Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-energy X-ray FLASH radiotherapy: Physics and performance study of beam monitoring based on low-pressure ionization chambers

ZHAO Jirong YANG Yiwei ZHANG Yi WANG Shilan FENG Song

Citation:

High-energy X-ray FLASH radiotherapy: Physics and performance study of beam monitoring based on low-pressure ionization chambers

ZHAO Jirong, YANG Yiwei, ZHANG Yi, WANG Shilan, FENG Song
cstr: 32037.14.aps.74.20250258
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • This study solves the key challenge of real-time beam monitoring in ultra-high dose rate X-ray FLASH (XFLASH) radiotherapy, in which the traditional ionization chambers suffer serious electron-ion recombination losses at extreme dose rates (≥40 Gy/s). We propose a low-pressure ionization chamber (LPIC) as a novel beam monitor to achieve accurate dose measurement while maintaining beam penetration characteristics required for clinical applications. The LPIC is designed to have two independent chambers to accommodate high-voltage, collecting, and protecting electrodes. Key parameters include a 1-mm electrode gap and a reduced chamber pressure (~5 kPa) to mitigate recombination effects. Theoretical analysis based on the Boag model and numerical simulations (using the numerical-ks-calculator program) quantifies the dependence of recombination loss on pressure (P), electrode spacing (d ), and voltage (Uc). MCNP simulations evaluate X-ray transmission through chamber windows (Be, Al, Ti) with thickness up to 1000 μm. According to the national standards (GB/T15213-2016), a prototype LPIC is constructed and tested on a 10-MeV XFLASH accelerator (dose rate: 80 Gy/s) for plateau characteristics, dose repeatability, linearity, and dose-rate response. Theoretical analysis based on the Boag model reveals that the values of recombination ratio R scale with $P^3$, $d^2$, and $U_{\rm c}^{-1} $, which are validated by numerical simulations $(R = 0.2256P^3;\; R = 0.0534U_{\rm c}^{-1};\; R = 0.00548d^2) $. At 1.1 Gy/pulse, recombination losses are maintained below 1% at the optimal parameters: P < 0.3 atm for d = 0.1 mm or P < 0.04 atm for d = 1 mm. MCNP simulations show that X-ray transmission exceeds 90% for beryllium (Be), aluminum (Al), and titanium (Ti) windows with thickness ≤1000 μm. While 0.1-mm Be achieves the highest transmission (>99%), 1-mm Al (transmission ~95%) is selected as the optimal window material due to its clinical acceptability (<5% dose loss), cost-effectiveness, and easy fabrication. The prototype exhibits stable plateau characteristics (ΔI/I < 0.069% at Uc > 40V), exceptional dose repeatability (coefficient of variation <0.5% across 10–250 Gy/s), and linearity (R2 > 0.999 for dose and dose-rate measurements). These results confirm their compliance with the national standard (GB/T15213-2016) and are suitable for real-time XFLASH monitoring. The LPIC demonstrates robust suppression of recombination losses and reliable performance under XFLASH conditions. Its design, which is optimized via theoretical modeling and simulations, ensures high precision, which meets GB/T15213-2016 requirements, while preserving beam penetration. The use of 1-mm Al windows balances cost and function, making the LPIC a reliable clinical dose monitor. Future studies will focus on multi-channel LPIC arrays for two-dimensional beam profiling.
      Corresponding author: YANG Yiwei, winfield1920@126.com ; FENG Song, fengs9115@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12375318, 12375296), the Science and Technology Innovation Program of Hunan Province (Grant No. 2024RC3205), and the NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), China (Grant No. 2021HYX021).
    [1]

    Diffenderfer E, Verginadis I, Michele M K, Shoniyozov K, Velalopoulou A, Goia D, Putt M, Hagan S, Avery S, Teo K, Zou W, Lin A, Swisher-McClure S, Koch C, Kennedy A, Minn A, Maity A, Busch T, Dong L, Koumenis C, Metz J, Cengel K 2020 Int. J. Radiat. Oncol. Biol. Phys. 106 440Google Scholar

    [2]

    Sørensen B S, Sitarz M K, Ankjærgaard C, Johansen J, Andersen C E, Kanouta E, Overgaard C, Grau C, Poulsen P 2022 Radiother. Onco. 167 109Google Scholar

    [3]

    Sørensen B S, Sitarz M K, Ankjærgaard C, Johansen Jacob Claus G, Andersen E, Kanouta E, Grau C, Poulsen P 2022 Radiother. Oncol. 175 178Google Scholar

    [4]

    Böhlen T T, Germond J, Petersson K, Ozsahin E M, Herrera F G, Bailat C, Bochud F, Bourhis J, Moeckli R, Adrian G, Bailat C, Bochud F, Bourhis J, Moeckli R, Adrian G, 2023 Int. J. Radiat. Oncol. Biol. Phys. 117 1007Google Scholar

    [5]

    Zhang Q X, Gerweck L E, Cascio E, Yang Q Y, Huang P G, Niemierko A, Bertolet A, Nesteruk K P, McNamara A, Schuemann J 2023 Phys. Med. Biol. 68 055010Google Scholar

    [6]

    Romano F, Bailat C, Ferretti C, Jorge P G, Lerch M L F, Darafsheh A 2022 Med. Phys. 49 4912Google Scholar

    [7]

    Vignati A, Giordanengo S, Federico F, Villarreal O A M, Milian F M, Mazza G, Shakarami Z, Cirio R, Monaco V, Sacchi R 2022 Front. Phys. 8 375

    [8]

    Levin D, Friedman P, Ferretti C, Ristow N, Tecchio M, Litzenberg D, Bashkirov V, Schulte R 2024 Med. Phys. 51 2905Google Scholar

    [9]

    艾自辉 2008 硕士学位论文 (绵阳: 中国工程物理研究院)

    Ai Z H 2008 M. S. Thesis (Mianyang: China Academy of Engineering Physics

    [10]

    Marinelli M, Martino F D, Sarto D D, Pensavalle J H, Felici G, Giunti L, Liso V D, Kranzer R, Verona C, Rinati G V 2023 Phys. Med. Biol. 68 175011Google Scholar

    [11]

    Boag J W, Hochhuser E, Balk O A 1996 Phys. Med. Biol. 41 885Google Scholar

    [12]

    Di Martino F, Giannelli M, Traino A C, Lazzeri M 2005 Med. Phys. 32 2204Google Scholar

    [13]

    Petersson K, Jaccard M, Germond J, Buchillier T, Bochud F, Bourhis J, Vozenin M, Bailat C 2017 Med. Phys. 44 1157Google Scholar

    [14]

    Gotz M, Karsch L, Pawelke J. Gotz M, Karsch L, Pawelke J 2017 Phys. Med. Biol. 62 8634Google Scholar

    [15]

    Greening J R 1954 Br. J. Radiol. 27 163Google Scholar

    [16]

    Rathore R K S, Munshi P, Bhatia V K, Pandimani S 1988 Nucl. Eng. Des. 108 375Google Scholar

    [17]

    Rinati G V, Felici G, Galante F, Gasparini A, Kranzer R, Mariani G, Pacitti M, Prestopino G, Schüller A, Vanreusel V, Verellen D, Verona C, Marinelli M 2022 Med. Phys. 49 5513Google Scholar

    [18]

    Schüler E, Acharya M, Montay-Gruel P, Loo B W, Vozenin M C, Maxim P G 2022 Med. Phys. 49 2082Google Scholar

    [19]

    Siddique S, Ruda H E, Chow J C L 2023 Cancers 15 3883Google Scholar

    [20]

    Esplen N, Mendonca M S, Bazalova-Carter M 2020 Phys. Med. Biol. 65 23TR03Google Scholar

    [21]

    Vanreusel, Gasparini A, Galante F, Mariani G, Pacitti M, Cociorb M, Giammanco A, Reniers B, Reulens N, Shonde T B, Vallet H, Vandenbroucke D, Peeters M, Leblans P, Ma B, Felici G, Verellen D, Nascimento L D F 2022 Phys. Medica. 103 127Google Scholar

  • 图 1  复合损失比R与LPIC腔室气压关系

    Figure 1.  Relationship between R and gas pressure of the LPIC.

    图 2  复合损失比R与LPIC高压关系

    Figure 2.  Relationship between R and high voltage of the LPIC.

    图 3  复合损失比R与LPIC电极间距关系

    Figure 3.  Relationship between R and electrode spacing of the LPIC.

    图 4  不同单脉冲剂量下复合损失比R与LPIC腔室气压之间的关系

    Figure 4.  The relationship between R and gas pressure of the LPIC under different single pulse doses.

    图 5  LPIC窗厚与射束透射率关系

    Figure 5.  Relationship between transmissivity and the LPIC window thickness.

    图 6  XFLASH加速器实验台及低气压电离室实物图

    Figure 6.  Physical image of the XFLASH accelerator experimental setup and LPIC.

    图 7  LPIC的坪响应曲线

    Figure 7.  Plateau curve of the LPIC.

    图 8  重复性测量中归一到平均值的Ri

    Figure 8.  Normalized ratios of dose measurements using the LPIC to a reference.

    图 9  LPIC的剂量线性

    Figure 9.  Dose linearity of the LPIC.

    图 10  LPIC剂量率线性

    Figure 10.  Dose rate linearity of the LPIC.

  • [1]

    Diffenderfer E, Verginadis I, Michele M K, Shoniyozov K, Velalopoulou A, Goia D, Putt M, Hagan S, Avery S, Teo K, Zou W, Lin A, Swisher-McClure S, Koch C, Kennedy A, Minn A, Maity A, Busch T, Dong L, Koumenis C, Metz J, Cengel K 2020 Int. J. Radiat. Oncol. Biol. Phys. 106 440Google Scholar

    [2]

    Sørensen B S, Sitarz M K, Ankjærgaard C, Johansen J, Andersen C E, Kanouta E, Overgaard C, Grau C, Poulsen P 2022 Radiother. Onco. 167 109Google Scholar

    [3]

    Sørensen B S, Sitarz M K, Ankjærgaard C, Johansen Jacob Claus G, Andersen E, Kanouta E, Grau C, Poulsen P 2022 Radiother. Oncol. 175 178Google Scholar

    [4]

    Böhlen T T, Germond J, Petersson K, Ozsahin E M, Herrera F G, Bailat C, Bochud F, Bourhis J, Moeckli R, Adrian G, Bailat C, Bochud F, Bourhis J, Moeckli R, Adrian G, 2023 Int. J. Radiat. Oncol. Biol. Phys. 117 1007Google Scholar

    [5]

    Zhang Q X, Gerweck L E, Cascio E, Yang Q Y, Huang P G, Niemierko A, Bertolet A, Nesteruk K P, McNamara A, Schuemann J 2023 Phys. Med. Biol. 68 055010Google Scholar

    [6]

    Romano F, Bailat C, Ferretti C, Jorge P G, Lerch M L F, Darafsheh A 2022 Med. Phys. 49 4912Google Scholar

    [7]

    Vignati A, Giordanengo S, Federico F, Villarreal O A M, Milian F M, Mazza G, Shakarami Z, Cirio R, Monaco V, Sacchi R 2022 Front. Phys. 8 375

    [8]

    Levin D, Friedman P, Ferretti C, Ristow N, Tecchio M, Litzenberg D, Bashkirov V, Schulte R 2024 Med. Phys. 51 2905Google Scholar

    [9]

    艾自辉 2008 硕士学位论文 (绵阳: 中国工程物理研究院)

    Ai Z H 2008 M. S. Thesis (Mianyang: China Academy of Engineering Physics

    [10]

    Marinelli M, Martino F D, Sarto D D, Pensavalle J H, Felici G, Giunti L, Liso V D, Kranzer R, Verona C, Rinati G V 2023 Phys. Med. Biol. 68 175011Google Scholar

    [11]

    Boag J W, Hochhuser E, Balk O A 1996 Phys. Med. Biol. 41 885Google Scholar

    [12]

    Di Martino F, Giannelli M, Traino A C, Lazzeri M 2005 Med. Phys. 32 2204Google Scholar

    [13]

    Petersson K, Jaccard M, Germond J, Buchillier T, Bochud F, Bourhis J, Vozenin M, Bailat C 2017 Med. Phys. 44 1157Google Scholar

    [14]

    Gotz M, Karsch L, Pawelke J. Gotz M, Karsch L, Pawelke J 2017 Phys. Med. Biol. 62 8634Google Scholar

    [15]

    Greening J R 1954 Br. J. Radiol. 27 163Google Scholar

    [16]

    Rathore R K S, Munshi P, Bhatia V K, Pandimani S 1988 Nucl. Eng. Des. 108 375Google Scholar

    [17]

    Rinati G V, Felici G, Galante F, Gasparini A, Kranzer R, Mariani G, Pacitti M, Prestopino G, Schüller A, Vanreusel V, Verellen D, Verona C, Marinelli M 2022 Med. Phys. 49 5513Google Scholar

    [18]

    Schüler E, Acharya M, Montay-Gruel P, Loo B W, Vozenin M C, Maxim P G 2022 Med. Phys. 49 2082Google Scholar

    [19]

    Siddique S, Ruda H E, Chow J C L 2023 Cancers 15 3883Google Scholar

    [20]

    Esplen N, Mendonca M S, Bazalova-Carter M 2020 Phys. Med. Biol. 65 23TR03Google Scholar

    [21]

    Vanreusel, Gasparini A, Galante F, Mariani G, Pacitti M, Cociorb M, Giammanco A, Reniers B, Reulens N, Shonde T B, Vallet H, Vandenbroucke D, Peeters M, Leblans P, Ma B, Felici G, Verellen D, Nascimento L D F 2022 Phys. Medica. 103 127Google Scholar

  • [1] Chen Cui-Hong, Li Zhan-Kui, Wang Xiu-Hua, Li Rong-Hua, Fang Fang, Wang Zhu-Sheng, Li Hai-Xia. Development of high performance PIN-silicon detector and its application in radioactive beam physical experiment. Acta Physica Sinica, 2023, 72(12): 122902. doi: 10.7498/aps.72.20230213
    [2] Long Tian-Yang, Li Wei, Xu Hao-Tian, Wang Xiao. Influence of spatiotemporal coupling distortion on evaluation of pulse-duration-charactrization and focused intensity of ultra-fast and ultra-intensity laser. Acta Physica Sinica, 2022, 71(17): 174204. doi: 10.7498/aps.71.20220563
    [3] Wei Jiang-Tao, Yang Liang-Liang, Qin Yuan-Hao, Song Pei-Shuai, Zhang Ming-Liang, Yang Fu-Hua, Wang Xiao-Dong. Methodology of teasting thermoelectric properties of low-dimensional nanomaterials. Acta Physica Sinica, 2021, 70(4): 047301. doi: 10.7498/aps.70.20201175
    [4] Yin Jiao, Xiao Guo-Liang, Chen Cheng-Yuan, Feng Bei-Bin, Zhang Yi-Po, Zhong Wu-Lü. Development and applications of schlieren system for measuring characteristics of supersonic molecular beam. Acta Physica Sinica, 2020, 69(21): 215202. doi: 10.7498/aps.69.20201383
    [5] Tian Yong-Shun, Hu Zhi-Liang, Tong Jian-Fei, Chen Jun-Yang, Peng Xiang-Yang, Liang Tian-Jiao. Design of beam shaping assembly based on 3.5 MeV radio-frequency quadrupole proton accelerator for boron neutron capture therapy. Acta Physica Sinica, 2018, 67(14): 142801. doi: 10.7498/aps.67.20180380
    [6] Chen Yuan, Wang Xiao-Fang, Shao Guang-Chao. Characteristics and parameter optimization of electron beam radiography. Acta Physica Sinica, 2015, 64(15): 154101. doi: 10.7498/aps.64.154101
    [7] Xie Zhao, Zou Lian, Hou Qing, Zheng Xia. Study of inhomogeneous tissue equivalent water thickness correction method in proton therapy. Acta Physica Sinica, 2013, 62(6): 068701. doi: 10.7498/aps.62.068701
    [8] Liu Lei, Li Yong-Dong, Wang Rui, Cui Wan-Zhao, Liu Chun-Liang. Particle-in-cell simulation of corona discharge in low pressure in stepped impedance transformer. Acta Physica Sinica, 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [9] Xiao Yuan, Wang Xiao-Fang, Teng Jian, Chen Xiao-Hu, Chen Yuan, Hong Wei. Simulation study of radiography using laser-produced electron beam. Acta Physica Sinica, 2012, 61(23): 234102. doi: 10.7498/aps.61.234102
    [10] Chen Guo-Yun, Xin Yong, Huang Fu-Cheng, Wei Zhi-Yong, Lei Sheng-Jie, Huang San-Bo, Zhu Li, Zhao Jing-Wu, Ma Jia-Yi. Performances of a boron-lined ionization chamber used in neutron/-ray mixed field of reactors. Acta Physica Sinica, 2012, 61(8): 082901. doi: 10.7498/aps.61.082901
    [11] Li Bing, He Yi-Gang, Hou Zhou-Guo, She Kai, Zuo Lei. Analysis and measurement for passive tag modulationperformance of backscatter link. Acta Physica Sinica, 2011, 60(8): 084202. doi: 10.7498/aps.60.084202
    [12] Zhou Hai-Yang, Zhu Xiao-Dong, Zhan Ru-Juan. Fabrication and performance of CVD diamond radiation detector. Acta Physica Sinica, 2010, 59(3): 1620-1624. doi: 10.7498/aps.59.1620
    [13] Hou Zhou-Guo, He Yi-Gang, Li Bing, She Kai, Zhu Yan-Qing. Measurement of the passive UHF RFID tag’s performance based on software-defined radio. Acta Physica Sinica, 2010, 59(8): 5606-5612. doi: 10.7498/aps.59.5606
    [14] Dai Wei, Tang Yong-Jian, Wang Chao-Yang, Sun Wei-Guo. Characteristics of hydrogen storage studied using homemade apparatus. Acta Physica Sinica, 2009, 58(10): 7313-7316. doi: 10.7498/aps.58.7313
    [15] Ning Yu, Yu Hao, Zhou Hong, Rao Chang-Hui, Jiang Wen-Han. Performance test and closed-loop correction experiment of a 20-element bimorph deformable mirror. Acta Physica Sinica, 2009, 58(7): 4717-4723. doi: 10.7498/aps.58.4717
    [16] Gao Fei, Liu Hua-Feng, Shi Peng-Cheng. Performance evaluation of the microPET system. Acta Physica Sinica, 2007, 56(7): 4229-4234. doi: 10.7498/aps.56.4229
    [17] Zhao Pei-Tao, Li Guo-Hua, Wu Fu-Quan, Peng Han-Dong, Zhang Yin-Chao, Zhao Yue-Feng, Wang Lian, Liu Yu-Li. Study on the performance of high precision achromatic retarder. Acta Physica Sinica, 2006, 55(9): 4582-4587. doi: 10.7498/aps.55.4582
    [18] GUO HONG-XIA, CHEN YU-SHENG, ZHANG YI-MEN, WU GUO-RONG, ZHOU HUI, GUAN YING, HAN FU-BIN, GONG JIAN-CHENG. USING MULTIPLE PARALLEL PLATE ALUMINUM IONIZATION CHAMBER FOR DETERMINING DOSE DISTRIBUTION AT AND NEAR THE INTERFACE OF DIFFERENT MATERIALS AND ITS MONTE CARLO SIMULATION. Acta Physica Sinica, 2001, 50(8): 1545-1548. doi: 10.7498/aps.50.1545
    [19] WANG CHAO-JUN, HE JING-TANG, ZHENG ZHI-PANG, TANG XIAO-WEI. A LOW-PRESSURE PROPORTIONAL COUNTER. Acta Physica Sinica, 1976, 25(2): 175-177. doi: 10.7498/aps.25.175
    [20] HU REN YU. THE CAVITY CHAMBER MEASUREMENT OF DOSE RATE OF RADIUM γ-RAYS. Acta Physica Sinica, 1962, 18(10): 527-539. doi: 10.7498/aps.18.527
Metrics
  • Abstract views:  496
  • PDF Downloads:  16
  • Cited By: 0
Publishing process
  • Received Date:  02 March 2025
  • Accepted Date:  10 April 2025
  • Available Online:  13 May 2025
  • Published Online:  20 July 2025
  • /

    返回文章
    返回