-
Hydrogen is widely considered as an ideal alternative energy resource because of its high efficiency, abundance, nonpollution, and renewable nature. One of the main challenges is finding efficient materials that can store hydrogen safely with rapid kinetics, favorable thermodynamics, and high hydrogen density under ambient conditions. The nanomaterial is one of the most promising hydrogen storage materials because of its high surface to volume rate, unique electronic structure and novel chemical and physical properties. In this study, the hydrogen storage properties of Na-decorated Bn(n=3 - 10) clusters are investigated using dispersion-corrected density functional theory and atomic density matrix propagation (ADMP) simulations. The results demonstrate that Na atoms can stably bind to Bn clusters, forming BnNa2 complexes. The average binding energies of Na atoms on the host clusters (1.876-2.967 eV) are significantly higher than the cohesive energy of bulk Na (1.113 eV), effectively preventing aggregation of Na atoms on the cluster surface. Furthermore, when Na atoms bind to Bn (n=3 - 10) clusters, electrons transfer from Na to B atoms, resulting in positively charged Na atoms. Hydrogen molecules are moderately polarized under the electric field and adsorbed around Na atoms through electrostatic interactions. The H-H bonds are slightly stretched but do not break. The Na-decorated Bn clusters can adsorb up to 10 hydrogen molecules with average adsorption energies of 0.063-0.095 eV/H₂ and maximum hydrogen storage densities reaching 11.57-20.45 wt%. Almost no structural change is observed in the host clusters after hydrogen adsorption. Molecular dynamics simulations reveal that the desorption rate of hydrogen molecules increases with temperature. At ambient temperature (300 K), BnNa2 (n=3-8) clusters achieve complete dehydrogenation within 262 fs, while B9Na2 and B10Na2 clusters exhibit a dehydrogenation rate of 90% within 1000 fs. The Na-decorated Bn(n=3-10) clusters not only exhibit excellent properties of hydrogen storage but also enable efficient dehydrogenation at ambient temperature. Thus, BnNa2 (n=3-10) clusters can be regarded as highly promising candidates for hydrogen storage.
-
Keywords:
- Boron clusters /
- Hydrogen storage performance /
- Adsorption energy /
- Density functional theory
-
[1] Shindell D T, Lee Y, Faluvegi G 2016 Nat. Clim. Change 6 503
[2] Ceran B, Mielcarek A, Hassan Q, Teneta J, Jaszczur M 2021 Appl. Energy 297 117161
[3] Wróbel K, Wróbel J, Tokarz W, Lach J, Podsadni K, Czerwiński A 2022 Energies 15 8937
[4] Okolie J A, Patra B R, Mukherjee A, Nanda S, Dalai A K, Kozinski J A 2021 Int. J. Hydrogen Energy 46 8885
[5] Ousaleh H A, Mehmood S, Baba Y F, Bürger I, Linder M, Faik A 2024 Int. J. Hydrogen Energy 52 1182
[6] U. S. Department of Energy, Hydrogen and Fuel Cell Technologies Office
[7] Liu X Y, He J, Yu J X, Li Z X, Fan Z Q 2014 Chinese Phys. B 23 067303
[8] Mohan M, Sharma V K, Kumar E A, Gayathri V, J E S 2019 Energy Storage 1 e35
[9] Kumar A, Vyas N, Ojha A K 2020 Int. J. Hydrogen Energy 45 12961
[10] Tang C, Wang Z, Zhang X, Wen N 2016 Chem. Phys. Lett. 661 161
[11] Durgun E, Ciraci S, Zhou W, Yildirim T 2006 Phys. Rev. Lett. 97 226102
[12] Duraisamy P D, S P M P, Gopalan P, Angamuthu A 2024 Struct. Chem. 35 681
[13] Aal S A, Alfuhaidi A K 2021 Vacuum 183 109838
[14] Ma L, Wang L, Sun Y, Ma L, Zhang J 2021 Physica E 128 114588
[15] Banerjee P, Pathak B, Ahuja R, Das G P 2016 Int. J. Hydrogen Energy 41 14437
[16] Satawara A M, Shaikh G A, Gupta S K, Gajjar P N 2024 Int. J. Hydrogen Energy 87 1461
[17] Muthu R N, Rajashabala S, Kannan R 2016 Renew. Energ. 85 387
[18] Lu Q L, Huang S G, De Li Y, Wan J G, Luo Q Q 2015 Int. J. Hydrogen Energy 40 13022
[19] Tang C, Zhang X 2016 Int. J. Hydrogen Energy 41 16992
[20] Kumar A, Ojha S K, Vyas N, Ojha A K 2022 Int. J. Hydrogen Energy 47 7861
[21] Li H R, Zhang C, Ren W B, Wang Y J, Han T 2023 Int. J. Hydrogen Energy 48 25821
[22] Olalde-López D, Rodríguez-Kessler P L, Rodríguez-Carrera S, Muñoz-Castro A 2024 Int. J. Hydrogen Energy 107 419
[23] Si L, Tang C 2017 Int. J. Hydrogen Energy 42 16611
[24] Ruan W, Wu D L, Xie A D, Yu X G 2011 Chin. Phys. B. 20 043104
[25] Zhang Y, Cheng X 2019 Physica E 107 170
[26] Becke A D 1992 J. Chem. Phys. 96 2155
[27] Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785
[28] Miehlich B, Savin A, Stoll H, Preuss H 1989 Chem. Phys. Lett. 157 200
[29] Ruan W, Wu D L, Luo W L, Yu X G, Xie A D 2013 Chinese Phys. B 23 023102
[30] Lu T, Chen F 2012 J. Comput. Chem. 33 580
[31] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X 2016 Gaussian 16 Rev. C.01. Wallingford, CT
[32] Atış M, Özdoğan C, Güvenç Z B 2007 Int. J. Quantum Chem. 107 729
[33] Ye X J, Teng Z W, Yang X L, Liu C S 2018 J. Saudi Chem. Soc. 22 84
[34] Li Y Y, Hu Y F, Lai Q, Yuan Y Q, Huang T X, Li Q Y, Huang H B 2023 Mol. Phys. 121 e2166881
[35] Ray S S, Sahoo S R, Sahu S 2019 Int. J. Hydrogen Energy 44 6019
Metrics
- Abstract views: 95
- PDF Downloads: 5
- Cited By: 0