C G, Han Y 2012 J. Phys. Chem. C 116 2710

    [6]

    Neergat M, Shukla A K, Gandhi K S 2001 J. Appl. Electrochem. 31 373

    [7]

    Yu X W, Ye S Y 2007 J. Power Sources 172 145

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [9]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [10]

    Lee C G, Wei X D, Kysar J W, Home J 2008 Science 321 385

    [11]

    Sun J P, Miao Y M, Cao X C 2013 Acta Phys. Sin. 62 036301 (in Chinese) [孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301]

    [12]

    Huang L Q, Zhou L Y, Yu W, Yang D, Zhang J, Li C 2015 Acta Phys. Sin. 64 038103 (in Chinese) [黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿 2015 物理学报 64 038103]

    [13]

    Yang X X, Kong X T, Dai Q 2015 Acta Phys. Sin. 64 106801 (in Chinese) [杨晓霞, 孔祥天, 戴庆 2015 物理学报 64 106801]

    [14]

    Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 22 057701

    [15]

    Wu H Q, Linghu C Y, L H M, Qian H 2013 Chin. Phys. B 22 098106

    [16]

    Yang L J, Jiang S J, Zhao Y, Zhu L, Chen S, Wang X Z, Wu Q, Ma J, Ma Y W, Hu Z 2011 Angew. Chem. Int. Ed. 50 7132

    [17]

    Qu L T, Liu Y, Baek J B, Dai L M 2010 ACS Nano 4 1321

    [18]

    Ma G X, Zhao J H, Zheng J F, Zhu Z P 2012 New Carbon Mater. 27 258

    [19]

    Yang Z, Yao Z, Li G F, Fang G Y, Nie H G, Liu Z, Zhou X M, Chen X A, Huang S M 2012 ACS Nano 6 205

    [20]

    Tang L H, Wang Y, Li Y M, Feng H B, Lu J, Li J H 2009 Adv. Funct. Mater. 19 2782

    [21]

    Sun X J, Zhang Y W, Song P, Pan J, Zhuang L, Xu W L, Xing W 2013 ACS Catal. 3 1726

    [22]

    Yao Z, Nie H G, Yang Z, Zhou X M, Liu Z, Huang S M 2012 Chem. Commun. 48 1027

    [23]

    Sheng Z H, Gao H L, Bao W J, Wang F B, Xia X H 2012 J. Mater. Chem. 22 390

    [24]

    Chen Y H, Tian Y Y, Fang X Z, Liu J G, Yan C W 2014 Electrochim. Acta 143 291

    [25]

    Li R, Wei Z D, Gou X L, Xu W 2013 RSC Adv. 3 9978

    [26]

    Zhang C Z, Mahmood N, Yin H, Liu F, Hou Y L 2013 Adv. Mater. 25 4932

    [27]

    Ozaki J I, Kimura N, Anahara T, Oya A 2007 Carbon 45 1847

    [28]

    Zhu J L, He C Y, Li Y Y, Kang S A, Shen P K 2013 J. Mater. Chem. A 1 14700

    [29]

    Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao S Z 2013 Angew. Chem. Int. Ed. 52 3110

    [30]

    Choi C H, Park S H, Woo S I 2012 J. Mater. Chem. 22 12107

    [31]

    Duan X G, Indrawirawan S, Sun H Q, Wang S B 2015 Catal. Today 249 184

    [32]

    Kong X K, Chen Q W, Sun Z Y 2013 Chem. Phys. Chem. 14 514

    [33]

    Zhang X L, Lu Z S, Fu Z M, Tang Y N, Ma D W, Yang Z X 2015 J. Power Sources 276 222

    [34]

    Fan X F, Zheng W T, Kuo J L 2013 RSC Adv. 3 5498

    [35]

    Norskov J K, Rossmeisl J, Logadottir A, Lindqvist L 2004 J. Phys. Chem. B 108 17886

    [36]

    Li M T, Zhang L P, Xu Q, Niu J B, Xia Z H 2014 J. Catal. 314 66

    [37]

    Lim D H, Wilcox J 2012 J. Phys. Chem. C 116 3653

    [38]

    Atkins P W 1998 Physical Chemistry (6th Ed.) (Oxford: Oxford University Press) pp485, 925-927, 942

    [39]

    Zhang H Q, Liang Y M, Zhou J X 2014 Acta Chim. Sin. 72 367

  • [1]

    Shao A F, Wang Z B, Chu Y Y, Jiang Z Z, Yin G P, Liu Y 2010 Fuel Cells 10 472

    [2]

    Nagashree K L, Raviraj N H, Ahmed M F 2010 Electrochim. Acta 55 2629

    [3]

    Gasteiger H A, Markovic N M 2009 Science 324 48

    [4]

    Gong K P, Du F, Xia Z H, Durstock M, Dai L M 2009 Science 323 760

    [5]

    Liu X, Li L, Meng C G, Han Y 2012 J. Phys. Chem. C 116 2710

    [6]

    Neergat M, Shukla A K, Gandhi K S 2001 J. Appl. Electrochem. 31 373

    [7]

    Yu X W, Ye S Y 2007 J. Power Sources 172 145

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [9]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [10]

    Lee C G, Wei X D, Kysar J W, Home J 2008 Science 321 385

    [11]

    Sun J P, Miao Y M, Cao X C 2013 Acta Phys. Sin. 62 036301 (in Chinese) [孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301]

    [12]

    Huang L Q, Zhou L Y, Yu W, Yang D, Zhang J, Li C 2015 Acta Phys. Sin. 64 038103 (in Chinese) [黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿 2015 物理学报 64 038103]

    [13]

    Yang X X, Kong X T, Dai Q 2015 Acta Phys. Sin. 64 106801 (in Chinese) [杨晓霞, 孔祥天, 戴庆 2015 物理学报 64 106801]

    [14]

    Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 22 057701

    [15]

    Wu H Q, Linghu C Y, L H M, Qian H 2013 Chin. Phys. B 22 098106

    [16]

    Yang L J, Jiang S J, Zhao Y, Zhu L, Chen S, Wang X Z, Wu Q, Ma J, Ma Y W, Hu Z 2011 Angew. Chem. Int. Ed. 50 7132

    [17]

    Qu L T, Liu Y, Baek J B, Dai L M 2010 ACS Nano 4 1321

    [18]

    Ma G X, Zhao J H, Zheng J F, Zhu Z P 2012 New Carbon Mater. 27 258

    [19]

    Yang Z, Yao Z, Li G F, Fang G Y, Nie H G, Liu Z, Zhou X M, Chen X A, Huang S M 2012 ACS Nano 6 205

    [20]

    Tang L H, Wang Y, Li Y M, Feng H B, Lu J, Li J H 2009 Adv. Funct. Mater. 19 2782

    [21]

    Sun X J, Zhang Y W, Song P, Pan J, Zhuang L, Xu W L, Xing W 2013 ACS Catal. 3 1726

    [22]

    Yao Z, Nie H G, Yang Z, Zhou X M, Liu Z, Huang S M 2012 Chem. Commun. 48 1027

    [23]

    Sheng Z H, Gao H L, Bao W J, Wang F B, Xia X H 2012 J. Mater. Chem. 22 390

    [24]

    Chen Y H, Tian Y Y, Fang X Z, Liu J G, Yan C W 2014 Electrochim. Acta 143 291

    [25]

    Li R, Wei Z D, Gou X L, Xu W 2013 RSC Adv. 3 9978

    [26]

    Zhang C Z, Mahmood N, Yin H, Liu F, Hou Y L 2013 Adv. Mater. 25 4932

    [27]

    Ozaki J I, Kimura N, Anahara T, Oya A 2007 Carbon 45 1847

    [28]

    Zhu J L, He C Y, Li Y Y, Kang S A, Shen P K 2013 J. Mater. Chem. A 1 14700

    [29]

    Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao S Z 2013 Angew. Chem. Int. Ed. 52 3110

    [30]

    Choi C H, Park S H, Woo S I 2012 J. Mater. Chem. 22 12107

    [31]

    Duan X G, Indrawirawan S, Sun H Q, Wang S B 2015 Catal. Today 249 184

    [32]

    Kong X K, Chen Q W, Sun Z Y 2013 Chem. Phys. Chem. 14 514

    [33]

    Zhang X L, Lu Z S, Fu Z M, Tang Y N, Ma D W, Yang Z X 2015 J. Power Sources 276 222

    [34]

    Fan X F, Zheng W T, Kuo J L 2013 RSC Adv. 3 5498

    [35]

    Norskov J K, Rossmeisl J, Logadottir A, Lindqvist L 2004 J. Phys. Chem. B 108 17886

    [36]

    Li M T, Zhang L P, Xu Q, Niu J B, Xia Z H 2014 J. Catal. 314 66

    [37]

    Lim D H, Wilcox J 2012 J. Phys. Chem. C 116 3653

    [38]

    Atkins P W 1998 Physical Chemistry (6th Ed.) (Oxford: Oxford University Press) pp485, 925-927, 942

    [39]

    Zhang H Q, Liang Y M, Zhou J X 2014 Acta Chim. Sin. 72 367

  • [1] Zhu Hong-Qiang, Luo Lei, Wu Ze-Bang, Yin Kai-Hui, Yue Yuan-Xia, Yang Ying, Feng Qing, Jia Wei-Yao. Theoretical calculation study on enhancing the sensitivity and optical properties of graphene adsorption of nitrogen dioxide via doping. Acta Physica Sinica, 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [2] Wu Hong-Fen, Feng Pan-Jun, Zhang Shuo, Liu Da-Peng, Gao Miao, Yan Xun-Wang. First-principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [3] Huang De-Rao, Song Jun-Jie, He Pi-Mo, Huang Kai-Kai, Zhang Han-Jie. Adsorption behavior of 9,9′-Dixanthylidene and moiré superstructure on Ru(0001). Acta Physica Sinica, 2022, 71(21): 216801. doi: 10.7498/aps.71.20221057
    [4] De-Rao Huang,  Jun-Jie Song,  Pi-Mo He,  Kai-Kai Huang,  Han-Jie Zhang. Adsorption Behavior of 9,9'-Dixanthylidene and Moiré Superstructure on Ru(0001). Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221057
    [5] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211631
    [6] Lin Wen-Qiang, Xu Bin, Chen Liang, Zhou Feng, Chen Jun-Lang. Molecular dynamics simulations of the adsorption of bisphenol A on graphene oxide. Acta Physica Sinica, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [7] Cao Hai-Yan, Bi Heng-Chang, Xie Xiao, Su Shi, Sun Li-Tao. Functional tissues based on graphene oxide: facile preparation and dye adsorption properties. Acta Physica Sinica, 2016, 65(14): 146802. doi: 10.7498/aps.65.146802
    [8] Huang Yan-Ping, Yuan Jian-Mei, Guo Gang, Mao Yu-Liang. First-principles study on saturated adsorption of alkali metal atoms on silicene. Acta Physica Sinica, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [9] Li Feng, Xiao Chuan-Yun, Kan Er-Jun, Lu Rui-Feng, Deng Kai-Ming. Density functional study on the different behaviors of Pd and Pt coating on graphene. Acta Physica Sinica, 2014, 63(17): 176802. doi: 10.7498/aps.63.176802
    [10] Sun Jian-Ping, Miao Ying-Meng, Cao Xiang-Chun. Density functional theory studies of O2 and CO adsorption on the graphene doped with Pd. Acta Physica Sinica, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [11] Song Jian, Li Feng, Deng Kai-Ming, Xiao Chuan-Yun, Kan Er-Jun, Lu Rui-Feng, Wu Hai-Ping. Density functional study on the stability and electronic structure of single layer Si6H4Ph2. Acta Physica Sinica, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [12] Lin Feng, Zheng Fa-Wei, Ouyang Fang-Ping. A density functional theory study on water adsorption on TiO2-terminated SrTiO3(001) surface. Acta Physica Sinica, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [13] Yang Jian, Wang Ni-Ying, Zhu Dong-Jiu, Chen Xuan, Deng Kai-Ming, Xiao Chuan-Yun. Density functional calculation of the geometric and magnetic properties of MPb10(M=Ti,V,Cr,Cu,Pd) clusters. Acta Physica Sinica, 2009, 58(5): 3112-3117. doi: 10.7498/aps.58.3112
    [14] Yang Pei-Fang, Hu Juan-Mei, Teng Bo-Tao, Wu Feng-Min, Jiang Shi-Yu. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [15] Cao Qing-Song, Deng Kai-Ming, Chen Xuan, Tang Chun-Mei, Huang De-Cai. Density functional study on the geometric and electronic properties of MC20F20 (M=Li, Na, Be, Mg). Acta Physica Sinica, 2009, 58(3): 1863-1869. doi: 10.7498/aps.58.1863
    [16] Tang Chun-Mei, Chen Xuan, Deng Kai-Ming, Hu Feng-Lan, Huang De-Cai, Xia Hai-Yan. The evolution of the structure and electronic properties of the fullerene derivatives C60(CF3)n(n=2, 4, 6, 10): A density functional calculation. Acta Physica Sinica, 2009, 58(4): 2675-2679. doi: 10.7498/aps.58.2675
    [17] Wei Yan-Wei, Yang Zong-Xian. The adsorption of Au on Zr-doped CeO2(110) surface: A first-principle study. Acta Physica Sinica, 2008, 57(11): 7139-7144. doi: 10.7498/aps.57.7139
    [18] Sheng Yong, Mao Hua-Ping, Tu Ming-Jing. DFT study on the Mg-doped TinMg (n=1—10) clusters. Acta Physica Sinica, 2008, 57(7): 4153-4158. doi: 10.7498/aps.57.4153
    [19] Jiang Yan-Ling, Fu Shi-You, Deng Kai-Ming, Tang Chun-Mei, Tan Wei-Shi, Huang De-Cai, Liu Yu-Zhen, Wu Hai-Ping. Density functional study on the structural and electronic properties of fullerene-barbituric acid and its dimmer. Acta Physica Sinica, 2008, 57(6): 3690-3697. doi: 10.7498/aps.57.3690
    [20] Bai Yu-Jie, Fu Shi-You, Deng Kai-Ming, Tang Chun-Mei, Chen Xuan, Tan Wei-Shi, Liu Yu-Zhen, Huang De-Cai. Density functional calculations on the geometric and electronic structures of the endohedral fullerene H2@C60 and its dimmer. Acta Physica Sinica, 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
Metrics
  • Abstract views:  7204
  • PDF Downloads:  762
  • Cited By: 0
Publishing process
  • Received Date:  30 June 2015
  • Accepted Date:  22 July 2015
  • Published Online:  05 January 2016

/

返回文章
返回