Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hydrogen storage properties of Na-decorated Bn(n = 3–10) clusters

LI Hailing ZHENG Xiaoping QI Pengtang ZHANG Juan

Citation:

Hydrogen storage properties of Na-decorated Bn(n = 3–10) clusters

LI Hailing, ZHENG Xiaoping, QI Pengtang, ZHANG Juan
cstr: 32037.14.aps.74.20250194
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Hydrogen is widely regarded as an ideal alternative energy source because of its high efficiency, abundance, pollution-free and renewable properties. One of the main challenges is to find efficient materials that can store hydrogen safely with fast kinetics, favorable thermodynamics, and high hydrogen density under ambient conditions. The nanomaterial is one of the most promising hydrogen storage materials because of its high surface-to-volume rate, unique electronic structure and novel chemical and physical properties. In this study, the hydrogen storage properties of Na-decorated Bn (n = 3–10) clusters are investigated using dispersion-corrected density functional theory and atomic density matrix propagation (ADMP) simulations. The results show that Na atoms can stably bind to Bn clusters, forming BnNa2 complexes. The average binding energies (1.876–2.967 eV) of Na atoms on the host clusters are significantly higher than the cohesive energy of bulk Na (1.113 eV), which effectively prevents Na atoms from gathering on the cluster surface. Furthermore, when Na atoms bind to Bn (n = 3–10) clusters, electrons transfer from Na to B atoms, resulting in positively charged Na atoms. Hydrogen molecules are moderately polarized under the electric field and adsorbed around Na atoms through electrostatic interactions. The H–H bonds are slightly stretched but not broken. The Na-decorated Bn clusters can adsorb up to 10 hydrogen molecules with average adsorption energies of 0.063–0.095 eV/H2 and maximum hydrogen storage densities reaching 11.57%–20.45%. Almost no structural change is observed in the host clusters after adsorbing hydrogen. Molecular dynamics simulations reveal that the desorption rate of hydrogen molecules increases with temperature rising. At ambient temperature (300 K), BnNa2 (n = 3–8) clusters achieve complete dehydrogenation within 262 fs, while B9Na2 and B10Na2 clusters exhibit a dehydrogenation rate of 90% within 1000 fs. The Na-decorated Bn (n = 3–10) clusters not only exhibit excellent properties for hydrogen storage but also enable efficient dehydrogenation at ambient temperature. Thus, BnNa2 (n = 3–10) clusters can be regarded as highly promising candidates for hydrogen storage.
      Corresponding author: ZHENG Xiaoping, zhengxp@lut.edu.cn ; QI Pengtang, qipt@lzjtu.edu.cn
    • Funds: Project supported by the Key Research and Development Programm of Science and Technology Plan of Gansu Province, China (Grant No. 24YFGA027), the Key Project of Natural Science Foundation of Gansu Province, China (Grant No. 22JR5RA313), and the Talent Innovation and Entrepreneurship Project Lanzhou University, China (Grant No. 2018-RC-114).
    [1]

    Shindell D T, Lee Y, Faluvegi G 2016 Nat. Clim. Change 6 503Google Scholar

    [2]

    Ceran B, Mielcarek A, Hassan Q, Teneta J, Jaszczur M 2021 Appl. Energy 297 117161Google Scholar

    [3]

    Wróbel K, Wróbel J, Tokarz W, Lach J, Podsadni K, Czerwiński A 2022 Energies 15 8937Google Scholar

    [4]

    Okolie J A, Patra B R, Mukherjee A, Nanda S, Dalai A K, Kozinski J A 2021 Int. J. Hydrogen Energy 46 8885Google Scholar

    [5]

    Ousaleh H A, Mehmood S, Baba Y F, Bürger I, Linder M, Faik A 2024 Int. J. Hydrogen Energy 52 1182Google Scholar

    [6]

    https://www.energy.gov/eere/fuelcells/hydrogen-and-fuel-cell-technologies-office [2025-2-1]

    [7]

    Liu X Y, He J, Yu J X, Li Z X, Fan Z Q 2014 Chin. Phys. B 23 067303Google Scholar

    [8]

    Mohan M, Sharma V K, Kumar E A, Gayathri V 2019 Energy Storage 1 e35Google Scholar

    [9]

    Kumar A, Vyas N, Ojha A K 2020 Int. J. Hydrogen Energy 45 12961Google Scholar

    [10]

    Tang C M, Wang Z G, Zhang X, Wen N H 2016 Chem. Phys. Lett. 661 161Google Scholar

    [11]

    Durgun E, Ciraci S, Zhou W, Yildirim T 2006 Phys. Rev. Lett. 97 226102Google Scholar

    [12]

    Duraisamy P D, S P M P, Gopalan P, Angamuthu A 2024 Struct. Chem. 35 681Google Scholar

    [13]

    Aal S A, Alfuhaidi A K 2021 Vacuum 183 109838Google Scholar

    [14]

    Ma L C, Wang L C, Sun Y R, Ma L, Zhang J M 2021 Physica E 128 114588Google Scholar

    [15]

    Banerjee P, Pathak B, Ahuja R, Das G P 2016 Int. J. Hydrogen Energy 41 14437Google Scholar

    [16]

    Satawara A M, Shaikh G A, Gupta S K, Gajjar P N 2024 Int. J. Hydrogen Energy 87 1461Google Scholar

    [17]

    Muthu R N, Rajashabala S, Kannan R 2016 Renew. Energ. 85 387Google Scholar

    [18]

    Lu Q L, Huang S G, De Li Y, Wan J G, Luo Q Q 2015 Int. J. Hydrogen Energy 40 13022Google Scholar

    [19]

    Tang C M, Zhang X 2016 Int. J. Hydrogen Energy 41 16992Google Scholar

    [20]

    Kumar A, Ojha S K, Vyas N, Ojha A K 2022 Int. J. Hydrogen Energy 47 7861Google Scholar

    [21]

    Li H R, Zhang C, Ren W B, Wang Y J, Han T 2023 Int. J. Hydrogen Energy 48 25821Google Scholar

    [22]

    Olalde-López D, Rodríguez-Kessler P L, Rodríguez-Carrera S, Muñoz-Castro A 2024 Int. J. Hydrogen Energy 107 419

    [23]

    Si L, Tang C M 2017 Int. J. Hydrogen Energy 42 16611Google Scholar

    [24]

    Ruan W, Wu D L, Xie A D, Yu X G 2011 Chin. Phys. B 20 043104Google Scholar

    [25]

    Zhang Y F, Cheng X L 2019 Physica E 107 170Google Scholar

    [26]

    Becke A D 1992 J. Chem. Phys. 96 2155Google Scholar

    [27]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785Google Scholar

    [28]

    Miehlich B, Savin A, Stoll H, Preuss H 1989 Chem. Phys. Lett. 157 200Google Scholar

    [29]

    Ruan W, Wu D L, Luo W L, Yu X G, Xie A D 2014 Chin. Phys. B 23 023102Google Scholar

    [30]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

    [31]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X 2016 Gaussian 16 Rev. C. 01. Wallingford, CT

    [32]

    Atış M, Özdoğan C, Güvenç Z B 2007 Int. J. Quantum Chem. 107 729Google Scholar

    [33]

    Ye X J, Teng Z W, Yang X L, Liu C S 2018 J. Saudi Chem. Soc. 22 84Google Scholar

    [34]

    Li Y Y, Hu Y F, Lai Q, Yuan Y Q, Huang T X, Li Q Y, Huang H B 2023 Mol. Phys. 121 e2166881Google Scholar

    [35]

    Ray S S, Sahoo S R, Sahu S 2019 Int. J. Hydrogen Energy 44 6019Google Scholar

  • 图 1  BnNa2 (n = 3—10)团簇的优化结构

    Figure 1.  Optimization structures of BnNa2 (n = 3–10) cluster.

    图 2  B3Na2的总态密度与分态密度, 其中垂直虚线表示HOMO能级的位置

    Figure 2.  TDOS and PDOS of B3Na2, the vertical dashed line indicates the HOMO level.

    图 3  BnNa2 (n = 3—10)团簇的吸氢结构

    Figure 3.  Adsorption configurations of hydrogen molecules on BnNa2 (n = 3–10) clusters.

    图 4  氢分子的平均吸附能随吸附氢分子数量的变化

    Figure 4.  The variation of the average adsorption energy with the number of adsorbed H2 molecules.

    图 5  在77, 200和300 K温度下B3Na2(H2)10团簇的脱附状态

    Figure 5.  The desorption states of the B3Na2(H2)10 cluster at 77, 200 and 300 K.

    图 6  在300 K下, 第1个和最后1个氢分子脱离BnNa2(H2)10 (n = 3—10)团簇的时间

    Figure 6.  Desorption times of the first and last H2 molecules from BnNa2(H2)10 (n = 3–10) clusters at 300 K.

    图 7  在77, 200和300 K下, BnNa2(H2)10体系的势能随时间的变化关系

    Figure 7.  The potential energy versus time for the BnNa2(H2)10 system at 77, 200 and 300 K.

    表 1  在BnNa2(n = 3—10)团簇中, Na原子的平均结合能(Eb), HOMO-LUMO能隙(Eg), Na—B平均距离(dNa—B), Na—Na平均距离(dNa—Na), Na原子的NBO电荷(QNa)

    Table 1.  The average binding energy (Eb) of Na atoms, HOMO-LUMO energy gap (Eg), average bond lengths of natrium-boron (dNa—B), natrium-natrium (dNa—Na) and NBO charge of Na atoms (QNa) in the BnNa2 (n = 3–10) clusters.

    团簇 Eb/eV Eg/eV dNa—B dNa—Na QNa/e
    B3Na2 1.876 2.807 2.519 4.332 0.837
    B4Na2 1.756 1.901 2.355 4.043 0.868
    B5Na2 1.859 1.867 2.406 4.440 0.899
    B6Na2 2.520 2.745 2.536 5.189 0.902
    B7Na2 2.162 2.474 2.646 5.079 0.894
    B8Na2 2.967 3.320 2.424 4.849 0.979
    B9Na2 2.572 3.546 2.669 4.667 0.972
    B10Na2 2.120 2.348 2.359 6.574 0.979
    DownLoad: CSV

    表 2  在BnNa2(H2)10 (n = 3—10)团簇中, 氢分子的平均吸附能(Eads), 氢分子的平均键长(dH—H), 氢分子与Na原子之间的平均距离(dNa—H2), Na—B平均距离(dNa—B)以及储氢密度

    Table 2.  The average adsorption energy (Eads), average bond lengths of hydrogen-hydrogen (dH—H), natrium-hydrogen molecule (dNa—H2), natrium-boron (dNa—B) and gravimetric density of H2 of BnNa2(H2)10 (n = 3–10) cluster.

    饱和吸氢结构 Eads/eV dH—H dNa—H2 dNa—B H2/%
    B3Na2(H2)10 0.063 0.749 2.561 2.550 20.45
    B4Na2(H2)10 0.066 0.749 2.578 2.379 18.43
    B5Na2(H2)10 0.073 0.749 2.569 2.474 16.77
    B6Na2(H2)10 0.085 0.749 2.552 2.672 15.39
    B7Na2(H2)10 0.077 0.748 2.590 2.620 14.22
    B8Na2(H2)10 0.088 0.748 2.553 2.477 13.21
    B9Na2(H2)10 0.087 0.748 2.583 2.668 12.33
    B10Na2(H2)10 0.095 0.749 2.535 2.433 11.57
    DownLoad: CSV

    表 3  BnNa2 (n = 3—10)团簇吸附氢分子前后每个原子上的平均NBO电荷

    Table 3.  Average NBO charges on each atom before and after H2 adsorption of BnNa2 (n = 3–10) clusters.

    团簇 吸氢前 饱和吸氢后
    QB/e QNa/e QB/e QNa/e QH/e
    B3Na2 –0.558 0.837 –0.565 0.848 0.001
    B4Na2 –1.023 0.938 –0.896 0.866 0.001
    B5Na2 –0.837 0.899 –0.685 0.878 0.001
    B6Na2 –0.675 0.902 –0.483 0.889 0.005
    B7Na2 –0.258 0.894 –0.381 0.891 0.006
    B8Na2 –0.146 0.979 –0.132 0.919 0.005
    B9Na2 –0.109 0.972 –0.087 0.912 0.007
    B10Na2 –0.376 0.979 –0.317 0.912 0.005
    DownLoad: CSV
  • [1]

    Shindell D T, Lee Y, Faluvegi G 2016 Nat. Clim. Change 6 503Google Scholar

    [2]

    Ceran B, Mielcarek A, Hassan Q, Teneta J, Jaszczur M 2021 Appl. Energy 297 117161Google Scholar

    [3]

    Wróbel K, Wróbel J, Tokarz W, Lach J, Podsadni K, Czerwiński A 2022 Energies 15 8937Google Scholar

    [4]

    Okolie J A, Patra B R, Mukherjee A, Nanda S, Dalai A K, Kozinski J A 2021 Int. J. Hydrogen Energy 46 8885Google Scholar

    [5]

    Ousaleh H A, Mehmood S, Baba Y F, Bürger I, Linder M, Faik A 2024 Int. J. Hydrogen Energy 52 1182Google Scholar

    [6]

    https://www.energy.gov/eere/fuelcells/hydrogen-and-fuel-cell-technologies-office [2025-2-1]

    [7]

    Liu X Y, He J, Yu J X, Li Z X, Fan Z Q 2014 Chin. Phys. B 23 067303Google Scholar

    [8]

    Mohan M, Sharma V K, Kumar E A, Gayathri V 2019 Energy Storage 1 e35Google Scholar

    [9]

    Kumar A, Vyas N, Ojha A K 2020 Int. J. Hydrogen Energy 45 12961Google Scholar

    [10]

    Tang C M, Wang Z G, Zhang X, Wen N H 2016 Chem. Phys. Lett. 661 161Google Scholar

    [11]

    Durgun E, Ciraci S, Zhou W, Yildirim T 2006 Phys. Rev. Lett. 97 226102Google Scholar

    [12]

    Duraisamy P D, S P M P, Gopalan P, Angamuthu A 2024 Struct. Chem. 35 681Google Scholar

    [13]

    Aal S A, Alfuhaidi A K 2021 Vacuum 183 109838Google Scholar

    [14]

    Ma L C, Wang L C, Sun Y R, Ma L, Zhang J M 2021 Physica E 128 114588Google Scholar

    [15]

    Banerjee P, Pathak B, Ahuja R, Das G P 2016 Int. J. Hydrogen Energy 41 14437Google Scholar

    [16]

    Satawara A M, Shaikh G A, Gupta S K, Gajjar P N 2024 Int. J. Hydrogen Energy 87 1461Google Scholar

    [17]

    Muthu R N, Rajashabala S, Kannan R 2016 Renew. Energ. 85 387Google Scholar

    [18]

    Lu Q L, Huang S G, De Li Y, Wan J G, Luo Q Q 2015 Int. J. Hydrogen Energy 40 13022Google Scholar

    [19]

    Tang C M, Zhang X 2016 Int. J. Hydrogen Energy 41 16992Google Scholar

    [20]

    Kumar A, Ojha S K, Vyas N, Ojha A K 2022 Int. J. Hydrogen Energy 47 7861Google Scholar

    [21]

    Li H R, Zhang C, Ren W B, Wang Y J, Han T 2023 Int. J. Hydrogen Energy 48 25821Google Scholar

    [22]

    Olalde-López D, Rodríguez-Kessler P L, Rodríguez-Carrera S, Muñoz-Castro A 2024 Int. J. Hydrogen Energy 107 419

    [23]

    Si L, Tang C M 2017 Int. J. Hydrogen Energy 42 16611Google Scholar

    [24]

    Ruan W, Wu D L, Xie A D, Yu X G 2011 Chin. Phys. B 20 043104Google Scholar

    [25]

    Zhang Y F, Cheng X L 2019 Physica E 107 170Google Scholar

    [26]

    Becke A D 1992 J. Chem. Phys. 96 2155Google Scholar

    [27]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785Google Scholar

    [28]

    Miehlich B, Savin A, Stoll H, Preuss H 1989 Chem. Phys. Lett. 157 200Google Scholar

    [29]

    Ruan W, Wu D L, Luo W L, Yu X G, Xie A D 2014 Chin. Phys. B 23 023102Google Scholar

    [30]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

    [31]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X 2016 Gaussian 16 Rev. C. 01. Wallingford, CT

    [32]

    Atış M, Özdoğan C, Güvenç Z B 2007 Int. J. Quantum Chem. 107 729Google Scholar

    [33]

    Ye X J, Teng Z W, Yang X L, Liu C S 2018 J. Saudi Chem. Soc. 22 84Google Scholar

    [34]

    Li Y Y, Hu Y F, Lai Q, Yuan Y Q, Huang T X, Li Q Y, Huang H B 2023 Mol. Phys. 121 e2166881Google Scholar

    [35]

    Ray S S, Sahoo S R, Sahu S 2019 Int. J. Hydrogen Energy 44 6019Google Scholar

  • [1] Dong Xiao. Density functional theory on reaction mechanism between p-doped LiNH2 clusters and LiH and a new hydrogen storage and desorption mechanism. Acta Physica Sinica, 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [2] Zhang Chen-Jun, Wang Yang-Li, Chen Chao-Kang. Density functional theory of InCn+(n=110) clusters. Acta Physica Sinica, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [3] Jiang Ping-Guo, Wang Zheng-Bing, Yan Yong-Bo, Liu Wen-Jie. First-principles study of absorption mechanism of hydrogen on W20O58 (010) surface. Acta Physica Sinica, 2017, 66(24): 246801. doi: 10.7498/aps.66.246801
    [4] Jiang Ping-Guo, Wang Zheng-Bing, Yan Yong-Bo. First-principles study on adsorption mechanism of hydrogen on tungsten trioxide surface. Acta Physica Sinica, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [5] Qi Peng-Tang, Chen Hong-Shan. Hydrogen storage properties of Li-decorated C24 clusters. Acta Physica Sinica, 2015, 64(23): 238102. doi: 10.7498/aps.64.238102
    [6] Tang Chun-Mei, Wang Cheng-Ji, Gao Feng-Zhi, Zhang Yi-Jie, Xu Yan, Gong Jiang-Feng. Calculations of the hydrogen storage of the boron carbon Fullerefle C18B2M(M=Li, Ti, Fe). Acta Physica Sinica, 2015, 64(9): 096103. doi: 10.7498/aps.64.096103
    [7] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei. A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [8] Wen Jun-Qing, Xia Tao, Wang Jun-Fei. A density functional theory study of small bimetallic PtnAl (n=18) clusters. Acta Physica Sinica, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [9] Lu Qi-Liang, Huang Shou-Guo, Li Yi-De. Hydrogen storage of Mg-decorated closo-hexaborate B6H62-. Acta Physica Sinica, 2013, 62(21): 213601. doi: 10.7498/aps.62.213601
    [10] Ruan Wen, Luo Wen-Lang, Yu Xiao-Guang, Xie An-Dong, Wu Dong-Lan. Hydrogen storage capacity of lithium decorated B6 cluster. Acta Physica Sinica, 2013, 62(5): 053103. doi: 10.7498/aps.62.053103
    [11] Zhang Bei, Bao An, Chen Chu, Zhang Jun. Density-functional theory study of ConCm (n=15, m=1,2) clusters. Acta Physica Sinica, 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [12] Huang Hai-Shen, Wang Xiao-Man, Zhao Dong-Qiu, Wu Liang-Fu, Huang Xiao-Wei, Li Yun-Cai. Hydrogen storage capacity of Y-coated Si@Al12 clusters. Acta Physica Sinica, 2012, 61(7): 073101. doi: 10.7498/aps.61.073101
    [13] Sun Lu-Shi, Zhang An-Chao, Xiang Jun, Guo Pei-Hong, Liu Zhi-Chao, Su Sheng. Density functional study of interation of Hg with small gold clusters. Acta Physica Sinica, 2011, 60(7): 073103. doi: 10.7498/aps.60.073103
    [14] Jin Rong, Chen Xiao-Hong. Structure and properties of ZrnPd clusters by density-functional theory. Acta Physica Sinica, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [15] Sun Jian-Min, Zhao Gao-Feng, Wang Xian-Wei, Yang Wen, Liu Yan, Wang Yuan-Xu. Study of structural and electronic properties of Cu-adsorbed (SiO2)n(n=1—8) clusters with the DFT. Acta Physica Sinica, 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [16] Yang Pei-Fang, Hu Juan-Mei, Teng Bo-Tao, Wu Feng-Min, Jiang Shi-Yu. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [17] Xu Gui-Gui, Wu Qing-Yun, Zhang Jian-Min, Chen Zhi-Gao, Huang Zhi-Gao. First-principles study of the adsorption energy and work function of oxygen adsorption on Ni(111) surface. Acta Physica Sinica, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [18] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Ma Jun. Density functional theory study of [Mg(NH2)2]n(n=1—5) clusters. Acta Physica Sinica, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [19] Chen Yu-Hong, Zhang Cai-Rong, Ma Jun. Density functional theory study on the structure and properties of MgmBn(m=1,2;n=1—4) clusters. Acta Physica Sinica, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [20] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
Metrics
  • Abstract views:  350
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  17 February 2025
  • Accepted Date:  18 May 2025
  • Available Online:  29 May 2025
  • Published Online:  20 July 2025
  • /

    返回文章
    返回