-
The working temperature of the crystalline silicon photovoltaic (PV) module seriously restricts the cell efficiency and the module lifetime. Therefore, it is of great significance to investigate the cooling effects of PV modules. Recently, introducing nanostructures into polymer backsheets to obtain direct-cooling effects due to enhanced heat conduction and radiation characteristics, has become a new trend for PV cooling technology. In this paper, we study the backside thermal properties of the PV module by combining the energy balance equation and optical simulations. The thermal power and cooling effect are calculated and compared between the standard backsheet and three types of direct-cooling backsheets for three typical ambient temperatures. The structure parameters and encapsulating mode of mainstream commercial silicon cells are adopted in the simulations and calculations. The influences of thermal parameters, i.e, the heat transfer coefficient and the emissivity, on the thermal process and the operating temperature are discussed in detail. We hope that this study may provide a certain reference for the future design of PV-direct-cooling backsheets.
-
Keywords:
- crystalline silicon solar cell /
- photovoltaic efficiency /
- photovoltaic thermal effects /
- photovoltaic module
[1] Zou S, Ye X Y, Wu C K, Cheng K X, Fang L, Tang R J, Shen M R, Wang X S, Su X D 2019 Prog. Photovoltaics 27 511Google Scholar
[2] Ye X Y, Zou S, Chen K X, Li J J, Huang J, Cao F, Wang X S, Zhang L J, Wang X F, Shen M R, Su X D 2014 Adv. Funct. Mater. 24 6708Google Scholar
[3] Radziemska E, Klugmann E 2002 Energy Convers. Manage. 43 1889Google Scholar
[4] Azizi S, David E, Fréchette M F, Nguyen-Tri P, Ouellet-Plamondon C M 2018 Polym. Test. 72 24
[5] Kim K, Yoo M, Ahn K, Kim J 2015 Ceram. Int. 41 179
[6] Zhu L X, Raman A P, Fan S H 2015 Proc. Natl. Acad. Sci. U.S.A. 112 12282Google Scholar
[7] Li W, Shi Y, Chen K F, Zhu L X, Fan S H 2017 ACS Photonics 4 774Google Scholar
[8] Lu Y H, Chen Z C, Ai L, Zhang X P, Zhang J, Li J, Wang W Y, Tan R Q, Dai N, Song W J 2017 Sol. RRL 1 1700084Google Scholar
[9] Lin S H, Ai L, Zhang J, Bu T L, Li H J, Huang F Z, Zhang J, Lu Y H, Song W J 2019 Sol. Energy Mater. Sol. Cells 203 110135Google Scholar
[10] Jaramillo-Fernandez J, Whitworth G L, Pariente J A, Blanco A, Garcia P D, Lopez C, Sotomayor-Torres C M 2019 Small 15 1905290Google Scholar
[11] Zhou J C, Zhang Z, Liu H J, Yi Q 2017 Appl. Therm. Eng. 111 1296
[12] 戴协 2015 硕士学位论文 (上海: 东华大学)
Dai X 2015 M. S. Thesis (ShangHai: DongHua University) (in Chinese)
[13] Kim Y, Morita K 2017 J. Non-Cryst. Solids 471 187Google Scholar
[14] Spectrum Library, Gueymard C A https://www2.pvlighthouse.com.au/resources/optics/spectrum%20library/spectrum%20library.aspx [2020-6-5]
[15] SunSolve Ray Tracer, PV Lighthouse Pty. Ltd. https://www.pvlighthouse.com.au/sunsolve [2020-6-5]
[16] Kumar A, Chowdhury A 2020 Sol. Energy 201 751Google Scholar
[17] Sun X S, Silverman T J, Zhou Z G, Khan M R, Bermel P, Alam M A 2017 IEEE J. Photovoltaics 7 566
[18] An Y D, Sheng C X, Li X F 2019 Nanoscale 11 17073Google Scholar
[19] Goldstein E A, Raman A P, Fan S H 2017 Nat. Energy 2 17143Google Scholar
[20] Teo H G, Lee P S, Hawlader M N A 2012 Appl. Energy 90 309Google Scholar
[21] Armstrong S, Hurley W G 2010 Appl. Therm. Eng. 30 1488
[22] Kirchhoff G 1860 Nuovo Cimento 11 341Google Scholar
[23] Palik E D 1985 Handbook of Optical Constants of Solids (Vol. 1) (Salt Lake City: Academic Press) pp760−763
[24] NASA Technical Memorandum 103957, Lord S D https://ntrs.nasa.gov/citations/19930010877 [2020-6-5]
[25] IR Transmission Spectra, Gemini Observatory https://www.gemini.edu/observing/telescopes-and-sites/sites#Transmission [2020-6-5]
[26] Bazilian M D, Kamalanathan H, Prasad D K 2002 Renew. Energy 26 449Google Scholar
[27] Kaplani E, Kaplanis S 2014 Sol. Energy 107 443Google Scholar
[28] Kurnik J, Jankovec M, Brecl K, Topic M 2016 Sol. Energy Mater. Sol. Cells 95 373
-
图 8 背板发射率为
$ {\overline{\varepsilon }}_{\rm{back}} $ 和$ {\varepsilon }_{\rm{back}}^{*} $ 时组件工作温度随背板传热系数$ {h}_{2}^{*} $ 的变化Figure 8. Relationship between the module temperature and
$ {h}_{2}^{*} $ when the backsheet emissivity is$ {\overline{\varepsilon }}_{\rm{back}} $ and$ {\varepsilon }_{\rm{back}}^{*} $ .表 1 标准背板与直冷背板的热学参数
Table 1. Thermal parameters of the standard backsheet and direct-cooling backsheets.
名称 发射率$ {\varepsilon }_{\rm{back}} $ 传热系数$ {h}_{2}{/({\rm{W}}\cdot {\rm{m}}}^{-2}\cdot {\rm{K}}^{-1}) $ 标准背板O $ {\overline{\varepsilon }}_{\rm{back}} $ $ {h}_{2}^{\rm{s}} $ 直冷背板A $ {\overline{\varepsilon }}_{\rm{back}} $ $ {h}_{2}^{*} $ 直冷背板B $ {\varepsilon }_{\rm{back}}^{*} $ $ {h}_{2}^{\rm{s}} $ 直冷背板C $ {\varepsilon }_{\rm{back}}^{*} $ $ {h}_{2}^{*} $ 表 2 不同环境温度下组件的工作温度及光电转换效率
Table 2. Module temperatures and PV conversion efficiencies under different ambient temperatures.
背板类型 Ta = 10 ℃ Ta = 25 ℃ Ta = 50 ℃ $ {T}_{\rm{PV}}/ $℃ $ \eta / $% $ {T}_{\rm{PV}}/ $℃ $ \eta / $% $ {T}_{\rm{PV}}/ $℃ $ \eta / $% 标准背板O 31.2 19.62 44.7 18.41 67.1 16.39 直冷背板A 27.5 19.96 41.4 18.71 64.4 16.63 直冷背板B 30.4 19.63 43.9 18.48 66.4 16.45 直冷背板C 26.9 20.01 40.9 18.75 63.9 16.68 -
[1] Zou S, Ye X Y, Wu C K, Cheng K X, Fang L, Tang R J, Shen M R, Wang X S, Su X D 2019 Prog. Photovoltaics 27 511Google Scholar
[2] Ye X Y, Zou S, Chen K X, Li J J, Huang J, Cao F, Wang X S, Zhang L J, Wang X F, Shen M R, Su X D 2014 Adv. Funct. Mater. 24 6708Google Scholar
[3] Radziemska E, Klugmann E 2002 Energy Convers. Manage. 43 1889Google Scholar
[4] Azizi S, David E, Fréchette M F, Nguyen-Tri P, Ouellet-Plamondon C M 2018 Polym. Test. 72 24
[5] Kim K, Yoo M, Ahn K, Kim J 2015 Ceram. Int. 41 179
[6] Zhu L X, Raman A P, Fan S H 2015 Proc. Natl. Acad. Sci. U.S.A. 112 12282Google Scholar
[7] Li W, Shi Y, Chen K F, Zhu L X, Fan S H 2017 ACS Photonics 4 774Google Scholar
[8] Lu Y H, Chen Z C, Ai L, Zhang X P, Zhang J, Li J, Wang W Y, Tan R Q, Dai N, Song W J 2017 Sol. RRL 1 1700084Google Scholar
[9] Lin S H, Ai L, Zhang J, Bu T L, Li H J, Huang F Z, Zhang J, Lu Y H, Song W J 2019 Sol. Energy Mater. Sol. Cells 203 110135Google Scholar
[10] Jaramillo-Fernandez J, Whitworth G L, Pariente J A, Blanco A, Garcia P D, Lopez C, Sotomayor-Torres C M 2019 Small 15 1905290Google Scholar
[11] Zhou J C, Zhang Z, Liu H J, Yi Q 2017 Appl. Therm. Eng. 111 1296
[12] 戴协 2015 硕士学位论文 (上海: 东华大学)
Dai X 2015 M. S. Thesis (ShangHai: DongHua University) (in Chinese)
[13] Kim Y, Morita K 2017 J. Non-Cryst. Solids 471 187Google Scholar
[14] Spectrum Library, Gueymard C A https://www2.pvlighthouse.com.au/resources/optics/spectrum%20library/spectrum%20library.aspx [2020-6-5]
[15] SunSolve Ray Tracer, PV Lighthouse Pty. Ltd. https://www.pvlighthouse.com.au/sunsolve [2020-6-5]
[16] Kumar A, Chowdhury A 2020 Sol. Energy 201 751Google Scholar
[17] Sun X S, Silverman T J, Zhou Z G, Khan M R, Bermel P, Alam M A 2017 IEEE J. Photovoltaics 7 566
[18] An Y D, Sheng C X, Li X F 2019 Nanoscale 11 17073Google Scholar
[19] Goldstein E A, Raman A P, Fan S H 2017 Nat. Energy 2 17143Google Scholar
[20] Teo H G, Lee P S, Hawlader M N A 2012 Appl. Energy 90 309Google Scholar
[21] Armstrong S, Hurley W G 2010 Appl. Therm. Eng. 30 1488
[22] Kirchhoff G 1860 Nuovo Cimento 11 341Google Scholar
[23] Palik E D 1985 Handbook of Optical Constants of Solids (Vol. 1) (Salt Lake City: Academic Press) pp760−763
[24] NASA Technical Memorandum 103957, Lord S D https://ntrs.nasa.gov/citations/19930010877 [2020-6-5]
[25] IR Transmission Spectra, Gemini Observatory https://www.gemini.edu/observing/telescopes-and-sites/sites#Transmission [2020-6-5]
[26] Bazilian M D, Kamalanathan H, Prasad D K 2002 Renew. Energy 26 449Google Scholar
[27] Kaplani E, Kaplanis S 2014 Sol. Energy 107 443Google Scholar
[28] Kurnik J, Jankovec M, Brecl K, Topic M 2016 Sol. Energy Mater. Sol. Cells 95 373
Catalog
Metrics
- Abstract views: 8656
- PDF Downloads: 175
- Cited By: 0