搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外力驱动作用下高分子链在表面吸附性质的计算机模拟

李洪 艾倩雯 汪鹏君 高和蓓 崔毅 罗孟波

引用本文:
Citation:

外力驱动作用下高分子链在表面吸附性质的计算机模拟

李洪, 艾倩雯, 汪鹏君, 高和蓓, 崔毅, 罗孟波

Computer simulation of adsorption properties of polymer on surface under external driving force

Li Hong, Ai Qian-Wen, Wang Peng-Jun, Gao He-Bei, Cui Yi, Luo Meng-Bo
PDF
导出引用
  • 采用退火法模拟研究受外力F驱动的高分子链在吸引表面的吸附特性.通过高分子链的平均表面接触数M>与温度T之间的关系计算临界吸附温度Tc,并发现Tc随着F的增加而减小;进而通过高分子链的均方回转半径分析外力驱动作用对高分子链构象的影响,并从回转半径极小值或者垂直外力方向的y和z分量的变化交叉校验临界吸附点Tc.模拟计算了处于吸附状态的高分子链随着外力F的增加是否会发生吸附状态到脱附状态的相变以及发生相变所需施加的外力是否由温度所决定.模拟结果表明:两种不同温度下高分子链的吸附性质和构象性质受外力驱动作用而产生不同现象,在温度区间Tc* T Tc时会发生脱附现象,而在T Tc*时不会发生脱附现象.
    Monte Carlo simulation is performed to study the adsorption properties of polymers on an attractive surface. Annealing method is adopted to simulate the adsorption characteristics and conformational changes of polymer chains driven by an external driving force F. In simulations using cooperative motion algorithm, the ensembles of monomers located at lattice sites are connected by non-breakable bonds. When the external force is F=0, the finite-size scale method can be used to determine the critical adsorption temperature (Tc) of the polymer chain on the attractive surface, but when the external force is F>0, the dependence of the average number of surface contacts M> on the chain length N is unrelated to temperature T. Therefore, Tc cannot be obtained by the finite-size scale method. However, the pseudo-critical adsorption temperature Tc can be estimated by a function of the average number of surface contacts M> and the temperature T for the chain length N=200. And then Tc decreases with external force F increasing. The phase diagram is obtained for the polymer chain between the desorbed state and the adsorbed state under temperature T and external driving force F. Furthermore, the influence of the external driving force on the conformation of the polymer chain is analyzed by the mean square radius of gyration of polymer chains. The critical adsorption point Tc can be checked roughly by the minimum location of the mean square radius of gyration or by the variation of its components in the Y and Z direction perpendicular to the external force. With the increase of the external force F for adsorbed polymer, the temperature T can determine whether polymer is changed from the adsorption state to the desorption state and where the force is located at the transformation. There are two different cases, that is, the polymer can be desorbed at the temperature Tc* TTc and the polymer cannot be desorbed at T Tc*. In this paper, we discuss these two cases for the adsorption of polymer on the attractive surface:weak and strong adsorption. In the first case, the adsorption is strongly influenced by the external driving force. By contrast, in the strong adsorption, the adsorption is weakly influenced by the external force. Our results unravel the dependence of adsorption of polymer on external driving force, which is also consistent with the phase diagram of adsorption and desorption of polymer chains.
    [1]

    Wackerlig J, Schirhagl R 2016 Anal. Chem. 88 250

    [2]

    Wackerlig J, Lieberzeit P A 2015 Sens. Actuator B: Chem. 207 144

    [3]

    Ma Y Q, Zhang Z X, Hu Z J, Cheng K, Jia Y X 2016 Sci. Techn. Innov. Herald. 13 186. (in Chinese) [马余强, 张泽新, 胡志军, 贾玉玺 2016 科技创新导报 13 186]

    [4]

    Kantor Y, Kardar M 2017 Phys. Rev. E 96 022148

    [5]

    Tong H P, Zhang L X 2012 Acta Phys. Sin. 61 058701. (in Chinese) [仝焕平, 章林溪 2012 物理学报 61 058701]

    [6]

    Napolitano S, Sferrazza M 2017 Adv. Colloid Interface Sci. 247 172

    [7]

    Perezdeeulate N G, Sferrazza M, Cangialosi D, Napolitano S 2017 ACS Macro. Lett. 6 354

    [8]

    Chen S H, L Q, Guo J C, Wang Z K, Sun S Q, Hu S Q 2017 Acta Polym. Sin. 4 716. (in Chinese) [陈生辉, 吕强, 郭继成, 王志坤, 孙霜青, 胡松青 2017 高分子学报 4 716]

    [9]

    Li H, Qian C J, Wang C, Luo M B 2013 Phys. Rev. E 87 012602

    [10]

    Eisenriegler E, Kremer K, Binder K 1982 J. Chem. Phys. 77 6296

    [11]

    Milchev A 2011 J. Phys.: Condens. Matter 23 103101

    [12]

    Li H, Qian C J, Luo M B 2012 J. Appl. Polym. Sci. 124 282

    [13]

    Plascak J A, Phl M, Bachmann M 2017 Phys. Rev. E 95 050501

    [14]

    Qi S, Klushin L I, Skvortsov A M, Schmid F 2016 Macromolecules 49 9665

    [15]

    Liu L J, Chen W D, Chen J Z, An L J 2014 Chin. Chem. Lett. 25 670

    [16]

    Manca F, Giordano S, Palla P L, Cleri F, Colombo L 2012 J. Chem. Phys. 137 244907

    [17]

    Li J, Hu W B 2015 Polym. Int. 64 49

    [18]

    Wang Y, Zhang L X 2008 Acta Phys. Sin. 57 3281. (in Chinese) [王禹, 章林溪 2008 物理学报 57 3281]

    [19]

    Wu C X, Yan D D, Xing X J, Hou M Y 2016 Acta Phys. Sin. 65 186102. (in Chinese) [吴晨旭, 严大东, 邢向军, 厚美瑛 2016 物理学报 65 186102]

    [20]

    Yan D D, Zhang X H 2016 Acta Phys. Sin. 65 188201. (in Chinese) [严大东, 张兴华 2016 物理学报 65 188201]

    [21]

    Jiang Y, Chen Z Y 2016 Acta Phys. Sin. 65 178201. (in Chinese) [蒋滢, 陈征宇 2016 物理学报 65 178201]

    [22]

    Jiang Z, Dou W, Sun T, Shen Y, Cao D 2015 J. Polym. Res. 22 236

    [23]

    Jiang Z T, Dou W H, Shen Y, Sun T T, Xun P 2015 Chin. Phys. B 24 379

    [24]

    Luo M B, Zhang S, Wu F, Sun L Z 2017 Front Phys. 12 128301

    [25]

    Zhou Z C, Wang Y T 2017 Chin. Phys. B 26 038701

    [26]

    Li H, Gong B, Qian C J, Luo M B 2015 Soft Matter 11 3222

    [27]

    Li H, Qian C J, Luo M B 2016 J. Chem. Phys. 144 164901

    [28]

    Rosenbluth M N, Rosenbluth A W 1955 J. Chem. Phys. 23 356

    [29]

    Qin Y, Liu H L, Hu Y 2001 J. Fluor. Chem. 14 417. (in Chinese) [秦原, 刘洪来, 胡英 2001 功能高分子学报 14 417]

    [30]

    Qin Y, Liu H L, Hu Y 2003 Mol. Simul. 29 649

    [31]

    Gauger A, Weyersberg A, Pakula T 1993 Macromol. Theory Simul. 2 531

    [32]

    Luo M B 2008 J. Chem. Phys. 128 044912

    [33]

    Paul W, Binder K, Heermann D W, Kremer K 1991 J. Phys. B: At. Mol. Opt. Phys. 1 37

  • [1]

    Wackerlig J, Schirhagl R 2016 Anal. Chem. 88 250

    [2]

    Wackerlig J, Lieberzeit P A 2015 Sens. Actuator B: Chem. 207 144

    [3]

    Ma Y Q, Zhang Z X, Hu Z J, Cheng K, Jia Y X 2016 Sci. Techn. Innov. Herald. 13 186. (in Chinese) [马余强, 张泽新, 胡志军, 贾玉玺 2016 科技创新导报 13 186]

    [4]

    Kantor Y, Kardar M 2017 Phys. Rev. E 96 022148

    [5]

    Tong H P, Zhang L X 2012 Acta Phys. Sin. 61 058701. (in Chinese) [仝焕平, 章林溪 2012 物理学报 61 058701]

    [6]

    Napolitano S, Sferrazza M 2017 Adv. Colloid Interface Sci. 247 172

    [7]

    Perezdeeulate N G, Sferrazza M, Cangialosi D, Napolitano S 2017 ACS Macro. Lett. 6 354

    [8]

    Chen S H, L Q, Guo J C, Wang Z K, Sun S Q, Hu S Q 2017 Acta Polym. Sin. 4 716. (in Chinese) [陈生辉, 吕强, 郭继成, 王志坤, 孙霜青, 胡松青 2017 高分子学报 4 716]

    [9]

    Li H, Qian C J, Wang C, Luo M B 2013 Phys. Rev. E 87 012602

    [10]

    Eisenriegler E, Kremer K, Binder K 1982 J. Chem. Phys. 77 6296

    [11]

    Milchev A 2011 J. Phys.: Condens. Matter 23 103101

    [12]

    Li H, Qian C J, Luo M B 2012 J. Appl. Polym. Sci. 124 282

    [13]

    Plascak J A, Phl M, Bachmann M 2017 Phys. Rev. E 95 050501

    [14]

    Qi S, Klushin L I, Skvortsov A M, Schmid F 2016 Macromolecules 49 9665

    [15]

    Liu L J, Chen W D, Chen J Z, An L J 2014 Chin. Chem. Lett. 25 670

    [16]

    Manca F, Giordano S, Palla P L, Cleri F, Colombo L 2012 J. Chem. Phys. 137 244907

    [17]

    Li J, Hu W B 2015 Polym. Int. 64 49

    [18]

    Wang Y, Zhang L X 2008 Acta Phys. Sin. 57 3281. (in Chinese) [王禹, 章林溪 2008 物理学报 57 3281]

    [19]

    Wu C X, Yan D D, Xing X J, Hou M Y 2016 Acta Phys. Sin. 65 186102. (in Chinese) [吴晨旭, 严大东, 邢向军, 厚美瑛 2016 物理学报 65 186102]

    [20]

    Yan D D, Zhang X H 2016 Acta Phys. Sin. 65 188201. (in Chinese) [严大东, 张兴华 2016 物理学报 65 188201]

    [21]

    Jiang Y, Chen Z Y 2016 Acta Phys. Sin. 65 178201. (in Chinese) [蒋滢, 陈征宇 2016 物理学报 65 178201]

    [22]

    Jiang Z, Dou W, Sun T, Shen Y, Cao D 2015 J. Polym. Res. 22 236

    [23]

    Jiang Z T, Dou W H, Shen Y, Sun T T, Xun P 2015 Chin. Phys. B 24 379

    [24]

    Luo M B, Zhang S, Wu F, Sun L Z 2017 Front Phys. 12 128301

    [25]

    Zhou Z C, Wang Y T 2017 Chin. Phys. B 26 038701

    [26]

    Li H, Gong B, Qian C J, Luo M B 2015 Soft Matter 11 3222

    [27]

    Li H, Qian C J, Luo M B 2016 J. Chem. Phys. 144 164901

    [28]

    Rosenbluth M N, Rosenbluth A W 1955 J. Chem. Phys. 23 356

    [29]

    Qin Y, Liu H L, Hu Y 2001 J. Fluor. Chem. 14 417. (in Chinese) [秦原, 刘洪来, 胡英 2001 功能高分子学报 14 417]

    [30]

    Qin Y, Liu H L, Hu Y 2003 Mol. Simul. 29 649

    [31]

    Gauger A, Weyersberg A, Pakula T 1993 Macromol. Theory Simul. 2 531

    [32]

    Luo M B 2008 J. Chem. Phys. 128 044912

    [33]

    Paul W, Binder K, Heermann D W, Kremer K 1991 J. Phys. B: At. Mol. Opt. Phys. 1 37

  • [1] 张显, 刘仕倡, 魏军侠, 李树, 王鑫, 上官丹骅. 结合源偏倚和权窗的蒙特卡罗全局减方差方法. 物理学报, 2024, 73(4): 042801. doi: 10.7498/aps.73.20231493
    [2] 上官丹骅, 闫威华, 魏军侠, 高志明, 陈艺冰, 姬志成. 多物理耦合计算中动态输运问题高效蒙特卡罗模拟方法. 物理学报, 2022, 71(9): 090501. doi: 10.7498/aps.71.20211474
    [3] 王超, 周艳丽, 吴凡, 陈英才. 高分子链在分子刷表面吸附的Monte Carlo模拟. 物理学报, 2020, 69(16): 168201. doi: 10.7498/aps.69.20200411
    [4] 陈忠, 赵子甲, 吕中良, 李俊汉, 潘冬梅. 基于蒙特卡罗-离散纵标方法的氘氚激光等离子体聚变反应率数值模拟. 物理学报, 2019, 68(21): 215201. doi: 10.7498/aps.68.20190440
    [5] 孙立望, 李洪, 汪鹏君, 高和蓓, 罗孟波. 利用神经网络识别高分子链在表面的吸附相变. 物理学报, 2019, 68(20): 200701. doi: 10.7498/aps.68.20190643
    [6] 李树. 光子与相对论麦克斯韦分布电子散射截面的蒙特卡罗计算方法. 物理学报, 2018, 67(21): 215201. doi: 10.7498/aps.67.20180932
    [7] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [8] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [9] 上官丹骅, 邓力, 李刚, 张宝印, 马彦, 付元光, 李瑞, 胡小利. 蒙特卡罗临界计算全局计数效率新算法研究. 物理学报, 2016, 65(6): 062801. doi: 10.7498/aps.65.062801
    [10] 伊丁, 武镇, 杨柳, 戴瑛, 解士杰. 有机分子在铁磁界面处的自旋极化研究. 物理学报, 2015, 64(18): 187305. doi: 10.7498/aps.64.187305
    [11] 上官丹骅, 李刚, 邓力, 张宝印, 李瑞, 付元光. 反应堆蒙特卡罗临界模拟中均匀裂变源算法的改进. 物理学报, 2015, 64(5): 052801. doi: 10.7498/aps.64.052801
    [12] 林舒, 闫杨娇, 李永东, 刘纯亮. 微波器件微放电阈值计算的蒙特卡罗方法研究. 物理学报, 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [13] 文德智, 卓仁鸿, 丁大杰, 郑慧, 成晶, 李正宏. 蒙特卡罗模拟中相关变量随机数序列的产生方法. 物理学报, 2012, 61(22): 220204. doi: 10.7498/aps.61.220204
    [14] 刘秀英, 李晓凤, 张丽英, 樊志琴, 马兴科. 甲烷在不同分子筛中吸附的理论对比研究. 物理学报, 2012, 61(14): 146802. doi: 10.7498/aps.61.146802
    [15] 张宝武, 张萍萍, 马艳, 李同保. 铬原子束横向一维激光冷却的蒙特卡罗方法仿真. 物理学报, 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [16] 黄平, 杨春. TiO2分子在GaN(0001)表面吸附的理论研究. 物理学报, 2011, 60(10): 106801. doi: 10.7498/aps.60.106801
    [17] 颜超, 段军红, 何兴道. 低能原子沉积在Pt(111)表面的分子动力学模拟. 物理学报, 2010, 59(12): 8807-8813. doi: 10.7498/aps.59.8807
    [18] 孙贤明, 韩一平, 史小卫. 降雨融化层后向散射的蒙特卡罗仿真. 物理学报, 2007, 56(4): 2098-2105. doi: 10.7498/aps.56.2098
    [19] 郝樊华, 胡广春, 刘素萍, 龚 建, 向永春, 黄瑞良, 师学明, 伍 钧. 钚体源样品γ能谱计算的蒙特卡罗方法. 物理学报, 2005, 54(8): 3523-3529. doi: 10.7498/aps.54.3523
    [20] 张现仁, 沈志刚, 陈建峰, 汪文川. 乙烷在中孔分子筛MCM-41中吸附的计算机分子模拟. 物理学报, 2003, 52(1): 163-168. doi: 10.7498/aps.52.163
计量
  • 文章访问数:  7024
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-17
  • 修回日期:  2018-04-14
  • 刊出日期:  2019-08-20

/

返回文章
返回