-
采用退火法模拟研究受外力F驱动的高分子链在吸引表面的吸附特性.通过高分子链的平均表面接触数M>与温度T之间的关系计算临界吸附温度Tc,并发现Tc随着F的增加而减小;进而通过高分子链的均方回转半径分析外力驱动作用对高分子链构象的影响,并从回转半径极小值或者垂直外力方向的y和z分量的变化交叉校验临界吸附点Tc.模拟计算了处于吸附状态的高分子链随着外力F的增加是否会发生吸附状态到脱附状态的相变以及发生相变所需施加的外力是否由温度所决定.模拟结果表明:两种不同温度下高分子链的吸附性质和构象性质受外力驱动作用而产生不同现象,在温度区间Tc* T Tc时会发生脱附现象,而在T Tc*时不会发生脱附现象.Monte Carlo simulation is performed to study the adsorption properties of polymers on an attractive surface. Annealing method is adopted to simulate the adsorption characteristics and conformational changes of polymer chains driven by an external driving force F. In simulations using cooperative motion algorithm, the ensembles of monomers located at lattice sites are connected by non-breakable bonds. When the external force is F=0, the finite-size scale method can be used to determine the critical adsorption temperature (Tc) of the polymer chain on the attractive surface, but when the external force is F>0, the dependence of the average number of surface contacts M> on the chain length N is unrelated to temperature T. Therefore, Tc cannot be obtained by the finite-size scale method. However, the pseudo-critical adsorption temperature Tc can be estimated by a function of the average number of surface contacts M> and the temperature T for the chain length N=200. And then Tc decreases with external force F increasing. The phase diagram is obtained for the polymer chain between the desorbed state and the adsorbed state under temperature T and external driving force F. Furthermore, the influence of the external driving force on the conformation of the polymer chain is analyzed by the mean square radius of gyration of polymer chains. The critical adsorption point Tc can be checked roughly by the minimum location of the mean square radius of gyration or by the variation of its components in the Y and Z direction perpendicular to the external force. With the increase of the external force F for adsorbed polymer, the temperature T can determine whether polymer is changed from the adsorption state to the desorption state and where the force is located at the transformation. There are two different cases, that is, the polymer can be desorbed at the temperature Tc* TTc and the polymer cannot be desorbed at T Tc*. In this paper, we discuss these two cases for the adsorption of polymer on the attractive surface:weak and strong adsorption. In the first case, the adsorption is strongly influenced by the external driving force. By contrast, in the strong adsorption, the adsorption is weakly influenced by the external force. Our results unravel the dependence of adsorption of polymer on external driving force, which is also consistent with the phase diagram of adsorption and desorption of polymer chains.
-
Keywords:
- polymer chain /
- adsorption /
- cooperative motion algorithm /
- Monte Carlo method
[1] Wackerlig J, Schirhagl R 2016 Anal. Chem. 88 250
[2] Wackerlig J, Lieberzeit P A 2015 Sens. Actuator B: Chem. 207 144
[3] Ma Y Q, Zhang Z X, Hu Z J, Cheng K, Jia Y X 2016 Sci. Techn. Innov. Herald. 13 186. (in Chinese) [马余强, 张泽新, 胡志军, 贾玉玺 2016 科技创新导报 13 186]
[4] Kantor Y, Kardar M 2017 Phys. Rev. E 96 022148
[5] Tong H P, Zhang L X 2012 Acta Phys. Sin. 61 058701. (in Chinese) [仝焕平, 章林溪 2012 物理学报 61 058701]
[6] Napolitano S, Sferrazza M 2017 Adv. Colloid Interface Sci. 247 172
[7] Perezdeeulate N G, Sferrazza M, Cangialosi D, Napolitano S 2017 ACS Macro. Lett. 6 354
[8] Chen S H, L Q, Guo J C, Wang Z K, Sun S Q, Hu S Q 2017 Acta Polym. Sin. 4 716. (in Chinese) [陈生辉, 吕强, 郭继成, 王志坤, 孙霜青, 胡松青 2017 高分子学报 4 716]
[9] Li H, Qian C J, Wang C, Luo M B 2013 Phys. Rev. E 87 012602
[10] Eisenriegler E, Kremer K, Binder K 1982 J. Chem. Phys. 77 6296
[11] Milchev A 2011 J. Phys.: Condens. Matter 23 103101
[12] Li H, Qian C J, Luo M B 2012 J. Appl. Polym. Sci. 124 282
[13] Plascak J A, Phl M, Bachmann M 2017 Phys. Rev. E 95 050501
[14] Qi S, Klushin L I, Skvortsov A M, Schmid F 2016 Macromolecules 49 9665
[15] Liu L J, Chen W D, Chen J Z, An L J 2014 Chin. Chem. Lett. 25 670
[16] Manca F, Giordano S, Palla P L, Cleri F, Colombo L 2012 J. Chem. Phys. 137 244907
[17] Li J, Hu W B 2015 Polym. Int. 64 49
[18] Wang Y, Zhang L X 2008 Acta Phys. Sin. 57 3281. (in Chinese) [王禹, 章林溪 2008 物理学报 57 3281]
[19] Wu C X, Yan D D, Xing X J, Hou M Y 2016 Acta Phys. Sin. 65 186102. (in Chinese) [吴晨旭, 严大东, 邢向军, 厚美瑛 2016 物理学报 65 186102]
[20] Yan D D, Zhang X H 2016 Acta Phys. Sin. 65 188201. (in Chinese) [严大东, 张兴华 2016 物理学报 65 188201]
[21] Jiang Y, Chen Z Y 2016 Acta Phys. Sin. 65 178201. (in Chinese) [蒋滢, 陈征宇 2016 物理学报 65 178201]
[22] Jiang Z, Dou W, Sun T, Shen Y, Cao D 2015 J. Polym. Res. 22 236
[23] Jiang Z T, Dou W H, Shen Y, Sun T T, Xun P 2015 Chin. Phys. B 24 379
[24] Luo M B, Zhang S, Wu F, Sun L Z 2017 Front Phys. 12 128301
[25] Zhou Z C, Wang Y T 2017 Chin. Phys. B 26 038701
[26] Li H, Gong B, Qian C J, Luo M B 2015 Soft Matter 11 3222
[27] Li H, Qian C J, Luo M B 2016 J. Chem. Phys. 144 164901
[28] Rosenbluth M N, Rosenbluth A W 1955 J. Chem. Phys. 23 356
[29] Qin Y, Liu H L, Hu Y 2001 J. Fluor. Chem. 14 417. (in Chinese) [秦原, 刘洪来, 胡英 2001 功能高分子学报 14 417]
[30] Qin Y, Liu H L, Hu Y 2003 Mol. Simul. 29 649
[31] Gauger A, Weyersberg A, Pakula T 1993 Macromol. Theory Simul. 2 531
[32] Luo M B 2008 J. Chem. Phys. 128 044912
[33] Paul W, Binder K, Heermann D W, Kremer K 1991 J. Phys. B: At. Mol. Opt. Phys. 1 37
-
[1] Wackerlig J, Schirhagl R 2016 Anal. Chem. 88 250
[2] Wackerlig J, Lieberzeit P A 2015 Sens. Actuator B: Chem. 207 144
[3] Ma Y Q, Zhang Z X, Hu Z J, Cheng K, Jia Y X 2016 Sci. Techn. Innov. Herald. 13 186. (in Chinese) [马余强, 张泽新, 胡志军, 贾玉玺 2016 科技创新导报 13 186]
[4] Kantor Y, Kardar M 2017 Phys. Rev. E 96 022148
[5] Tong H P, Zhang L X 2012 Acta Phys. Sin. 61 058701. (in Chinese) [仝焕平, 章林溪 2012 物理学报 61 058701]
[6] Napolitano S, Sferrazza M 2017 Adv. Colloid Interface Sci. 247 172
[7] Perezdeeulate N G, Sferrazza M, Cangialosi D, Napolitano S 2017 ACS Macro. Lett. 6 354
[8] Chen S H, L Q, Guo J C, Wang Z K, Sun S Q, Hu S Q 2017 Acta Polym. Sin. 4 716. (in Chinese) [陈生辉, 吕强, 郭继成, 王志坤, 孙霜青, 胡松青 2017 高分子学报 4 716]
[9] Li H, Qian C J, Wang C, Luo M B 2013 Phys. Rev. E 87 012602
[10] Eisenriegler E, Kremer K, Binder K 1982 J. Chem. Phys. 77 6296
[11] Milchev A 2011 J. Phys.: Condens. Matter 23 103101
[12] Li H, Qian C J, Luo M B 2012 J. Appl. Polym. Sci. 124 282
[13] Plascak J A, Phl M, Bachmann M 2017 Phys. Rev. E 95 050501
[14] Qi S, Klushin L I, Skvortsov A M, Schmid F 2016 Macromolecules 49 9665
[15] Liu L J, Chen W D, Chen J Z, An L J 2014 Chin. Chem. Lett. 25 670
[16] Manca F, Giordano S, Palla P L, Cleri F, Colombo L 2012 J. Chem. Phys. 137 244907
[17] Li J, Hu W B 2015 Polym. Int. 64 49
[18] Wang Y, Zhang L X 2008 Acta Phys. Sin. 57 3281. (in Chinese) [王禹, 章林溪 2008 物理学报 57 3281]
[19] Wu C X, Yan D D, Xing X J, Hou M Y 2016 Acta Phys. Sin. 65 186102. (in Chinese) [吴晨旭, 严大东, 邢向军, 厚美瑛 2016 物理学报 65 186102]
[20] Yan D D, Zhang X H 2016 Acta Phys. Sin. 65 188201. (in Chinese) [严大东, 张兴华 2016 物理学报 65 188201]
[21] Jiang Y, Chen Z Y 2016 Acta Phys. Sin. 65 178201. (in Chinese) [蒋滢, 陈征宇 2016 物理学报 65 178201]
[22] Jiang Z, Dou W, Sun T, Shen Y, Cao D 2015 J. Polym. Res. 22 236
[23] Jiang Z T, Dou W H, Shen Y, Sun T T, Xun P 2015 Chin. Phys. B 24 379
[24] Luo M B, Zhang S, Wu F, Sun L Z 2017 Front Phys. 12 128301
[25] Zhou Z C, Wang Y T 2017 Chin. Phys. B 26 038701
[26] Li H, Gong B, Qian C J, Luo M B 2015 Soft Matter 11 3222
[27] Li H, Qian C J, Luo M B 2016 J. Chem. Phys. 144 164901
[28] Rosenbluth M N, Rosenbluth A W 1955 J. Chem. Phys. 23 356
[29] Qin Y, Liu H L, Hu Y 2001 J. Fluor. Chem. 14 417. (in Chinese) [秦原, 刘洪来, 胡英 2001 功能高分子学报 14 417]
[30] Qin Y, Liu H L, Hu Y 2003 Mol. Simul. 29 649
[31] Gauger A, Weyersberg A, Pakula T 1993 Macromol. Theory Simul. 2 531
[32] Luo M B 2008 J. Chem. Phys. 128 044912
[33] Paul W, Binder K, Heermann D W, Kremer K 1991 J. Phys. B: At. Mol. Opt. Phys. 1 37
计量
- 文章访问数: 7024
- PDF下载量: 97
- 被引次数: 0