Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of Fe doping on electronic structure and optical properties of two-dimensional CuI

ZHANG Zhuli ZHANG Fan WANG Kailei LI Chao WANG Jintao

Citation:

Effect of Fe doping on electronic structure and optical properties of two-dimensional CuI

ZHANG Zhuli, ZHANG Fan, WANG Kailei, LI Chao, WANG Jintao
cstr: 32037.14.aps.74.20241325
PDF
HTML
Get Citation
  • The effects of different concentrations of Fe doping on the photoelectric properties of two-dimensional (2D) CuI semiconductor are studied based on the first-principles calculation method. The results show that both intrinsic 2D CuI and Fe-doped 2D CuI are direct band gap semiconductors. The total state density and partial wave state density of 2D CuI doped with different concentrations of Fe show that the increase in the number of energy bands at Fermi level is due to the influence of Fe-d and Fe-p orbital contributions after Fe doping, which can improve the conductivity of 2D CuI. With the increase of Fe doping concentration, the peak value of ε1 decreases gradually, and the peak value moves toward the high-energy end near the relatively high energy 3 eV and 6 eV, and the greater the concentration, the more obvious the shift is. These results indicate that Fe doping can enhance the high temperature resistance of 2D CuI. When a small amount of Fe is doped, the ε2 peak value increases, indicating that the ability of material to absorb electromagnetic waves is enhanced, which can stimulate more conductive electrons, and with the increase of Fe doping concentration, the absorption capability decreases, so the conductivity of 2D CuI is inhibited. The absorption coefficient of intrinsic 2D CuI and Fe-doped 2D CuI indicate that the semiconductor has strong ability to absorb photons in the ultraviolet region. The 2D CuI reflection coefficient of doped Fe atoms increases gradually with the increase of metallic properties of doped elements. This study provides theoretical reference for applying the 2D semiconductor materials and 2D CuI to optoelectronic devices. All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00060.
      Corresponding author: ZHANG Zhuli, zlzhang2023@163.com
    • Funds: Project supported by the Major Science and Technology Special Program “Unveiling the List and Leading the Way” Project of Shanxi Province, China (Grant No. 202201030201008).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Liu A, Zhu H, Kim M G, Kim J, Noh Y Y 2021 Adv. Sci. 8 2100546Google Scholar

    [3]

    杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长 2024 无机材料学报 39 1063Google Scholar

    Yang J L, Wang L J, Ruan S Y, Jiang X L, Yang C 2024 J. Inorg. Mater. 39 1063Google Scholar

    [4]

    苏和堂, 赵玉霞, 丁健, 董可秀, 于文娟, 何烨 2017 中国科学技术大学学报 47 621Google Scholar

    Su H T, Zhao Y X, Ding J, Dong K X, Yu W J, He Y 2017 J. Univ. Sci. Technol. Chin. 47 621Google Scholar

    [5]

    吴海娟 2021 硕士学位论文 (浙江: 宁波大学)

    Wu H J 2021 M. S. Thesis (Zhejiang: Ningbo University

    [6]

    张蕾, 刘小林, 郝书童, 顾牡, 李乾利, 黄世明, 张娟楠 2019 人工晶体学报 48 1405

    Zhang L, Liu X L, Hao S T, Gu M, Li Q L, Huang S M, Zhang J N 2019 J. Synth. Cryst. 48 1405

    [7]

    Kumar S, Battabyal M, Sethupathi K, Satapathy D K 2022 Phys. Chem. Chem. Phys. 39 24228

    [8]

    Li Y W, Sun J F, Singh D J 2018 Phys. Rev. Mater. 2 035003Google Scholar

    [9]

    Ali S M, Almohammedi A, AlGarawi M S, AlGhamdi S S, Kassim H, Almutairi F N, Mahmood A, Saeed K 2023 J. Mater. Sci. -Mater. Electron. 34 125Google Scholar

    [10]

    Yamada N, Ino R, Ninomiya Y 2016 Chem. Mater. 28 4971Google Scholar

    [11]

    Tilemachou A, Zervos M, Othonos A, Pavloudis T, Kioseoglou J 2022 Electron. Mater. 3 15Google Scholar

    [12]

    Ayhan M E, Shinde M, Todankar B, Desai P, Ranade A K, Tanemura M, Kalita G 2020 Mater. Lett. 262 127074Google Scholar

    [13]

    Annadi A, Zhang N, Lim D B K , Gong H 2019 ACS Appl. Electron. Mater. 1 1029

    [14]

    Wang M X, Wei H M, Wu Y Q, Yang C , Han P G, Juan F Y, Chen Y, Xu F, Cao B Q 2019 Physica B 573 45

    [15]

    Chinnakutti K K, Panneerselvam V, Govindarajan D, Soman A K, Parasuraman K, Salammal S T 2019 Prog. Nat. Sci. Mater. Int. 29 533Google Scholar

    [16]

    Li M, Zhang Z , Zhao Q, Huang M, Ouyang X 2023 RSC Adv. 13 9615

    [17]

    Yao K K, Chen P, Zhang Z W, Li J, Ai R Q, Ma H F, Zhao B, Sun G Z, Wu R X, Tang X W, Hu J W, Duan X D 2018 npj 2D Mater. Appl. 2 16Google Scholar

    [18]

    Xu J Y, Chen A L, Yu L F, Wei D H, Tian Q K, Wang H M, Qin Z Z, Qin G Z 2022 Nanoscale 14 17401Google Scholar

    [19]

    Lee G, Lee Y J, Palotás K, Lee T, Soon A 2020 J. Phys. Chem. C 124 16362Google Scholar

    [20]

    黄蕾, 刘文亮, 邓超生 2018 物理学报 67 136101Google Scholar

    Huang L, Liu W L, Deng C S 2018 Acta Phys. Sin. 67 136101Google Scholar

    [21]

    李佳宏, 郝增瑞, 薛瑞鑫, 阚红梅, 关玉琴 2025 原子与分子物理学报 42 046002

    Li J H, Hao Z R, Xue R X, Kan H M, Guan Y Q 2025 J. At. Mol. Phys. 42 046002

    [22]

    叶建峰, 秦铭哲, 肖清泉, 王傲霜, 何安娜, 谢泉 2021 物理学报 70 227301Google Scholar

    Ye J F, Qing M Z, Xiao Q Q, Wang A S, He A N, Xie Q 2021 Acta Phys. Sin. 70 227301Google Scholar

    [23]

    Hao S, Liu X, Gu M, Li Q 2021 The Tenth International Symposium on Ultrafast Phenomena and Terahertz Waves Chengdu, China, September, 2021 p64

    [24]

    Hao S, Liu X, Gu M, Zhu J 2021 Results Phys. 26 104461Google Scholar

    [25]

    Krishnaiah M, Kuma A, Mishra D, Kumar N, Song J, Jin S H 2023 Mater. Lett. 340 134112Google Scholar

    [26]

    Taunk M, Kumar S, Aherwar A, Seo Y 2024 J. Phys. Chem. Solids 184 111703Google Scholar

    [27]

    宋娟, 贺腾 2019 原子与分子物理学报 39 032003

    Song J, He T 2019 J. At. Mol. Phys. 39 032003

    [28]

    王一, 宋娟, 黄泽琛, 江玉琪, 罗珺茜, 郭祥 2021 电子元件与材料 40 1202

    Wang Y, Song J, Huang Z C, Jiang Y Q, Luo J Q, Guo X 2021 Electron. Compon. Mater. 40 1202

    [29]

    王一, 姚登浪, 宋娟, 王继红, 罗子江, 丁召, 郭祥 2022 功能材料 53 1112Google Scholar

    Wang Y, Yao D L, Song J, Wang J H, Luo Z J, Ding Z, Guo X 2022 Funct. Mater. 53 1112Google Scholar

    [30]

    Li B, Xing T, Zhong M Z, Huang L, Lei N, Zhang J, Li J B, Wei Z M 2017 Nat. Commun. 8 1958Google Scholar

    [31]

    Mishra N, Pandey B P, Kumar S 2022 IEEE Trans. Electron Devices 69 1553Google Scholar

    [32]

    王少霞, 赵旭才, 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 刘桂安, 雷博程, 黄以能, 张丽丽 2020 物理学报 19 197101Google Scholar

    Wang S X, Zhao X C, Pan D Q, Pang G W, Liu C X, Shi L Q, Liu G A, Lei B C, Huang Y N, Zhang L L 2020 Acta Phys. Sin. 19 197101Google Scholar

    [33]

    Zhou Y G , Xiao-Dong J, Wang Z G , Xiao H Y, Gao F, Zu X T 2010 Phys. Chem. Chem. Phys. 12 7588Google Scholar

    [34]

    Sevinçli H, Topsakal M, Durgun E, Ciraci S 2008 Phys. Rev. B 77 3107

  • 图 1  体CuI晶体结构示意图

    Figure 1.  Schematic crystal structure of CuI.

    图 2  二维CuI及不同浓度Fe掺杂后的计算结构图 (a) 本征二维CuI; (b) 6.25% Fe:CuI; (c) 12.5% Fe:CuI; (d) 25%Fe:CuI

    Figure 2.  Calculation structure of two-dimensional CuI and Fe doping with different concentrations: (a) Intrinsic two-dimensional CuI; (b) 6.25% Fe:CuI; (c) 12.5% Fe:CuI; (d) 25%Fe:CuI.

    图 3  二维CuI及不同浓度Fe掺杂后的能带结构图 (a)本征二维CuI; (b) 25%Fe:CuI; (c) 12.5%Fe:CuI; (d) 6.25%Fe:CuI

    Figure 3.  Band structure of 2D CuI and Fe doping with different concentrations: (a) Intrinsic two-dimensional CuI; (b) 25%Fe:CuI; (c) 12.5%Fe:CuI; (d) 6.25%Fe:CuI.

    图 4  本征二维CuI及不同浓度Fe掺杂的二维CuI结构的总态密度和分波态密度图 (a)本征二维CuI; (b) 6.25% Fe:CuI; (c) 12.5% Fe:CuI; (d) 25%Fe:CuI

    Figure 4.  Total state density and fractional state density of intrinsic two-dimensional CuI and two-dimensional CuI structures doped with different concentrations of Fe: (a) Intrinsic two-dimensional CuI; (b) 6.25% Fe:CuI; (c) 12.5% Fe:CuI; (d) 25%Fe:CuI.

    图 5  本征二维CuI与不同浓度Fe掺杂后二维CuI的介电函数 (a) 介电函数实部; (b) 介电函数虚部

    Figure 5.  Dielectric function of intrinsic two-dimensional CuI doped with different concentrations of Fe: (a) Real part of the dielectric function; (b) imaginary part of the dielectric function.

    图 6  本征二维CuI与不同浓度下Fe掺杂后二维CuI的吸收和反射系数 (a) 吸收系数; (b) 反射系数

    Figure 6.  Absorption and reflection coefficients of intrinsic two-dimensional CuI doped with Fe at different concentrations: (a) Absorption coefficient; (b) reflection coefficient.

    表 1  本征二维CuI及不同浓度Fe掺杂的二维CuI的键长与键布居

    Table 1.  Bond length and bond population of intrinsic two-dimensional CuI and Fe-doped two-dimensional CuI with different concentrations.

    不同结构 键型 键长/Å 键布居
    2D-CuICu—I2.5411.25
    25% Fe-2D-CuICu—I2.5620.38
    Fe—I2.4960.50
    12.5% Fe-2D-CuICu—I2.5480.39
    Fe—I2.4980.44
    6.25% Fe-2D-CuICu—I2.5560.39
    Fe—I2.5350.44
    DownLoad: CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Liu A, Zhu H, Kim M G, Kim J, Noh Y Y 2021 Adv. Sci. 8 2100546Google Scholar

    [3]

    杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长 2024 无机材料学报 39 1063Google Scholar

    Yang J L, Wang L J, Ruan S Y, Jiang X L, Yang C 2024 J. Inorg. Mater. 39 1063Google Scholar

    [4]

    苏和堂, 赵玉霞, 丁健, 董可秀, 于文娟, 何烨 2017 中国科学技术大学学报 47 621Google Scholar

    Su H T, Zhao Y X, Ding J, Dong K X, Yu W J, He Y 2017 J. Univ. Sci. Technol. Chin. 47 621Google Scholar

    [5]

    吴海娟 2021 硕士学位论文 (浙江: 宁波大学)

    Wu H J 2021 M. S. Thesis (Zhejiang: Ningbo University

    [6]

    张蕾, 刘小林, 郝书童, 顾牡, 李乾利, 黄世明, 张娟楠 2019 人工晶体学报 48 1405

    Zhang L, Liu X L, Hao S T, Gu M, Li Q L, Huang S M, Zhang J N 2019 J. Synth. Cryst. 48 1405

    [7]

    Kumar S, Battabyal M, Sethupathi K, Satapathy D K 2022 Phys. Chem. Chem. Phys. 39 24228

    [8]

    Li Y W, Sun J F, Singh D J 2018 Phys. Rev. Mater. 2 035003Google Scholar

    [9]

    Ali S M, Almohammedi A, AlGarawi M S, AlGhamdi S S, Kassim H, Almutairi F N, Mahmood A, Saeed K 2023 J. Mater. Sci. -Mater. Electron. 34 125Google Scholar

    [10]

    Yamada N, Ino R, Ninomiya Y 2016 Chem. Mater. 28 4971Google Scholar

    [11]

    Tilemachou A, Zervos M, Othonos A, Pavloudis T, Kioseoglou J 2022 Electron. Mater. 3 15Google Scholar

    [12]

    Ayhan M E, Shinde M, Todankar B, Desai P, Ranade A K, Tanemura M, Kalita G 2020 Mater. Lett. 262 127074Google Scholar

    [13]

    Annadi A, Zhang N, Lim D B K , Gong H 2019 ACS Appl. Electron. Mater. 1 1029

    [14]

    Wang M X, Wei H M, Wu Y Q, Yang C , Han P G, Juan F Y, Chen Y, Xu F, Cao B Q 2019 Physica B 573 45

    [15]

    Chinnakutti K K, Panneerselvam V, Govindarajan D, Soman A K, Parasuraman K, Salammal S T 2019 Prog. Nat. Sci. Mater. Int. 29 533Google Scholar

    [16]

    Li M, Zhang Z , Zhao Q, Huang M, Ouyang X 2023 RSC Adv. 13 9615

    [17]

    Yao K K, Chen P, Zhang Z W, Li J, Ai R Q, Ma H F, Zhao B, Sun G Z, Wu R X, Tang X W, Hu J W, Duan X D 2018 npj 2D Mater. Appl. 2 16Google Scholar

    [18]

    Xu J Y, Chen A L, Yu L F, Wei D H, Tian Q K, Wang H M, Qin Z Z, Qin G Z 2022 Nanoscale 14 17401Google Scholar

    [19]

    Lee G, Lee Y J, Palotás K, Lee T, Soon A 2020 J. Phys. Chem. C 124 16362Google Scholar

    [20]

    黄蕾, 刘文亮, 邓超生 2018 物理学报 67 136101Google Scholar

    Huang L, Liu W L, Deng C S 2018 Acta Phys. Sin. 67 136101Google Scholar

    [21]

    李佳宏, 郝增瑞, 薛瑞鑫, 阚红梅, 关玉琴 2025 原子与分子物理学报 42 046002

    Li J H, Hao Z R, Xue R X, Kan H M, Guan Y Q 2025 J. At. Mol. Phys. 42 046002

    [22]

    叶建峰, 秦铭哲, 肖清泉, 王傲霜, 何安娜, 谢泉 2021 物理学报 70 227301Google Scholar

    Ye J F, Qing M Z, Xiao Q Q, Wang A S, He A N, Xie Q 2021 Acta Phys. Sin. 70 227301Google Scholar

    [23]

    Hao S, Liu X, Gu M, Li Q 2021 The Tenth International Symposium on Ultrafast Phenomena and Terahertz Waves Chengdu, China, September, 2021 p64

    [24]

    Hao S, Liu X, Gu M, Zhu J 2021 Results Phys. 26 104461Google Scholar

    [25]

    Krishnaiah M, Kuma A, Mishra D, Kumar N, Song J, Jin S H 2023 Mater. Lett. 340 134112Google Scholar

    [26]

    Taunk M, Kumar S, Aherwar A, Seo Y 2024 J. Phys. Chem. Solids 184 111703Google Scholar

    [27]

    宋娟, 贺腾 2019 原子与分子物理学报 39 032003

    Song J, He T 2019 J. At. Mol. Phys. 39 032003

    [28]

    王一, 宋娟, 黄泽琛, 江玉琪, 罗珺茜, 郭祥 2021 电子元件与材料 40 1202

    Wang Y, Song J, Huang Z C, Jiang Y Q, Luo J Q, Guo X 2021 Electron. Compon. Mater. 40 1202

    [29]

    王一, 姚登浪, 宋娟, 王继红, 罗子江, 丁召, 郭祥 2022 功能材料 53 1112Google Scholar

    Wang Y, Yao D L, Song J, Wang J H, Luo Z J, Ding Z, Guo X 2022 Funct. Mater. 53 1112Google Scholar

    [30]

    Li B, Xing T, Zhong M Z, Huang L, Lei N, Zhang J, Li J B, Wei Z M 2017 Nat. Commun. 8 1958Google Scholar

    [31]

    Mishra N, Pandey B P, Kumar S 2022 IEEE Trans. Electron Devices 69 1553Google Scholar

    [32]

    王少霞, 赵旭才, 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 刘桂安, 雷博程, 黄以能, 张丽丽 2020 物理学报 19 197101Google Scholar

    Wang S X, Zhao X C, Pan D Q, Pang G W, Liu C X, Shi L Q, Liu G A, Lei B C, Huang Y N, Zhang L L 2020 Acta Phys. Sin. 19 197101Google Scholar

    [33]

    Zhou Y G , Xiao-Dong J, Wang Z G , Xiao H Y, Gao F, Zu X T 2010 Phys. Chem. Chem. Phys. 12 7588Google Scholar

    [34]

    Sevinçli H, Topsakal M, Durgun E, Ciraci S 2008 Phys. Rev. B 77 3107

  • [1] Zhang Ying-Nan, Zhang Min, Zhang Pai, Hu Wen-Bo. Investigation of electronic structure and optoelectronic properties of Si-doped β-Ga2O3 using GGA+U method based on first-principle. Acta Physica Sinica, 2024, 73(1): 017102. doi: 10.7498/aps.73.20231147
    [2] Chen Guang-Ping, Yang Jin-Ni, Qiao Chang-Bing, Huang Lu-Jun, Yu Jing. First-principles calculations of local structure and electronic properties of Er3+-doped TiO2. Acta Physica Sinica, 2022, 71(24): 246102. doi: 10.7498/aps.71.20221847
    [3] Yao Yi-Zhou, Cao Dan, Yan Jie, Liu Xue-Yin, Wang Jian-Feng, Jiang Zhou-Ting, Shu Hai-Bo. A first-principles study on environmental stability and optoelectronic properties of bismuth oxychloride/ cesium lead chloride van der Waals heterojunctions. Acta Physica Sinica, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [4] Luan Li-Jun, He Yi, Wang Tao, Liu Zong-Wen. First-principles study of e interface interaction and photoelectric properties of the solar cell heterojunction CdS/CdMnTe. Acta Physica Sinica, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [5] Liu Zi-Yuan, Pan Jin-Bo, Zhang Yu-Yang, Du Shi-Xuan. First principles calculation of two-dimensional materials at an atomic scale. Acta Physica Sinica, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [6] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [7] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Structure optimization and optoelectronical property calculation for organic lead iodine perovskite solar cells. Acta Physica Sinica, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [8] Liang Ting, Wang Yang-Yang, Liu Guo-Hong, Fu Wang-Yang, Wang Huai-Zhang, Chen Jing-Fei. First-principles investigations on gas adsorption properties of V-doped monolayer MoS2. Acta Physica Sinica, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [9] Gao Li-Ke, Zhao Xian-Hao, Diao Xin-Feng, Tang Tian-Yu, Tang Yan-Lin. First-principles study of photoelectric properties of CsSnBr3 under hydrostatic pressure. Acta Physica Sinica, 2021, 70(15): 158801. doi: 10.7498/aps.70.20210397
    [10] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [11] Cheng Chao-Qun, Li Gang, Zhang Wen-Dong, Li Peng-Wei, Hu Jie, Sang Sheng-Bo, Deng Xiao. Electronic structures and optical properties of boron and phosphorus doped β-Si3N4. Acta Physica Sinica, 2015, 64(6): 067102. doi: 10.7498/aps.64.067102
    [12] Zhang Zhao-Fu, Geng Zhao-Hui, Wang Peng, Hu Yao-Qiao, Zheng Yu-Fei, Zhou Tie-Ge. Properties of 5d atoms doped boron nitride nanotubes:a first-principles calculation and molecular orbital analysis. Acta Physica Sinica, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [13] Zhang Zhao-Fu, Zhou Tie-Ge, Zuo Xu. First-principles calculations of h-BN monolayers by doping with oxygen and sulfur. Acta Physica Sinica, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [14] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [15] Liu Yue-Ying, Zhou Tie-Ge, Lu Yuan, Zuo Xu. First principles caculations of h-BN monolayer with group IA/IIA elements replacing B as impurities. Acta Physica Sinica, 2012, 61(23): 236301. doi: 10.7498/aps.61.236301
    [16] He Jie, Chen Jun, Wang Xiao-Zhong, Lin Li-Bin. The first principles study on mechanical propertiesof He doped grain boundary of Al. Acta Physica Sinica, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [17] Su Rui, He Jie, Chen Jia-Sheng, Guo Ying-Jie. First principles study of the electronic structure and photoelectric properties of rutile vanadium dioxcide. Acta Physica Sinica, 2011, 60(10): 107101. doi: 10.7498/aps.60.107101
    [18] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [19] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [20] Sun Bo, Liu Shao-Jun, Duan Su-Qing, Zhu Wen-Jun. First-principles calculations of structures, properties and high pressures effects of Fe. Acta Physica Sinica, 2007, 56(3): 1598-1602. doi: 10.7498/aps.56.1598
Metrics
  • Abstract views:  284
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  22 September 2024
  • Accepted Date:  14 November 2024
  • Available Online:  10 December 2024
  • Published Online:  20 January 2025

/

返回文章
返回