Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Carrier transport layers of tin-based perovskite solar cells

Gan Yong-Jin Jiang Qu-Bo Qin Bin-Yi Bi Xue-Guang Li Qing-Liu

Citation:

Carrier transport layers of tin-based perovskite solar cells

Gan Yong-Jin, Jiang Qu-Bo, Qin Bin-Yi, Bi Xue-Guang, Li Qing-Liu
PDF
HTML
Get Citation
  • To avoid environmental pollution caused by lead, the tin-based perovskite solar cells have become a research hotspot in the photovoltaic field. Numerical simulations of tin-based perovskite solar cells are conducted by the solar cell simulation software, SCAPS-1D, with different electron transport layers and hole transport layers. And then the performances of perovskite solar cells are compared with each other and analyzed on different carrier transport layers. The results show that band alignment between the carrier transport layer and the perovskite layer are critical to cell performances. A higher conduction band or electronic quasi-Fermi level of electron transport layer can lead to a higher open circuit voltage. Similarly, a lower valence band or hole quasi-Fermi level of hole transport layer can also promote a higher open circuit voltage. In addition, when the conduction band of electron transport layer is higher than that of the absorber, a spike barrier is formed at the interface between the electron transport layer and perovskite layer. Nevertheless, a spike barrier is formed at the interface between the perovskite layer and the hole transport layer if the valence band of hole transport layer is lower than that of the absorber. However, if the conduction band of electron transport layer is lower than that of the absorber or the valence band of hole transport layer is higher than that of the absorber, a cliff barrier is formed. Although the transport of carrier is hindered by spike barrier compared with cliff barrier, the activation energy for carrier recombination becomes lower than the bandgap of the perovskite layer, leading to the weaker interface recombination and the better performance. Comparing with other materials, satisfying output parameters are obtained when Cd0.5Zn0.5S and MASnBr3 are adopted as the electron transport layer and the hole transport layer, respectively. The better performances are obtained as follows: Voc = 0.94 V, Jsc = 30.35 mA/cm2, FF = 76.65%, and PCE = 21.55%, so Cd0.5Zn0.5S and MASnBr3 are suitable carrier transport layer materials. Our researches can help to design the high-performance tin-based perovskite solar cells.
      Corresponding author: Bi Xue-Guang, xgb@ylu.edu.cn
    • Funds: Project supported by the Natural Science Foundation Youth Fund Projectof Guangxi, China (Grant No. 2019 GXNSFBA245076)
    [1]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151Google Scholar

    [2]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [3]

    梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军 2020 物理学报 69 057901Google Scholar

    Liang X J, Cao Y, Cai H K, Su J, Ni J, Li J, Zhang J J 2020 Acta Phys. Sin. 69 057901Google Scholar

    [4]

    Conings B, Drijkoningen J, Gauquelin N, et al. 2015 Adv. Energy Mater. 5 1500477Google Scholar

    [5]

    Wang R, Mujahid M, Duan Y, Wang Z K, Xue J, Yang Y 2019 Adv. Funct. Mater. 29 1808843Google Scholar

    [6]

    Wang Q, Phung N, Di Girolamo D, Vivo P, Abate A 2019 Energy Environ. Sci. 12 865Google Scholar

    [7]

    Liang J, Liu J, Jin Z 2017 Solar RRL 1 1700086Google Scholar

    [8]

    Yang T C, Fiala P, Jeangros Q, Ballif C 2018 Joule 2 1421Google Scholar

    [9]

    Chen H, Xiang S, Li W, Liu H, Zhu L, Yang S 2018 Solar RRL 2 1700188Google Scholar

    [10]

    Song T, Yokoyama T, Aramaki S, Kanatzidis M G 2017 ACS Energy Letters 2 897Google Scholar

    [11]

    Green MA, Ho-Baillie A, Snaith HJ 2014 Nat. Photonics 8 506Google Scholar

    [12]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [13]

    Baig F, Khattak Y H, Marí B, Beg S, Ahmed A, Khan K 2018 J. Electron. Mater. 47 5275Google Scholar

    [14]

    Chen M, Ju M, Carl A D, Zong Y, Grimm R L, Gu J, Zeng X C, Zhou Y, Padture N P 2018 Joule 2 558Google Scholar

    [15]

    Chakraborty K, Choudhury MG, Paul S 2019 Sol. Energy 194 886Google Scholar

    [16]

    Islam M A, Rahman K S, Misran H, Asim N, Hossain M S, Akhtaruzzaman M, Amin N 2019 Results Phys. 14 102518Google Scholar

    [17]

    Lakhdar N, Hima A 2020 Opt. Mater. 99 109517Google Scholar

    [18]

    Azri F, Meftah A, Sengouga N, Meftah A 2019 Sol. Energy 181 372Google Scholar

    [19]

    Sajid, Elseman A M, Ji J, Dou S, Huang H, Cui P, Wei D, Li M 2018 Chin. Phys. B 27 80Google Scholar

    [20]

    Minemoto T, Murata M 2014 Curr. Appl. Phys. 14 1428Google Scholar

    [21]

    Teimour R, Mohammadpour R 2018 Superlattices Microstruct. 118 116Google Scholar

    [22]

    Du H J, Wang W C, Zhu J Z 2016 Chin. Phys. B 25 108802Google Scholar

    [23]

    Chouhan A S, Jasti N P, Avasthi S 2018 Mater. Lett. 221 150Google Scholar

    [24]

    Huang S, Rui Z, Chi D, Bao D 2019 Journal of Semiconductors 40 19Google Scholar

    [25]

    Lin L Y, Jiang L Q, Qiu Y, Fan B D 2018 J. Phys. Chem. Solids 122 19Google Scholar

    [26]

    Lin L Y, Jiang L Q, Li P, Fan B D, Qiu Y 2019 J. Phys. Chem. Solids 124 205Google Scholar

    [27]

    Wang D, Wu C, Luo W, Guo X, Qu B, Xiao L, Chen Z 2018 ACS Appl. Energy Mater. 1 2215Google Scholar

    [28]

    Minemoto T, Murata M 2015 Sol. Energy Mater. Sol. Cells 133 8Google Scholar

    [29]

    Klenk R 2001 Thin Solid Films 387 135Google Scholar

    [30]

    Gloeckler M, Sites J 2005 Thin Solid Films 480 241Google Scholar

    [31]

    Minemoto T, Hashimoto Y, Satoh T, Negami T, Takakura H, Hamakawa Y 2001 J. Appl. Phys. 89 8327Google Scholar

    [32]

    Minemoto T, Hashimoto Y, Satoh T, et al. 2003 Sol. Energ. Mater. Sol. Cells 75 121Google Scholar

    [33]

    Torndahl T, Platzer-Bjorkman C, Kessler J, Edoff M 2007 Prog. Photovolt 15 225Google Scholar

    [34]

    Minemoto T, Matsui T, Takakura H, et al. 2001 Sol. Energ. Mater. Sol. Cells 67 83Google Scholar

    [35]

    Ryu S, Noh J H, Jeon N J, Chan Kim Y, Yang W S, Seo J, Seok S I 2014 Energy Environ. Sci. 7 2614Google Scholar

    [36]

    Tanaka K, Minemoto T, Takakura H 2009 Sol. Energy 83 477Google Scholar

    [37]

    Karimi E, Ghorashi S M B 2017 J. Nanophotonics 11 032510Google Scholar

    [38]

    蒙镜蓉, 李国龙, 索鑫磊, 张立来, 苏杭, 李婉, 王浩 2019 激光与光电子学进展 56 261

    Meng J R, Li G L, Suo X L, Zhang L L, Su H, Li W, Wang H 2019 L. & O. Progress 56 261

    [39]

    Gao F Q, Li C H, Qin L, Zhu L J, Huang X, Liu H, Liang L, Hou Y B, Lou Z D, Hu Y F, Teng F 2018 RSC Adv. 8 14025Google Scholar

    [40]

    Adhikari K R, Gurung S, Bhattarai B K, Soucase B M 2016 Phys. Status Solidi C 13 13Google Scholar

    [41]

    林灵燕, 范宝殿 2017 泉州师范学院学报 36 50

    Lin L Y, Fan B D 2017 J. Quanzhou Normal Univ. 36 50

    [42]

    Devi N, Parrey K A, Aziz A, Datta S 2018 J. Vac. Sci. Technol. B 36 105Google Scholar

    [43]

    孙亚平, 陈慧颖, 陈高玲, 王多发, 章天金 2018 湖北大学学报 40 518

    Sun Y P, Chen H Y, Chen G L, Wang D F, Zhang T J 2018 J. Hubei Univ. 40 518

    [44]

    李毅, 朱俊, 张旭辉, 戴松元 2019 太阳能学报 40 2630

    Li Y, Zhu J, Zhang X H, Dai S Y 2019 Acta Energ. Sol. Sin. 40 2630

    [45]

    Hao F, Stoumpos C C, Cao D H, Chang R P, Kanatzidis M G 2014 Nat. Photonics 8 489Google Scholar

    [46]

    Noel N K, Stranks S D, Abate A, et al. 2014 Energy Environ. Sci. 7 3061Google Scholar

    [47]

    Hossain M I, Alharbi F H, Tabet N 2015 Sol. Energy 120 370Google Scholar

  • 图 1  初始器件结构

    Figure 1.  Initial device structure.

    图 2  不同ETL材料和钙钛矿层的能带结构

    Figure 2.  Bands alignment between different ETL materials and perovskite.

    图 3  电子准费米能级图

    Figure 3.  Schematic diagram of electronic quasi-Fermi level.

    图 4  不同ETL材料对J-V特性及QE的影响 (a) 不同ETL材料对J-V特性的影响; (b)不同ETL材料对QE的影响

    Figure 4.  Effects of different ETL materials on J-V characteristics and QE: (a) Effects of different ETL materials on J-V characteristics; (b) effects of different ETL materials on QE

    图 5  CBO示意图 (a) CBO为负值时的能带结构; (b) CBO为正值时的能带结构

    Figure 5.  Diagram of CBO: (a) Band structure of negative CBO; (b) band structure of positive CBO.

    图 6  cliff和spike示意图 (a) cliff结构; (b) spike结构

    Figure 6.  Schematic diagram of cliff and spike: (a) Cliff structure; (b) spike structure.

    图 7  能带图 (a)能带图全貌; (b) ETL和钙钛矿层界面势垒结构局部放大图

    Figure 7.  Band diagram: (a) Overall band diagram; (b) partial diagram of interface barrier structure.

    图 8  不同HTL材料和钙钛矿层的能带结构

    Figure 8.  Bands alignment between different HTL materials and perovskite.

    图 9  空穴准费米能级图 (a)空穴准费米能级图全貌; (b) HTL空穴准费米能级局部图

    Figure 9.  Schematic diagram of hole quasi-Fermi level: (a) Diagram hole quasi-Fermi energy; (b) partial diagram of HTL hole quasi-Fermi level.

    图 10  不同HTL材料对QE和J-V特性的影响 (a) 不同HTL材料对QE的影响; (b)不同HTL材料对J-V特性的影响

    Figure 10.  Effects of different HTL materials on QE and J-V characteristics: (a) Effects of different HTL materials on QE; (b) effects of different HTL materials on J-V characteristics.

    图 11  VBO示意图 (a) VBO为负值时的能带结构; (b) VBO为正值时的能带结构

    Figure 11.  Diagram of VBO: (a) Band structure of negative VBO; (b) band structure of positive VBO.

    图 12  cliff和spike示意图 (a) cliff结构; (b) spike结构

    Figure 12.  Schematic diagram of cliff and spike: (a) Cliff structure; (b) spike structure.

    图 13  能带图 (a)能带图全貌; (b)钙钛矿层和HTL界面势垒结构局部放大图

    Figure 13.  Band diagram: (a) Overall band diagram; (b) partial diagram of interface barrier structure.

    图 14  钙钛矿层缺陷浓度对效率的影响

    Figure 14.  Influence of defect density of perovskite layer on PCE.

    表 1  基本仿真参数

    Table 1.  Basic simulation parameters.

    ParameterSnO2:FTiO2MASnI3spiro-OMeTAD
    Thickness/nm500 [13]100 [21]500 [13]200 [18]
    Eg/eV3.5 [13]3.2 [18]1.3 [13]3.0 [20]
    χ/eV4.0 [13]3.9 [18]4.17 [13]2.45 [20]
    εr9.0 [13]9.0 [18]8.2 [13]3.0 [20]
    Nc/cm–31 × 1019 [13]1 × 1021 [18]1 × 1018 [13]1 × 1019 [21]
    Nv/cm–31 × 1019 [13]2 × 1020 [18]1 × 1018 [13]1 × 1019 [21]
    μn/(cm2·V·s–1)100 [13]20 [18]1.6 [13]0.0002 [20]
    μp/(cm2·V·s–1)25 [13]10 [18]1.6 [13]0.0002 [20]
    Nd/cm–32 × 1019 [13]1 × 1017 [18]0 [13]0 [20]
    Na/cm–30 [13]0 [18]1 × 1016 [13]2 × 1018 [20]
    Nt/cm–31 × 1015 [18]1 × 1015 [18]1 × 1015 [13]1 × 1015 [20]
    DownLoad: CSV

    表 2  不同ETL材料的参数

    Table 2.  Input parameters of the proposed ETL materials.

    ParameterC60CdSCd0.5Zn0.5SIGZOPCBMZnO
    Eg/eV1.7 [17]2.4 [25]2.8 [13]3.05 [18]2 [18]3.3 [17]
    χ/eV3.9 [17]4.2 [25]3.8 [13]4.16 [18]3.9 [18]4.1 [17]
    εr4.2 [17]10 [25]10 [13]10 [18]3.9 [18]9 [17]
    Nc/cm–38 × 1019 [17]2.2 × 1018 [25]1 × 1018 [13]5 × 1018 [18]2.5 × 1021 [18]4 × 1018 [17]
    Nv/cm–38 × 1019 [17]1.8 × 1019 [25]1 × 1018 [13]5 × 1018 [18]2.5 × 1021 [18]1 × 1019 [17]
    μn/(cm2·V·s–1)0.08 [17]100 [25]100 [13]15 [18]0.2 [18]100 [17]
    μp/(cm2·V·s–1)0.0035 [17]25 [25]25 [13]0.1 [18]0.2 [18]25 [17]
    Nd/cm–32.6 × 1018 [17]1 × 1017 [25]1 × 1017 [13]1 × 1018 [18]2.93 × 1017 [18]1 × 1018 [26]
    Na/cm–30 [17]0 [25]0 [13]0 [18]0 [18]0 [26]
    Nt/cm–31 × 1014 [17]1 × 1017 [25]1 × 1015 [13]1 × 1015 [18]1 × 1015 [18]1 × 1015 [26]
    DownLoad: CSV

    表 3  不同HTL材料的参数

    Table 3.  Input parameters of the proposed HTL materials.

    ParameterCu2OCuICuSCNMASnBr3NiOPEDOT:PSS
    Eg/eV2.17 [26]2.98 [18]3.4 [18]2.15 [13]3.8 [18]2.2 [18]
    χ/eV3.2 [26]2.1 [18]1.9 [18]3.39 [13]1.46 [18]2.9 [18]
    εr6.6 [20]6.5 [18]10 [18]8.2 [13]11.7 [20]3 [18]
    Nc/cm–32.5 × 1020 [20]2.8 × 1019 [18]1.7 × 1019 [18]1 × 1018 [13]2.5 × 1020 [20]2.2 × 1015 [18]
    Nv/cm–32.5 × 1020 [20]1 × 1019 [18]2.5 × 1021 [18]1 × 1018 [13]2.5 × 1020 [20]1.8 × 1018 [18]
    μn/(cm2·V·s–1)80 [20]0.00017 [18]0.0001 [18]1.6 [13]2.8 [20]0.02 [18]
    μp/(cm2·V·s–1)80 [20]0.0002 [18]0.1 [18]1.6 [13]2.8 [20]0.0002 [18]
    Nd/cm–30 [20]0 [18]0 [18]0 [13]0 [18]0 [18]
    Na/cm–31 × 1018 [26]1 × 1018 [18]1 × 1018 [18]1 × 1018 [13]1 × 1018 [18]3.17 × 1014 [18]
    Nt/cm–31 × 1015 [26]1 × 1015 [18]1 × 1014 [18]1 × 1015 [13]1 × 1014 [18]1 × 1015 [18]
    DownLoad: CSV

    表 4  不同ETL材料的PSC输出参数

    Table 4.  Effects of ETLs on output parameters of the PSCs.

    ParameterC60CdSCd0.5Zn0.5SIGZOPCBMTiO2ZnO
    Voc/V0.840.810.930.820.830.840.83
    Jsc/(mA·cm–2)21.7327.5029.3929.2724.8629.6429.58
    FF/%69.4762.6264.7363.9567.5369.2767.72
    PCE/%12.6614.0117.7015.3213.9217.2416.64
    DownLoad: CSV

    表 5  CBO、界面势垒结构及$E_{\rm{a}}^{{\rm{ETL}}}$的关系

    Table 5.  Relationship between CBO, barrier shape and $E_{\rm{a}}^{{\rm{ETL}}}$.

    ParameterC60CdSCd0.5Zn0.5SIGZOPCBMTiO2ZnO
    CBO/eV0.27–0.030.370.010.270.270.07
    Barrier shapespikecliffspikespikespikespikespike
    $E_{\rm{a}}^{{\rm{ETL}}}$/eV1.31.271.31.31.31.31.3
    DownLoad: CSV

    表 6  不同HTL材料的PSC输出参数

    Table 6.  Effect of HTL on output parameters of the PSCs.

    ParameterCu2OCuICuSCNMASnBr3NiOPEDOT:PSSspiro-OMeTAD
    Voc/V0.920.850.910.940.900.880.93
    Jsc/(mA·cm–2)28.7128.1828.4530.3528.3228.2129.39
    FF/%76.4974.3275.7476.6575.0473.3064.73
    PCE/%20.2817.7919.7121.5519.0418.1517.70
    DownLoad: CSV

    表 7  VBO、界面势垒结构及$E_{\rm{a}}^{{\rm{HTL}}}$的关系

    Table 7.  Relationship between VBO, barrier shapeand $E_{\rm{a}}^{{\rm{HTL}}}$.

    ParameterCu2OCuICuSCNMASnBr3NiOPEDOT:PSSspiro-OMeTAD
    VBO/eV–0.1–0.27–0.170.07–0.21–0.27–0.02
    Barrier shapecliffcliffcliffspikecliffcliffcliff
    $E_{\rm{a}}^{{\rm{HTL}}}$/eV1.21.031.131.31.091.031.28
    DownLoad: CSV

    表 8  不同结构的电池研究结果对比

    Table 8.  Comparison of research results of cells with different structures.

    Device structureCategoryPCE/%Device structureCategoryPCE/%
    SnO2/MAPbI3/spiro[38]experiment14.19TiO2/MAPbI3/CuSCN[47]simulation20
    TiO2/MAPbI3/spiro[43]experiment15.9Cu2O/MAPbI3/TiO2[20]simulation28
    TiO2/MAPbI3/spiro[44]experiment17.36ZnO/MAPbI3/Cu2O[26]simulation20
    ZnO/MAPbI3/spiro[40]simulation22.49TiO2/MAPbI3/CuI[47]simulation17.54
    ZnO/MAPbI3/P3HT[37]simulation18.76CdS/MAPbI3/spiro[42]simulation23.83
    TiO2/MAPbI3/CuGaO2[41]simulation23.42TiO2/MAPbI3/spiro[47]simulation22.35
    TiO2/MASnI3/spiro[46]experiment6.4PEDOT:PASS/MASnI3/PCBM[39]experiment6.03
    TiO2/MASnI3/spiro[45]experiment5.73Structure of this articlesimulation21.55
    DownLoad: CSV
  • [1]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151Google Scholar

    [2]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [3]

    梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军 2020 物理学报 69 057901Google Scholar

    Liang X J, Cao Y, Cai H K, Su J, Ni J, Li J, Zhang J J 2020 Acta Phys. Sin. 69 057901Google Scholar

    [4]

    Conings B, Drijkoningen J, Gauquelin N, et al. 2015 Adv. Energy Mater. 5 1500477Google Scholar

    [5]

    Wang R, Mujahid M, Duan Y, Wang Z K, Xue J, Yang Y 2019 Adv. Funct. Mater. 29 1808843Google Scholar

    [6]

    Wang Q, Phung N, Di Girolamo D, Vivo P, Abate A 2019 Energy Environ. Sci. 12 865Google Scholar

    [7]

    Liang J, Liu J, Jin Z 2017 Solar RRL 1 1700086Google Scholar

    [8]

    Yang T C, Fiala P, Jeangros Q, Ballif C 2018 Joule 2 1421Google Scholar

    [9]

    Chen H, Xiang S, Li W, Liu H, Zhu L, Yang S 2018 Solar RRL 2 1700188Google Scholar

    [10]

    Song T, Yokoyama T, Aramaki S, Kanatzidis M G 2017 ACS Energy Letters 2 897Google Scholar

    [11]

    Green MA, Ho-Baillie A, Snaith HJ 2014 Nat. Photonics 8 506Google Scholar

    [12]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [13]

    Baig F, Khattak Y H, Marí B, Beg S, Ahmed A, Khan K 2018 J. Electron. Mater. 47 5275Google Scholar

    [14]

    Chen M, Ju M, Carl A D, Zong Y, Grimm R L, Gu J, Zeng X C, Zhou Y, Padture N P 2018 Joule 2 558Google Scholar

    [15]

    Chakraborty K, Choudhury MG, Paul S 2019 Sol. Energy 194 886Google Scholar

    [16]

    Islam M A, Rahman K S, Misran H, Asim N, Hossain M S, Akhtaruzzaman M, Amin N 2019 Results Phys. 14 102518Google Scholar

    [17]

    Lakhdar N, Hima A 2020 Opt. Mater. 99 109517Google Scholar

    [18]

    Azri F, Meftah A, Sengouga N, Meftah A 2019 Sol. Energy 181 372Google Scholar

    [19]

    Sajid, Elseman A M, Ji J, Dou S, Huang H, Cui P, Wei D, Li M 2018 Chin. Phys. B 27 80Google Scholar

    [20]

    Minemoto T, Murata M 2014 Curr. Appl. Phys. 14 1428Google Scholar

    [21]

    Teimour R, Mohammadpour R 2018 Superlattices Microstruct. 118 116Google Scholar

    [22]

    Du H J, Wang W C, Zhu J Z 2016 Chin. Phys. B 25 108802Google Scholar

    [23]

    Chouhan A S, Jasti N P, Avasthi S 2018 Mater. Lett. 221 150Google Scholar

    [24]

    Huang S, Rui Z, Chi D, Bao D 2019 Journal of Semiconductors 40 19Google Scholar

    [25]

    Lin L Y, Jiang L Q, Qiu Y, Fan B D 2018 J. Phys. Chem. Solids 122 19Google Scholar

    [26]

    Lin L Y, Jiang L Q, Li P, Fan B D, Qiu Y 2019 J. Phys. Chem. Solids 124 205Google Scholar

    [27]

    Wang D, Wu C, Luo W, Guo X, Qu B, Xiao L, Chen Z 2018 ACS Appl. Energy Mater. 1 2215Google Scholar

    [28]

    Minemoto T, Murata M 2015 Sol. Energy Mater. Sol. Cells 133 8Google Scholar

    [29]

    Klenk R 2001 Thin Solid Films 387 135Google Scholar

    [30]

    Gloeckler M, Sites J 2005 Thin Solid Films 480 241Google Scholar

    [31]

    Minemoto T, Hashimoto Y, Satoh T, Negami T, Takakura H, Hamakawa Y 2001 J. Appl. Phys. 89 8327Google Scholar

    [32]

    Minemoto T, Hashimoto Y, Satoh T, et al. 2003 Sol. Energ. Mater. Sol. Cells 75 121Google Scholar

    [33]

    Torndahl T, Platzer-Bjorkman C, Kessler J, Edoff M 2007 Prog. Photovolt 15 225Google Scholar

    [34]

    Minemoto T, Matsui T, Takakura H, et al. 2001 Sol. Energ. Mater. Sol. Cells 67 83Google Scholar

    [35]

    Ryu S, Noh J H, Jeon N J, Chan Kim Y, Yang W S, Seo J, Seok S I 2014 Energy Environ. Sci. 7 2614Google Scholar

    [36]

    Tanaka K, Minemoto T, Takakura H 2009 Sol. Energy 83 477Google Scholar

    [37]

    Karimi E, Ghorashi S M B 2017 J. Nanophotonics 11 032510Google Scholar

    [38]

    蒙镜蓉, 李国龙, 索鑫磊, 张立来, 苏杭, 李婉, 王浩 2019 激光与光电子学进展 56 261

    Meng J R, Li G L, Suo X L, Zhang L L, Su H, Li W, Wang H 2019 L. & O. Progress 56 261

    [39]

    Gao F Q, Li C H, Qin L, Zhu L J, Huang X, Liu H, Liang L, Hou Y B, Lou Z D, Hu Y F, Teng F 2018 RSC Adv. 8 14025Google Scholar

    [40]

    Adhikari K R, Gurung S, Bhattarai B K, Soucase B M 2016 Phys. Status Solidi C 13 13Google Scholar

    [41]

    林灵燕, 范宝殿 2017 泉州师范学院学报 36 50

    Lin L Y, Fan B D 2017 J. Quanzhou Normal Univ. 36 50

    [42]

    Devi N, Parrey K A, Aziz A, Datta S 2018 J. Vac. Sci. Technol. B 36 105Google Scholar

    [43]

    孙亚平, 陈慧颖, 陈高玲, 王多发, 章天金 2018 湖北大学学报 40 518

    Sun Y P, Chen H Y, Chen G L, Wang D F, Zhang T J 2018 J. Hubei Univ. 40 518

    [44]

    李毅, 朱俊, 张旭辉, 戴松元 2019 太阳能学报 40 2630

    Li Y, Zhu J, Zhang X H, Dai S Y 2019 Acta Energ. Sol. Sin. 40 2630

    [45]

    Hao F, Stoumpos C C, Cao D H, Chang R P, Kanatzidis M G 2014 Nat. Photonics 8 489Google Scholar

    [46]

    Noel N K, Stranks S D, Abate A, et al. 2014 Energy Environ. Sci. 7 3061Google Scholar

    [47]

    Hossain M I, Alharbi F H, Tabet N 2015 Sol. Energy 120 370Google Scholar

  • [1] Juan Ting, Xing Jia-He, Zeng Fan-Cong, Zheng Xin, Xu Lin. Performance of perovskite solar cells based on SnO2:DPEPO hybrid electron transport layer. Acta Physica Sinica, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [2] Fang Zheng, Zhang Fei, Qin Xiao-Jun, Yang Liu, Jin Yong-Bin, Zhou Yang-Ying, Wang Xing-Tao, Liu Yun, Xie Li-Qiang, Wei Zhan-Hua. Four-terminal perovskite/silicon series solar cells with 28% efficiency achieved by suppressing edge recombination. Acta Physica Sinica, 2023, 72(5): 057302. doi: 10.7498/aps.72.20222209
    [3] Zhang Mei-Rong, Zhu Zeng-Wei, Yang Xiao-Qin, Yu Tong-Xu, Yu Xiao-Qi, Lu Di, Li Shun-Feng, Zhou Da-Yong, Yang Hui. Research progress of perovskite/crystalline silicon tandem solar cells with efficiency of over 30%. Acta Physica Sinica, 2023, 72(5): 058801. doi: 10.7498/aps.72.20222019
    [4] Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells. Acta Physica Sinica, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [5] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [6] Han Mei-Dou-Xue,  Wang Ya,  Wang Rong-Bo,  Zhao Jun-Tao,  Ren Hui-Zhi,  Hou Guo-Fu,  Zhao Ying,  Zhang Xiao-Dan,  Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [7] Han Mei-Dou-Xue, Wang Ya, Wang Rong-Bo, Zhao Jun-Tao, Ren Hui-Zhi, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan, Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [8] Li Jia-Sen, Liang Chun-Jun, Ji Chao, Gong Hong-Kang, Song Qi, Zhang Hui-Min, Liu Ning. Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene. Acta Physica Sinica, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [9] Zhang Chen, Zhang Hai-Yu, Hao Hui-Ying, Dong Jing-Jing, Xing Jie, Liu Hao, Shi Lei, Zhong Ting-Ting, Tang Kun-Peng, Xu Xiang. Morphology control of zinc oxide nanorods and its application as an electron transport layer in perovskite solar cells. Acta Physica Sinica, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [10] Fan Wei-Li, Yang Zong-Lin, Zhang Zhen-Yun, Qi Jun-Jie. Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. Acta Physica Sinica, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [11] Cao Yu,  Zhu Xin-Yun,  Chen Han-Bo,  Wang Chang-Gang,  Zhang Xin-Tong,  Hou Bing-Dong,  Shen Ming-Ren,  Zhou Jing. Simulation and optimal design of antimony selenide thin film solar cells. Acta Physica Sinica, 2018, 67(24): 247301. doi: 10.7498/aps.67.20181745
    [12] Liu Yi, Xu Zheng, Zhao Su-Ling, Qiao Bo, Li Yang, Qin Zi-Lun, Zhu You-Qin. Influence of phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer treated by two additives on perovskite solar cell performance. Acta Physica Sinica, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [13] Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao. Progress of research on new hole transporting materials used in perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [14] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [15] Wang Fu-Zhi, Tan Zhan-Ao, Dai Song-Yuan, Li Yong-Fang. Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [16] Pu Nian-Nian, Li Hai-Rong, Xie Long-Zhen. Influence of NiOx hole-transporting layer on the light absorption of the polymer solar cells. Acta Physica Sinica, 2014, 63(6): 067201. doi: 10.7498/aps.63.067201
    [17] Liu Bo-Zhi, Li Rui-Feng, Song Ling-Yun, Hu Lian, Zhang Bing-Po, Chen Yong-Yue, Wu Jian-Zhong, Bi Gang, Wang Miao, Wu Hui-Zhen. QD-LED devices using ZnSnO as an electron-transporting layer. Acta Physica Sinica, 2013, 62(15): 158504. doi: 10.7498/aps.62.158504
    [18] Li Yan-Wu, Liu Peng-Yi, Hou Lin-Tao, Wu Bing. Heterojunction organic solar cells with Rubrene as electron transporting layer. Acta Physica Sinica, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [19] Effects of emitting and hole transporting layers on the performance of white organic light-emitting divice. Acta Physica Sinica, 2007, 56(12): 7213-7218. doi: 10.7498/aps.56.7213
    [20] Jiang Yan, Yang Sheng-Yi, Zhang Xiu-Long, Teng Feng, Xu Zheng, Hou Yan-Bing. ZnSe-based organic-inorganic heterostructure diodes. Acta Physica Sinica, 2006, 55(9): 4860-4864. doi: 10.7498/aps.55.4860
Metrics
  • Abstract views:  10699
  • PDF Downloads:  269
  • Cited By: 0
Publishing process
  • Received Date:  29 July 2020
  • Accepted Date:  01 September 2020
  • Available Online:  22 January 2021
  • Published Online:  05 February 2021

/

返回文章
返回