Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrocardiogram signal reconstruction based on mode component identification by heartbeat physical feature in improved empirical mode decomposition domain

Niu Xiao-Dong Lu Li-Rong Wang Jian Han Xing-Cheng Guo Shu-Yan Wang Li-Ming

Citation:

Electrocardiogram signal reconstruction based on mode component identification by heartbeat physical feature in improved empirical mode decomposition domain

Niu Xiao-Dong, Lu Li-Rong, Wang Jian, Han Xing-Cheng, Guo Shu-Yan, Wang Li-Ming
PDF
HTML
Get Citation
  • Electrocardiogram (ECG) diagnosis is based on the waveform, duration and amplitude of characteristic wave, which are required to have a high accuracy for ECG signal reconstruction. As an effective nonlinear signal processing method, empirical mode decomposition (EMD) has been widely used for diagnosing and reconstructing the ECG signal, but there are two problems arising here. One is the mode mixing, and the other is that the mode components used in reconstruction are identified by experience. Therefore, the method of reconstruction is not adaptive and universal, and reconstructed ECG signal loses accuracy. Firstly, we propose an improved EMD method, which is called integral mean mode decomposition (IMMD). The analysis of 5000 samples of Gaussian white noise shows that IMMD has better multi-resolution analysis ability than EMD, and it can effectively alleviate mode mixing consequently. Secondly, based on the inherent physical characteristics of ECG signal, cardiac cycle or heart rate (HR), it has practical physical significance to identify the mode components used in ECG signal reconstruction. The cardiac cycle feature acts as the intrinsic mode function (IMF) component through two modes. 1) For the low-order IMF that belongs to the ECG signal, the cardiac cycle feature acts as the amplitude modulation. The envelope of the IMF component has the characteristics of the cardiac cycle, and the frequency corresponding to the maximum amplitude in the spectrum of the envelope is equal to HR. 2) For the high-order IMF that belongs to the ECG signal, the cardiac cycle feature acts as frequency modulation. Those IMF components have the harmonic characteristics of periodic heartbeats, and the maximum amplitude in the spectrum corresponds to an integral multiple of HR (usually 1-3 times). The noise attributed to IMF component cannot show the above two cardiac cycle characteristics. Thus the proposed method is adaptive and universal. The 47 ECG signals with baseline drift and muscle artifact noise are tested. The results show that the proposed method is more effective than the variational mode decomposition (VMD), Haar wavelet with soft threshold, ensemble empirical mode decomposition (EEMD) and EMD. Among the 47 correlation coefficients between reconstructed and original ECG signals, the proposed method has 31 better than VMD, 33 better than Haar wavelet, 42 better than EEMD and 45 better than EMD. The mean of 47 correlation coefficients from the proposed method is 0.8904, and the variance is 0.0071, which shows that the proposed method has good performance and stability.
      Corresponding author: Wang Li-Ming, wlm@nuc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61842103, 61871351, 61801437), the Key Laboratory of National Defense Science and Technology for Electronic Testing Technology Foundation, China (Grant No. 6142001180410), and the Science and Technology Innovation Foundation of the Higher Education Institutions of Shanxi Province, China (Grant Nos. 2020L0301, 2020L0389).
    [1]

    黄宛 1998 临床心电图学 (第5版) (北京: 人民卫生出版社) 第22, 428页

    Huang W 1998 Clinical Electrocardiography (5th Ed.) (Beijing: People's Medical Publishing House Press) pp22, 428 (in Chinese)

    [2]

    Poungponsri S, Yu X H 2013 Neurocomputing 117 206Google Scholar

    [3]

    庞宇, 邓璐, 林金朝, 李章勇, 周前能, 李国权, 黄华伟, 张懿, 吴炜 2014 物理学报 63 098701Google Scholar

    Pang Y, Deng L, Lin J C, Li Z Y, Zhou Q N, Li G Q, Huang H W, Zhang Y, Wu W 2014 Acta Phys. Sin. 63 098701Google Scholar

    [4]

    Sharma R R, Pachori R B 2018 Biomed. Signal Process. Control 45 33Google Scholar

    [5]

    de Oliveira B R, Duarte M A Q, de Abreu C C E, Vieira F J 2018 Res. Biomed. Eng. 34 73Google Scholar

    [6]

    Zou C, Qin Y, Sun C, Li W, Chen W 2017 Pervasive Mob. Comput. 40 267Google Scholar

    [7]

    Jung W H, Lee S G 2012 Comput. Meth. Programs Biomed. 108 1121Google Scholar

    [8]

    Yadav S K, Sinha R, Bora P K 2015 IET Signal Proc. 9 88Google Scholar

    [9]

    Yu Q, Guan Q, Li P, Liu T B, Si J F, Zhao Y, Liu H X, Wang Y Q 2017 Chin. Phys. B 26 118702Google Scholar

    [10]

    Satija U, Ramkumar B, Manikandan M S 2018 IEEE J. Biomed. Health 22 722Google Scholar

    [11]

    Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen N C, Tung C C, Liu H H 1998 Proc. R. Soc. Lond. A 454 903Google Scholar

    [12]

    Fu M J, Zhuang J J, Hou F Z, Zhan Q B, Shao Y, Ning X B 2010 Chin. Phys. B 19 058701Google Scholar

    [13]

    Zhu Y H, Yuan J, Stephen Z P, Oliver D K, Cheng Q, Wang X D, Tao C, Liu X J, Xu G, Paul L C 2017 Chin. Phys. B 26 064301Google Scholar

    [14]

    Wu Z, Huang N E 2009 Adv. Adapt. Data Anal. 1 1Google Scholar

    [15]

    Dragomiretskiy K, Zosso D 2014 IEEE Trans. Signal Process. 62 531Google Scholar

    [16]

    曾彭, 刘红星, 宁新宝, 庄建军, 张兴敢 2015 物理学报 64 078701Google Scholar

    Zeng P, Liu H X, Ning X B, Zhuang J J, Zhang X G 2015 Acta Phys. Sin. 64 078701Google Scholar

    [17]

    Nazari M, Sakhaei S M 2018 IEEE J. Biomed. Health 22 1059Google Scholar

    [18]

    Ibtehaz N, Rahman M S, Rahman M S 2019 Biomed. Signal Process. Control 49 349Google Scholar

    [19]

    Jarchi D, Casson A J 2017 IEEE Trans. Biomed. Eng. 64 2042Google Scholar

    [20]

    Lee J, McManus D D, Merchant S, Chon K H 2012 IEEE Trans. Biomed. Eng. 59 1499Google Scholar

    [21]

    盖强 2001 博士学位论文 (大连: 大连理工大学)

    Gai Q 2001 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [22]

    Huang N E, Wu M L C, Long S R, Shen S S P, Qu W, Gloersen P, Fan K L 2003 Proc. R. Soc. Lond. A 459 2317Google Scholar

    [23]

    Flandrin P, Rilling G, Goncalves P 2004 IEEE Signal Process. Lett. 11 112Google Scholar

    [24]

    Flandrin P, Goncalves P 2004 Int. J. Wavelets Multiresolution. Inf. Process. 2 477Google Scholar

    [25]

    Huang N E, Hu K, Yang A C C, Chang H C, Jia D, Liang W K, Yeh J R, Kao C L, Juan C H, Peng C K, Meijer J H, Wang Y H, Long S R, Wu Z 2016 Phil. Trans. R. Soc. A 374 20150206Google Scholar

    [26]

    Moody G B, Mark R G 2001 IEEE Eng. Med. Biol. Mag. 20 45Google Scholar

    [27]

    Moody G B, Muldrow W E, Mark R G 1984 Comput Cardiol 11 381

    [28]

    Motin M A, Karmakar C, Palaniswami M 2019 IEEE Signal Process. Lett. 26 592Google Scholar

    [29]

    Li H Y, Wang C J, Zhao D 2018 IET Signal Proc. 12 844Google Scholar

  • 图 1  IMMD和EMD方法分解高斯白噪声的等效滤波器组特性 (a) IMMD (实线)和EMD (虚线)的IMF分量的平均功率谱; (b) 基于(5)式, IMMD (实线)和EMD (虚线)的IMF分量的平均功率谱坍缩重合

    Figure 1.  Equivalent filter banks of IMMD and EMD decomposing Gauss white noises: (a) Averaged power spectra of IMFs from IMMD (solid curves) and EMD (dotted curves); (b) collapse and coincidence of the average power spectrum of IMFs from IMMD (solid curves) and EMD (dotted curves) based on Eq. (5).

    图 2  实验采用信号波形 (a) 105 ECG信号; (b) BW信号; (c) MA信号; (d)含噪105 ECG信号

    Figure 2.  Waveform of signals used in experiment: (a) No. 105 ECG signal; (b) BW signal; (c) MA signal; (d) the noisy No. 105 ECG signal.

    图 3  含噪105 ECG信号的IMF (蓝色曲线)及其包络(红色曲线)

    Figure 3.  IMF envelopes (red curves) and IMFs (blue curves) of noisy No. 105 ECG signal.

    图 4  含噪105 ECG信号IMFs的功率谱(蓝色曲线), 及IMFs包络的功率谱(红色曲线)

    Figure 4.  Power spectra of envelopes of IMFs (red curves) and of IMFs (blue curves) of noisy No. 105 ECG signal.

    图 5  原105 ECG信号(蓝色点虚线)与由五种方法重建的105 ECG信号(红色实线) (a) 本文方法; (b) VMD; (c) Haar小波软阈值; (d) EMMD; (e) EMD

    Figure 5.  Original No. 105 ECG signal (blue dotted curves) and the No. 105 ECG signals (red solid curves) reconstructed by 5 methods: (a) The proposed method; (b) VMD; (c) Haar wavelet with soft threshold; (d) EEMD; (e) EMD.

    图 6  采用五种方法重建47个ECG信号的R值柱状图

    Figure 6.  Histogram of R values of 47 ECG signals reconstructed by 5 methods.

    图 7  采用五种方法重建47个ECG信号的相关系数R值的统计盒子图

    Figure 7.  Five box-plots of R values of 47 ECG signals reconstructed by 5 methods.

    表 1  五种方法重建105 ECG信号的特征量值

    Table 1.  Characteristic values of No. 105 ECG signals reconstructed by 5 methods.

    重建方法RSNR/dBMSE/mV2
    本文方法0.957710.77400.0076
    VMD0.957210.66020.0078
    Haar0.94349.00700.0114
    EEMD0.92048.11260.0140
    EMD0.76383.69820.0388
    DownLoad: CSV

    表 2  实验采用的部分ECG信号对应心律失常类型

    Table 2.  Type of arrhythmia corresponding to some ECG signals used in the experiment.

    心律失常类别ECG索引号
    房性早搏100, 232
    P波峰值和
    起搏心搏
    102, 104, 107, 217
    心房颤动201, 203, 210, 219, 221
    预激综合征230
    左束支传导阻滞109, 111, 214
    右束支传导阻滞118, 124, 207, 212, 231, 232
    室性早搏119, 200, 203, 207, 208, 210,
    214, 221, 233
    DownLoad: CSV

    表 3  五种方法重建47个ECG信号的R值的均值与方差

    Table 3.  Means and variances of R values of 47 ECG signals reconstructed by 5 methods.

    重建方法均值方差
    本文方法0.89040.0071
    VMD0.88260.0081
    Haar0.88040.0058
    EEMD0.82220.0166
    EMD0.71000.0143
    DownLoad: CSV
  • [1]

    黄宛 1998 临床心电图学 (第5版) (北京: 人民卫生出版社) 第22, 428页

    Huang W 1998 Clinical Electrocardiography (5th Ed.) (Beijing: People's Medical Publishing House Press) pp22, 428 (in Chinese)

    [2]

    Poungponsri S, Yu X H 2013 Neurocomputing 117 206Google Scholar

    [3]

    庞宇, 邓璐, 林金朝, 李章勇, 周前能, 李国权, 黄华伟, 张懿, 吴炜 2014 物理学报 63 098701Google Scholar

    Pang Y, Deng L, Lin J C, Li Z Y, Zhou Q N, Li G Q, Huang H W, Zhang Y, Wu W 2014 Acta Phys. Sin. 63 098701Google Scholar

    [4]

    Sharma R R, Pachori R B 2018 Biomed. Signal Process. Control 45 33Google Scholar

    [5]

    de Oliveira B R, Duarte M A Q, de Abreu C C E, Vieira F J 2018 Res. Biomed. Eng. 34 73Google Scholar

    [6]

    Zou C, Qin Y, Sun C, Li W, Chen W 2017 Pervasive Mob. Comput. 40 267Google Scholar

    [7]

    Jung W H, Lee S G 2012 Comput. Meth. Programs Biomed. 108 1121Google Scholar

    [8]

    Yadav S K, Sinha R, Bora P K 2015 IET Signal Proc. 9 88Google Scholar

    [9]

    Yu Q, Guan Q, Li P, Liu T B, Si J F, Zhao Y, Liu H X, Wang Y Q 2017 Chin. Phys. B 26 118702Google Scholar

    [10]

    Satija U, Ramkumar B, Manikandan M S 2018 IEEE J. Biomed. Health 22 722Google Scholar

    [11]

    Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen N C, Tung C C, Liu H H 1998 Proc. R. Soc. Lond. A 454 903Google Scholar

    [12]

    Fu M J, Zhuang J J, Hou F Z, Zhan Q B, Shao Y, Ning X B 2010 Chin. Phys. B 19 058701Google Scholar

    [13]

    Zhu Y H, Yuan J, Stephen Z P, Oliver D K, Cheng Q, Wang X D, Tao C, Liu X J, Xu G, Paul L C 2017 Chin. Phys. B 26 064301Google Scholar

    [14]

    Wu Z, Huang N E 2009 Adv. Adapt. Data Anal. 1 1Google Scholar

    [15]

    Dragomiretskiy K, Zosso D 2014 IEEE Trans. Signal Process. 62 531Google Scholar

    [16]

    曾彭, 刘红星, 宁新宝, 庄建军, 张兴敢 2015 物理学报 64 078701Google Scholar

    Zeng P, Liu H X, Ning X B, Zhuang J J, Zhang X G 2015 Acta Phys. Sin. 64 078701Google Scholar

    [17]

    Nazari M, Sakhaei S M 2018 IEEE J. Biomed. Health 22 1059Google Scholar

    [18]

    Ibtehaz N, Rahman M S, Rahman M S 2019 Biomed. Signal Process. Control 49 349Google Scholar

    [19]

    Jarchi D, Casson A J 2017 IEEE Trans. Biomed. Eng. 64 2042Google Scholar

    [20]

    Lee J, McManus D D, Merchant S, Chon K H 2012 IEEE Trans. Biomed. Eng. 59 1499Google Scholar

    [21]

    盖强 2001 博士学位论文 (大连: 大连理工大学)

    Gai Q 2001 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [22]

    Huang N E, Wu M L C, Long S R, Shen S S P, Qu W, Gloersen P, Fan K L 2003 Proc. R. Soc. Lond. A 459 2317Google Scholar

    [23]

    Flandrin P, Rilling G, Goncalves P 2004 IEEE Signal Process. Lett. 11 112Google Scholar

    [24]

    Flandrin P, Goncalves P 2004 Int. J. Wavelets Multiresolution. Inf. Process. 2 477Google Scholar

    [25]

    Huang N E, Hu K, Yang A C C, Chang H C, Jia D, Liang W K, Yeh J R, Kao C L, Juan C H, Peng C K, Meijer J H, Wang Y H, Long S R, Wu Z 2016 Phil. Trans. R. Soc. A 374 20150206Google Scholar

    [26]

    Moody G B, Mark R G 2001 IEEE Eng. Med. Biol. Mag. 20 45Google Scholar

    [27]

    Moody G B, Muldrow W E, Mark R G 1984 Comput Cardiol 11 381

    [28]

    Motin M A, Karmakar C, Palaniswami M 2019 IEEE Signal Process. Lett. 26 592Google Scholar

    [29]

    Li H Y, Wang C J, Zhao D 2018 IET Signal Proc. 12 844Google Scholar

  • [1] Zhong Zhi, Zhao Wan-Ting, Shan Ming-Guang, Liu Lei. Telecentric in-line-and-off-axis hybrid digital holographic high-resolution reconstruction method. Acta Physica Sinica, 2021, 70(15): 154202. doi: 10.7498/aps.70.20210190
    [2] Jing Peng, Zhang Xue-Jun, Sun Zhi-Xin. eEpileptic electroencephalogram signal classification method based on elastic variational mode decomposition. Acta Physica Sinica, 2021, 70(1): 018702. doi: 10.7498/aps.70.20200904
    [3] Feng Hui, Sun Biao, Ma Shu-Gen. One-bit compressed sensing reconstruction for block sparse signals. Acta Physica Sinica, 2017, 66(18): 180202. doi: 10.7498/aps.66.180202
    [4] Xie Ping, Yang Fang-Mei, Li Xin-Xin, Yang Yong, Chen Xiao-Ling, Zhang Li-Tai. Functional coupling analyses of electroencephalogram and electromyogram based on variational mode decomposition-transfer entropy. Acta Physica Sinica, 2016, 65(11): 118701. doi: 10.7498/aps.65.118701
    [5] Zhang Tao, Chen Wan-Zhong, Li Ming-Yang. Recognition of epilepsy electroencephalography based on AdaBoost algorithm. Acta Physica Sinica, 2015, 64(12): 128701. doi: 10.7498/aps.64.128701
    [6] Yao Wen-Po, Liu Tie-Bing, Dai Jia-Fei, Wang Jun. Multiscale permutation entropy analysis of electroencephalogram. Acta Physica Sinica, 2014, 63(7): 078704. doi: 10.7498/aps.63.078704
    [7] Liu Da-Zhao, Wang Jun, Li Jin, Li Yu, Xu Wen-Min, Zhao Xiao. Analysis on power spectrum and base-scale entropy for heart rate variability signals modulated by reversed sleep state. Acta Physica Sinica, 2014, 63(19): 198703. doi: 10.7498/aps.63.198703
    [8] Pang Yu, Deng Lu, Lin Jin-Zhao, Li Zhang-Yong, Zhou Qian-Neng, Li Guo-Quan, Huang Hua-Wei, Zhang Yi, Wu Wei. A method of removing baseline drift in ECG signal based on morphological filtering. Acta Physica Sinica, 2014, 63(9): 098701. doi: 10.7498/aps.63.098701
    [9] Zhang Mei, Wang Jun. Modified symbolic relative entropy based electroencephalogram time irreversibility analysis. Acta Physica Sinica, 2013, 62(3): 038701. doi: 10.7498/aps.62.038701
    [10] Wu Sha, Li Jin, Zhang Ming-Li, Wang Jun. Coupling analysis of electrocardiogram and electroencephalogram based on improved symbolic transfer entropy. Acta Physica Sinica, 2013, 62(23): 238701. doi: 10.7498/aps.62.238701
    [11] Li Jin, Liu Da-Zhao. Changes of entropy and power spectrum in circadian rhythm for heart rate variability signals. Acta Physica Sinica, 2012, 61(20): 208701. doi: 10.7498/aps.61.208701
    [12] Wu Feng-Tie, Ma Liang, Zhang Qian-An, Zheng Wei-Tao, Pu Ji-Xiong. Experimental and theoretical study on the reconstruction of focused high order Bessel-Gauss beam. Acta Physica Sinica, 2012, 61(1): 014202. doi: 10.7498/aps.61.014202
    [13] Bian Hong-Rui, Wang Jiang, Han Chun-Xiao, Deng Bin, Wei Xi-Le, Che Yan-Qiu. Features extraction from EEG signals induced by acupuncture based on the complexity analysis. Acta Physica Sinica, 2011, 60(11): 118701. doi: 10.7498/aps.60.118701
    [14] Yang Xiao-Niu, Li Jian-Dong, Tang Zhi-Ling. Study on fractal features of modulated radio signal. Acta Physica Sinica, 2011, 60(5): 056401. doi: 10.7498/aps.60.056401
    [15] Shen Wei, Wang Jun. Time irreversibility analysis of ECG based on symbolic relative entropy. Acta Physica Sinica, 2011, 60(11): 118702. doi: 10.7498/aps.60.118702
    [16] Guo Yi, Guo Yong-Ming, Liu Yang-Yang, Han Chun-Xiao, Wang Jiang, Che Yan-Qiu, Deng Bin. Nonlinear characteristics extraction from electrical signals of dorsal spinal nerve root evoked by acupuncture at Zusanli point. Acta Physica Sinica, 2010, 59(8): 5880-5887. doi: 10.7498/aps.59.5880
    [17] Ma Qian-Li, Bian Chun-Hua, Wang Jun. Scaling analysis on electroencephalogram and its application to sleep-staging. Acta Physica Sinica, 2010, 59(7): 4480-4484. doi: 10.7498/aps.59.4480
    [18] Meng Qing-Fang, Zhou Wei-Dong, Chen Yue-Hui, Peng Yu-Hua. The feature extraction of epileptic EEG signals based on nonlinear prediction. Acta Physica Sinica, 2010, 59(1): 123-130. doi: 10.7498/aps.59.123
    [19] Zhou Yu-Shu, Cao Jie. Partitioning and reconstruction problem of the wind in a limited region. Acta Physica Sinica, 2010, 59(4): 2898-2906. doi: 10.7498/aps.59.2898
    [20] Zhuang Jian-Jun, Ning Xin-Bao, Zou Ming, Sun Biao, Yang Xi. Agreement of two entropy-based measures on quantifying the complexity of short-term heart rate variability signals from professional shooters. Acta Physica Sinica, 2008, 57(5): 2805-2811. doi: 10.7498/aps.57.2805
Metrics
  • Abstract views:  6937
  • PDF Downloads:  106
  • Cited By: 0
Publishing process
  • Received Date:  14 July 2020
  • Accepted Date:  02 September 2020
  • Available Online:  22 January 2021
  • Published Online:  05 February 2021

/

返回文章
返回