Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Four-terminal perovskite/silicon series solar cells with 28% efficiency achieved by suppressing edge recombination

Fang Zheng Zhang Fei Qin Xiao-Jun Yang Liu Jin Yong-Bin Zhou Yang-Ying Wang Xing-Tao Liu Yun Xie Li-Qiang Wei Zhan-Hua

Citation:

Four-terminal perovskite/silicon series solar cells with 28% efficiency achieved by suppressing edge recombination

Fang Zheng, Zhang Fei, Qin Xiao-Jun, Yang Liu, Jin Yong-Bin, Zhou Yang-Ying, Wang Xing-Tao, Liu Yun, Xie Li-Qiang, Wei Zhan-Hua
PDF
HTML
Get Citation
  • Although the commercial application of solar cells pursues scalable and large-area devices, small-area solar cells on a scale of several centimeters possess many advantages such as low fabrication cost and facile high-throughput screening in the research laboratory. Most emerging photovoltaic technology starts from the studying of small-area devices. Recently, perovskite/silicon tandem solar cells have aroused extensive research interest because they can break through the radiative efficiency limit of single-junction solar cells. However, when commercial large-area silicon cells are cut into small pieces with a few squared centimeters in area for laboratory use, there occurs a significant efficiency loss, limiting the performance of tandem cells. Herein, to eliminate the thermal damage caused by the traditional laser cutting method and also reduce the non-radiative recombination of heterojunction silicon cells after being cut, a cold-manufacturing method of grinding wheel dicing is used to cut heterojunction silicon cells. This method is realized by high-speed mechanical grinding accompanied by liquid washing, which avoids damaging the edge of solar cell caused by heat. Compared with the device cut by laser, the heterojunction silicon cells cut by the cold-manufacturing method exhibit less cross-sectional damage. The measurements by scanning electron microscopy (SEM) and three-dimensional optical profilometer reveal that the morphology of the device edge is smoother than the counterpart cut by laser. Device physics measurements including electrochemical impedance spectrum(EIS), dark current-voltage curves, transient photovoltage (TPV), transient photocurrent (TPC), and the dependence of short-circuit current density and open-circuit voltage on light intensity reveal that the cold-manufacturing method can significantly prevent the heterojunction silicon cells from non-radiatively recombining after being cut. These results indicate that the edge-recombination of the silicon solar cells cut by grinding wheels is reduced compared with that cut by laser. As a result, statistical analysis of the device performance reveals that both the open-circuit voltage and fill factor of the device are improved, and the average photoelectric conversion efficiency increases by an absolute efficiency of ~1%. Stacking the obtained silicon cells with the normal transparent perovskite solar cells, the obtained four-terminal perovskite/silicon tandem solar cells deliver an efficiency of over 28%. This work emphasizes the importance of reducing efficiency loss during manufacturing the heterojunction silicon solar cell in fabricating high-performance silicon-based tandem solar cells.
      Corresponding author: Qin Xiao-Jun, xj_qin@qny.chng.com.cn ; Xie Li-Qiang, lqxie@hqu.edu.cn ; Wei Zhan-Hua, weizhanhua@hqu.edu.cn
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U21A2078) and the National Natural Science Foundation of China (Grant No. 22179042).
    [1]

    Binetti S, Acciarri M, Le Donne A, Morgano M, Jestin Y 2013 Int. J. Photoenergy 2013 249502Google Scholar

    [2]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nat. Energy 2 17032Google Scholar

    [3]

    Andreani L C, Bozzola A, Kowalczewski P, Liscidini M, Redorici L 2019 Adv. Phys. X. 4 1548305Google Scholar

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [5]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [6]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234Google Scholar

    [7]

    Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photonics 13 460Google Scholar

    [8]

    National Renewable Energy Laboratory 2022 Research Cell Efficienc Recordshttps://www.nrel.gov/pv/cell-efficiency.html (accessed December, 2022)

    [9]

    Wang R, Huang T, Xue J, Tong J, Zhu K, Yang Y 2021 Nat. Photonics 15 411Google Scholar

    [10]

    Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C 2016 Science 352 aad4424Google Scholar

    [11]

    Jošt M, Kegelmann L, Korte L, Albrecht S 2020 Adv. Energy Mater. 10 1904102Google Scholar

    [12]

    Liu N, Wang L, Xu F, Wu J, Song T, Chen Q 2020 Front. Chem. 8 603375Google Scholar

    [13]

    Aydin E, Allen T G, De Bastiani M, Xu L, Ávila J, Salvador M, Van Kerschaver E, De Wolf S 2020 Nat. Energy 5 851Google Scholar

    [14]

    Fu F, Li J, Yang T C-J, Liang H, Faes A, Jeangros Q, Ballif C, Hou Y 2022 Adv. Mater. 34 2106540Google Scholar

    [15]

    Coletti G, Luxembourg S L, Geerligs L J, et al. 2020 ACS Energy Lett. 5 1676Google Scholar

    [16]

    Kothandaraman R K, Jiang Y, Feurer T, Tiwari A N, Fu F 2020 Small Methods 4 2000395Google Scholar

    [17]

    Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828Google Scholar

    [18]

    Kim C U, Jung E D, Noh Y W, Seo S K, Choi Y, Park H, Song M H, Choi K J 2021 EcoMat 3 e12084Google Scholar

    [19]

    Chen C, Song Z, Xiao C, Awni R A, Yao C, Shrestha N, Li C, Bista S S, Zhang Y, Chen L, Ellingson R J, Jiang C-S, Al-Jassim M, Fang G, Yan Y 2020 ACS Energy Lett. 5 2560Google Scholar

    [20]

    Wang D, Guo H, Wu X, Deng X, Li F, Li Z, Lin F, Zhu Z, Zhang Y, Xu B, Jen A K-Y 2022 Adv. Funct. Mater. 32 2107359Google Scholar

    [21]

    Chen B, Baek S-W, Hou Y, Aydin E, et al. 2020 Nat. Commun. 11 1257Google Scholar

    [22]

    Ying Z, Yang X, Zheng J, Zhu Y, Xiu J, Chen W, Shou C, Sheng J, Zeng Y, Yan B, Pan H, Ye J, He Z 2021 J. Mater. Chem. A 9 12009Google Scholar

    [23]

    Wang Z, Zhu X, Zuo S, Chen M, Zhang C, Wang C, Ren X, Yang Z, Liu Z, Xu X, Chang Q, Yang S, Meng F, Liu Z, Yuan N, Ding J, Liu S, Yang D 2020 Adv. Funct. Mater. 30 1908298Google Scholar

    [24]

    Tong J, Jiang Q, Zhang F, Kang S B, Kim D H, Zhu K 2020 ACS Energy Lett. 6 232Google Scholar

    [25]

    Anaya M, Lozano G, Calvo M E, Míguez H 2017 Joule 1 769Google Scholar

    [26]

    Chen B, Ren N, Li Y, Yan L, Mazumdar S, Zhao Y, Zhang X 2021 Adv. Energy Mater. 11 2100856Google Scholar

    [27]

    王其, 延玲玲, 陈兵兵, 李仁杰, 王三龙, 王鹏阳, 黄茜, 许盛之, 侯国付, 陈新亮, 李跃龙, 丁毅, 张德坤, 王广才, 赵颖, 张晓丹 2021 物理学报 70 057802Google Scholar

    Wang Q, Yan L L, Chen B B, Li R J, Wang S L, Wang P Y, Hang Q, Xu S Z, Hou G F, Chen X L, Li Y L, Ding Y, Zhang D K, Wang G C, Zhao Y, Zhang X D 2021 Acta Phys. Sin. 70 057802Google Scholar

    [28]

    Chen K C, Su Y K, Lin C L, Hsu H C 2011 J. Lightwave Technol. 29 1907Google Scholar

    [29]

    Rauscher P, Hauptmann J, Beyer E 2013 Phys. Procedia 41 312Google Scholar

    [30]

    Park J, Dao V A, Kim S, Pham D P, Kim S, Le A H T, Kang J, Yi J 2018 Sci. Rep. 8 15386Google Scholar

    [31]

    Li M, Chen J, Lin Q, Wu Y, Mu D 2019 Diam. Relat. Mater. 97 107440Google Scholar

    [32]

    Gurevich E L, Gurevich S V 2014 Appl. Surf. Sci. 302 118Google Scholar

    [33]

    He Z, Xiong J, Dai Q, Yang B, Zhang J, Xiao S 2020 Nanoscale 12 6767Google Scholar

    [34]

    Lian X, Chen J, Shan S, Wu G, Chen H 2020 ACS Appl. Mater. Interfaces 12 46340Google Scholar

  • 图 1  (a) HIT电池的结构示意图; (b) HIT电池切割前后示意图; (c)—(f) 激光切割优化后的器件性能 (c)VOC, (d) JSC, (e) FF, (f) PCE

    Figure 1.  (a) The structure of HIT silicon solar cell; (b) optical image of HIT silicon solar cell before and after cutting; (c)–(f) device performance after laser cutting: (c)VOC, (d) JSC, (e) FF, (f) PCE.

    图 2  砂轮黏合剂的种类对切割后HIT电池性能的影响 (a)VOC; (b) JSC; (c) FF; (d) PCE

    Figure 2.  The influence of different grinding wheel adhesives on the performance of HIT silicon cells after cutting: (a) VOC; (b) JSC; (c) FF; (d) PCE.

    图 3  Cu-Sn刀具中金刚石磨粒的粒度对切割后HIT电池性能的影响 (a) VOC; (b) JSC; (c) FF; (d) PCE

    Figure 3.  Influence of diamond particle size in Cu-Sn cutter on the performance of HIT silicon solar cell after cutting: (a) VOC; (b) JSC; (c) FF; (d) PCE.

    图 4  砂轮划片机切割与激光切割后HIT电池截面形貌和粗糙度对比 (a), (b)截面形貌; (c), (d)截面局部放大图; (e), (f)三维轮廓图

    Figure 4.  Comparison of cross-sectional SEM images and roughness of HIT silicon solar cell after grinding wheel and laser cutting: (a), (b) Cross-sectional morphology; (c), (d) partial magnification of cross-section morphology; (e), (f) 3 D outline of the cross-section.

    图 5  切割后HIT电池的载流子复合动力学 (a) 在0.05 V偏压和黑暗条件下测得器件EIS; (b) 器件的暗态J-V曲线; (c) 瞬态光电压; (d) 瞬态光电流; (e) 短路电流密度与光强的关系; (f)开路电压与光强的关系

    Figure 5.  Charge recombination kinetics of silicon solar cells after cutting: (a) Electrochemical impedance spectra of devices measured in the dark at 0.05 V bias; (b) dark J-V curves of the devices; (c) TPV; (d) TPC; (e) relationship between JSC and light intensity; (f) relationship between VOC and light intensity.

    图 6  (a) 4T-TSCs结构示意图; (b) ST-PSCs的截面SEM形貌; (c) 切割后HIT硅电池的J-V曲线; (d) 4T-TSCs的EQE曲线; (e) 4T-TSCs的J-V曲线

    Figure 6.  (a) Schematic diagram of the structure of 4T-TSCs; (b) cross-sectional SEM image of ST-PSC; (c) J-V curve of HIT silicon solar cell after cutting; (d) EQE curves of 4T-TSCs; (e) J-V curves of 4T-TSCs.

    表 1  切割前与不同激光功率切割后对应HIT电池的最优性能

    Table 1.  Optimal performance of HIT silicon solar cell before and after cutting with different laser power.

    Laser
    power
    VOC/VJSC/(mA·cm–2)FF/%PCE/%
    Before
    cutting
    0.73139.4682.6123.83
    9 W0.70338.7974.3620.29
    12 W0.70139.2775.8320.88
    15 W0.69739.6273.9020.41
    18 W0.69939.5374.2420.52
    DownLoad: CSV

    表 2  不同砂轮黏合剂所对应切割后HIT电池最优器件的性能

    Table 2.  Optimal performance of HIT silicon solar cell after cutting with different grinding wheel adhesives.

    AdhesivesJSC /(mA·cm–2)VOC /VFF/%PCE /%
    Nickel plating39.450.69570.6419.37
    Cu-Sn39.470.71675.9821.47
    resin38.980.70976.1521.04
    DownLoad: CSV

    表 3  Cu-Sn刀具中金刚石磨粒的粒度对应切割后HIT电池最优器件的性能

    Table 3.  The influence of the size of diamond abrasive in Cu-Sn cutter on the performance of HIT silicon solar cells after cutting.

    Particle sizeVOC/VJSC /(mA·cm–2)FF/%PCE/%
    #4000.70339.2373.4820.28
    #8000.71639.4575.9821.47
    #20000.70439.5278.3721.81
    #30000.71239.3576.2121.34
    DownLoad: CSV

    表 4  4 T-TSCs的详细J-V参数

    Table 4.  Detailed J-V parameters of 4 T-TSCs.

    DeviceVOC/VJSC/
    (mA·cm–2)
    FF/%PCE/%
    Silicon cell (filtered by
    ST-PSC)
    0.68016.8779.049.08
    ST-PSCs1.20720.2278.8119.25
    4 T-TSCs28.33
    DownLoad: CSV
  • [1]

    Binetti S, Acciarri M, Le Donne A, Morgano M, Jestin Y 2013 Int. J. Photoenergy 2013 249502Google Scholar

    [2]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nat. Energy 2 17032Google Scholar

    [3]

    Andreani L C, Bozzola A, Kowalczewski P, Liscidini M, Redorici L 2019 Adv. Phys. X. 4 1548305Google Scholar

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [5]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [6]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234Google Scholar

    [7]

    Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photonics 13 460Google Scholar

    [8]

    National Renewable Energy Laboratory 2022 Research Cell Efficienc Recordshttps://www.nrel.gov/pv/cell-efficiency.html (accessed December, 2022)

    [9]

    Wang R, Huang T, Xue J, Tong J, Zhu K, Yang Y 2021 Nat. Photonics 15 411Google Scholar

    [10]

    Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C 2016 Science 352 aad4424Google Scholar

    [11]

    Jošt M, Kegelmann L, Korte L, Albrecht S 2020 Adv. Energy Mater. 10 1904102Google Scholar

    [12]

    Liu N, Wang L, Xu F, Wu J, Song T, Chen Q 2020 Front. Chem. 8 603375Google Scholar

    [13]

    Aydin E, Allen T G, De Bastiani M, Xu L, Ávila J, Salvador M, Van Kerschaver E, De Wolf S 2020 Nat. Energy 5 851Google Scholar

    [14]

    Fu F, Li J, Yang T C-J, Liang H, Faes A, Jeangros Q, Ballif C, Hou Y 2022 Adv. Mater. 34 2106540Google Scholar

    [15]

    Coletti G, Luxembourg S L, Geerligs L J, et al. 2020 ACS Energy Lett. 5 1676Google Scholar

    [16]

    Kothandaraman R K, Jiang Y, Feurer T, Tiwari A N, Fu F 2020 Small Methods 4 2000395Google Scholar

    [17]

    Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828Google Scholar

    [18]

    Kim C U, Jung E D, Noh Y W, Seo S K, Choi Y, Park H, Song M H, Choi K J 2021 EcoMat 3 e12084Google Scholar

    [19]

    Chen C, Song Z, Xiao C, Awni R A, Yao C, Shrestha N, Li C, Bista S S, Zhang Y, Chen L, Ellingson R J, Jiang C-S, Al-Jassim M, Fang G, Yan Y 2020 ACS Energy Lett. 5 2560Google Scholar

    [20]

    Wang D, Guo H, Wu X, Deng X, Li F, Li Z, Lin F, Zhu Z, Zhang Y, Xu B, Jen A K-Y 2022 Adv. Funct. Mater. 32 2107359Google Scholar

    [21]

    Chen B, Baek S-W, Hou Y, Aydin E, et al. 2020 Nat. Commun. 11 1257Google Scholar

    [22]

    Ying Z, Yang X, Zheng J, Zhu Y, Xiu J, Chen W, Shou C, Sheng J, Zeng Y, Yan B, Pan H, Ye J, He Z 2021 J. Mater. Chem. A 9 12009Google Scholar

    [23]

    Wang Z, Zhu X, Zuo S, Chen M, Zhang C, Wang C, Ren X, Yang Z, Liu Z, Xu X, Chang Q, Yang S, Meng F, Liu Z, Yuan N, Ding J, Liu S, Yang D 2020 Adv. Funct. Mater. 30 1908298Google Scholar

    [24]

    Tong J, Jiang Q, Zhang F, Kang S B, Kim D H, Zhu K 2020 ACS Energy Lett. 6 232Google Scholar

    [25]

    Anaya M, Lozano G, Calvo M E, Míguez H 2017 Joule 1 769Google Scholar

    [26]

    Chen B, Ren N, Li Y, Yan L, Mazumdar S, Zhao Y, Zhang X 2021 Adv. Energy Mater. 11 2100856Google Scholar

    [27]

    王其, 延玲玲, 陈兵兵, 李仁杰, 王三龙, 王鹏阳, 黄茜, 许盛之, 侯国付, 陈新亮, 李跃龙, 丁毅, 张德坤, 王广才, 赵颖, 张晓丹 2021 物理学报 70 057802Google Scholar

    Wang Q, Yan L L, Chen B B, Li R J, Wang S L, Wang P Y, Hang Q, Xu S Z, Hou G F, Chen X L, Li Y L, Ding Y, Zhang D K, Wang G C, Zhao Y, Zhang X D 2021 Acta Phys. Sin. 70 057802Google Scholar

    [28]

    Chen K C, Su Y K, Lin C L, Hsu H C 2011 J. Lightwave Technol. 29 1907Google Scholar

    [29]

    Rauscher P, Hauptmann J, Beyer E 2013 Phys. Procedia 41 312Google Scholar

    [30]

    Park J, Dao V A, Kim S, Pham D P, Kim S, Le A H T, Kang J, Yi J 2018 Sci. Rep. 8 15386Google Scholar

    [31]

    Li M, Chen J, Lin Q, Wu Y, Mu D 2019 Diam. Relat. Mater. 97 107440Google Scholar

    [32]

    Gurevich E L, Gurevich S V 2014 Appl. Surf. Sci. 302 118Google Scholar

    [33]

    He Z, Xiong J, Dai Q, Yang B, Zhang J, Xiao S 2020 Nanoscale 12 6767Google Scholar

    [34]

    Lian X, Chen J, Shan S, Wu G, Chen H 2020 ACS Appl. Mater. Interfaces 12 46340Google Scholar

  • [1] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] Yao Mei-Ling, Liao Ji-Xing, Lu Hao-Feng, Huang Qiang, Cui Yan-Feng, Li Xiang, Yang Xue-Ying, Bai Yang. Key issues and solutions affecting efficiency and stability of perovskite/heterojunction tandem solar cells. Acta Physica Sinica, 2024, 73(8): 088801. doi: 10.7498/aps.73.20231977
    [3] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [4] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [5] Zhang Mei-Rong, Zhu Zeng-Wei, Yang Xiao-Qin, Yu Tong-Xu, Yu Xiao-Qi, Lu Di, Li Shun-Feng, Zhou Da-Yong, Yang Hui. Research progress of perovskite/crystalline silicon tandem solar cells with efficiency of over 30%. Acta Physica Sinica, 2023, 72(5): 058801. doi: 10.7498/aps.72.20222019
    [6] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [7] Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells. Acta Physica Sinica, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [8] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [9] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [10] Gan Yong-Jin, Jiang Qu-Bo, Qin Bin-Yi, Bi Xue-Guang, Li Qing-Liu. Carrier transport layers of tin-based perovskite solar cells. Acta Physica Sinica, 2021, 70(3): 038801. doi: 10.7498/aps.70.20201219
    [11] Wang Qi, Yan Ling-Ling, Chen Bing-Bing, Li Ren-Jie, Wang San-Long, Wang Peng-Yang, Huang Qian, Xu Sheng-Zhi, Hou Guo-Fu, Chen Xin-Liang, Li Yue-Long, Ding Yi, Zhang De-Kun, Wang Guang-Cai, Zhao Ying, Zhang Xiao-Dan. Perovskite/silicon heterojunction tandem solar cells: Advances in optical simulation. Acta Physica Sinica, 2021, 70(5): 057802. doi: 10.7498/aps.70.20201585
    [12] Zhang Ao, Zhang Chun-Xiu, Chen Yun-Lin, Zhang Chun-Mei, Meng Tao. Theoretical study of photovoltaic performance for inverted halide perovskite solar cells. Acta Physica Sinica, 2020, 69(11): 118801. doi: 10.7498/aps.69.20200089
    [13] Wang Ji-Ming, Chen Ke, Xie Wei-Guang, Shi Ting-Ting, Liu Peng-Yi, Zheng Yi-Fan, Zhu Rui. Research progress of solution processed all-inorganic perovskite solar cell. Acta Physica Sinica, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [14] Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun. Perovskite solar cells passivated by distorted two-dimensional structure. Acta Physica Sinica, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [15] Xia Jun-Min, Liang Chao, Xing Gui-Chuan. Inkjet printed perovskite solar cells: progress and prospects. Acta Physica Sinica, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [16] Chen Jun-Fan, Ren Hui-Zhi, Hou Fu-Hua, Zhou Zhong-Xin, Ren Qian-Shang, Zhang De-Kun, Wei Chang-Chun, Zhang Xiao-Dan, Hou Guo-Fu, Zhao Ying. Passivation optimization and performance improvement of planar a-Si:H/c-Si heterojunction cells in perovskite/silicon tandem solar cells. Acta Physica Sinica, 2019, 68(2): 028101. doi: 10.7498/aps.68.20181759
    [17] Fan Wei-Li, Yang Zong-Lin, Zhang Zhen-Yun, Qi Jun-Jie. Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. Acta Physica Sinica, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [18] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [19] Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo. S-shaped current-voltage characteristics in perovskite solar cell. Acta Physica Sinica, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [20] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
Metrics
  • Abstract views:  3200
  • PDF Downloads:  97
  • Cited By: 0
Publishing process
  • Received Date:  19 November 2022
  • Accepted Date:  17 December 2022
  • Available Online:  26 December 2022
  • Published Online:  05 March 2023

/

返回文章
返回