Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic and optical properties of n-pr co-doped anatase TiO2 from first-principles

Zhang Li-Li Xia Tong Liu Gui-An Lei Bo-Cheng Zhao Xu-Cai Wang Shao-Xia Huang Yi-Neng

Citation:

Electronic and optical properties of n-pr co-doped anatase TiO2 from first-principles

Zhang Li-Li, Xia Tong, Liu Gui-An, Lei Bo-Cheng, Zhao Xu-Cai, Wang Shao-Xia, Huang Yi-Neng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • ZnO is a wide bandgap semiconductor with the advantages of good stability, strong radiation resistance, and low cost. It has become a hot material in the field of photocatalysis, but it can only absorb purple light. Therefore, it is a valuable problem to study how to expand the response range of ZnO to visible light. Doping modification is a common method to solve this problem. In order to carry out the relevant research, the calculation in this paper are carried out by the CASTEP tool in Materials Studio software based on the first-principles of ultrasoft pseudopotential of density functional theory, the geometric structures of ZnO, Zn0.875Pr0.125O, ZnO0.875N0.125, Zn0.875Pr0.125O0.875N0.125, Zn0.75Pr0.25O0.875N0.125, Zn0.625Pr0.375O0.875N0.125 are constructed. All the models are based on the optimization of the geometry structure. By using the method of generalized gradient approximation plus U, we calculate the band structure, density of states, population, absorption spectra and dielectric functions of the models. The results show Co-doped system is easier to form than single-doped system, and the stability of the co-doped system increases first and then decreases with the increase of Pr concentration. The population ratio of the shortest Zn-O bond to the longest Zn-O bond in the same system increases first and then decreases with the impurity concentration, which shows that the doping of impurities has a great influence on the lattice distortion of the system, and the distortion is benefit for the separation of photogenerated hole-electron pairs. Therefore, the photocatalytic activity of the materials can be improved. Hybridization of N-2p and Pr-4f states destroys the integrity of crystals and forms crystal fields around impurity atoms, which results in splitting of energy levels and narrowing of bandgap. Compared with intrinsic ZnO, the static dielectric constant of all doped systems increases, especially the constant of Pr-N co-doped systems increases with the increase of doped Pr concentration, which indicates that the polarization ability of the co-doped systems increases with the increase of doped Pr atomic concentration. The main peaks of the dielectric function imaginary part of the doping systems move to the low energy region, and the absorption spectrums are red-shifted. As the concentration of impurity Pr atom increases, in the visible region, the absorption capacity of each co-doped system increases, their response range is enlarged in turn, showing the co-doping of N and Pr is benefit for improving the photocatalytic activity of ZnO.
    [1]

    Moon S C, Matsumura Y, Kitano M, Matsuoka M, Anpo M 2003 Res. Chem. Intermediat. 29 233

    [2]

    Zhou C, Lai C, Zhang C, Zeng G, Huang D, Cheng M, Hu L, Xiong W P, Chen M, Wang J J, Yang Y, Jiang L B 2018 Appl. Catal. B: Environ. 238 6

    [3]

    Zou J J, Chen C, Liu C J, Zhang Y P, Han Y, Cui L 2005 Mater. Lett. 59 3437

    [4]

    Fons P, Tampo H, Niki S, Kolobov A V, Ohkubo M, Tominaga J, Friedrich S, Carboni R, Boscherini F 2006 Nuclear Inst. & Methods in Physics Research B 246 75

    [5]

    Belaidi A, Dittrich T, Kieven D, Tornow J, Schwarzburg K, Kunst M, Allsop N, Lux-Steiner M C, Gavrilov S 2009 Sol. Energ. Mat. Sol. C. 93 1033

    [6]

    Krunks M, Katerski A, Dedova T, Acik I O, Mere A 2008 Sol. Energ. Mat. Sol. C. 92 1016

    [7]

    Look D C 2001 Mater. Sci. Eng. B 80 383

    [8]

    Rout C S, Krishna S H, Vivekchand S R C, Govindaraj A, Rao C N R 2006 Chem. Phys. Lett. 418 586

    [9]

    Zhang J M, Gao D, Xu K W 2012 Sci. China: Phys. Mech. 55 428

    [10]

    Lan W, Liu Y, Zhang M, Wang B, Yan H, Wang Y 2007 Mater. Lett. 61 2262

    [11]

    Li Y, Zhao X, Fan W 2015 J. Phys. Chem. C 115 3552

    [12]

    Yao Y, Cao Q 2013 Acta Metall. Sin: Engl. 26 467

    [13]

    Yu Y S, Kim G Y, Min B H, Kim S C 2004 J. Eur. Ceram. Soc. 24 1865

    [14]

    Zhang J M, Chen Z, Zhong K, Xu G, Huang Z 2014 Sci. Bull. 59 3232

    [15]

    Persson C, Platzerbjörkman C, Malmström J, Törndahl T, Edoff M 2006 Phys. Rev. Lett. 97 146403

    [16]

    Salah N, Hameed A, Aslam M, Abdel-Wahab M S, Babkair S S, Bahabri F S 2016 Chem. Eng. J. 291 115

    [17]

    Sharma S, Mehta S K, Kansal S K 2016 J. Alloy. Compd. 699 323

    [18]

    Chen L L, Lu J G, Ye Z Z, Lin Y M, Zhao B H, Ye Y M, Li J S, Zhu L P 2005 Appl. Phys. Lett. 87 2939

    [19]

    Chen J L, Devi N, Li N, Fu D J, Ke X W 2018 Chin. Phys. B 27 397

    [20]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Zeitschrift fuer Kristallographie 220 567

    [21]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Mat. 14 2717

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Pickett W E, Erwin S C, Ethridge E C 1998 Phys. Rev. B 58 1201

    [24]

    Jia X F, Hou Q Y, Xu Z C, Qu L F 2018 J. Magn. Magn. Mater. 465 128

    [25]

    Janotti A, van der Walle C G 2007 Phys. Rev. B 76 165202

    [26]

    Feng J, Xiao B, Wan C L, Qu Z X, Huang Z C, Chen J C, Zhou R, Pan W 2011 Acta Mater. 59 1742

    [27]

    Guo S, Hou Q, Xu Z, Zhao C 2016 Physica B 503 93

    [28]

    Li P, Deng S, Zhang L, Li Y, Yu J, Liu D 2010 Chinese J. Chem. Phys. 23 527

  • [1]

    Moon S C, Matsumura Y, Kitano M, Matsuoka M, Anpo M 2003 Res. Chem. Intermediat. 29 233

    [2]

    Zhou C, Lai C, Zhang C, Zeng G, Huang D, Cheng M, Hu L, Xiong W P, Chen M, Wang J J, Yang Y, Jiang L B 2018 Appl. Catal. B: Environ. 238 6

    [3]

    Zou J J, Chen C, Liu C J, Zhang Y P, Han Y, Cui L 2005 Mater. Lett. 59 3437

    [4]

    Fons P, Tampo H, Niki S, Kolobov A V, Ohkubo M, Tominaga J, Friedrich S, Carboni R, Boscherini F 2006 Nuclear Inst. & Methods in Physics Research B 246 75

    [5]

    Belaidi A, Dittrich T, Kieven D, Tornow J, Schwarzburg K, Kunst M, Allsop N, Lux-Steiner M C, Gavrilov S 2009 Sol. Energ. Mat. Sol. C. 93 1033

    [6]

    Krunks M, Katerski A, Dedova T, Acik I O, Mere A 2008 Sol. Energ. Mat. Sol. C. 92 1016

    [7]

    Look D C 2001 Mater. Sci. Eng. B 80 383

    [8]

    Rout C S, Krishna S H, Vivekchand S R C, Govindaraj A, Rao C N R 2006 Chem. Phys. Lett. 418 586

    [9]

    Zhang J M, Gao D, Xu K W 2012 Sci. China: Phys. Mech. 55 428

    [10]

    Lan W, Liu Y, Zhang M, Wang B, Yan H, Wang Y 2007 Mater. Lett. 61 2262

    [11]

    Li Y, Zhao X, Fan W 2015 J. Phys. Chem. C 115 3552

    [12]

    Yao Y, Cao Q 2013 Acta Metall. Sin: Engl. 26 467

    [13]

    Yu Y S, Kim G Y, Min B H, Kim S C 2004 J. Eur. Ceram. Soc. 24 1865

    [14]

    Zhang J M, Chen Z, Zhong K, Xu G, Huang Z 2014 Sci. Bull. 59 3232

    [15]

    Persson C, Platzerbjörkman C, Malmström J, Törndahl T, Edoff M 2006 Phys. Rev. Lett. 97 146403

    [16]

    Salah N, Hameed A, Aslam M, Abdel-Wahab M S, Babkair S S, Bahabri F S 2016 Chem. Eng. J. 291 115

    [17]

    Sharma S, Mehta S K, Kansal S K 2016 J. Alloy. Compd. 699 323

    [18]

    Chen L L, Lu J G, Ye Z Z, Lin Y M, Zhao B H, Ye Y M, Li J S, Zhu L P 2005 Appl. Phys. Lett. 87 2939

    [19]

    Chen J L, Devi N, Li N, Fu D J, Ke X W 2018 Chin. Phys. B 27 397

    [20]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Zeitschrift fuer Kristallographie 220 567

    [21]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Mat. 14 2717

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Pickett W E, Erwin S C, Ethridge E C 1998 Phys. Rev. B 58 1201

    [24]

    Jia X F, Hou Q Y, Xu Z C, Qu L F 2018 J. Magn. Magn. Mater. 465 128

    [25]

    Janotti A, van der Walle C G 2007 Phys. Rev. B 76 165202

    [26]

    Feng J, Xiao B, Wan C L, Qu Z X, Huang Z C, Chen J C, Zhou R, Pan W 2011 Acta Mater. 59 1742

    [27]

    Guo S, Hou Q, Xu Z, Zhao C 2016 Physica B 503 93

    [28]

    Li P, Deng S, Zhang L, Li Y, Yu J, Liu D 2010 Chinese J. Chem. Phys. 23 527

  • [1] Gao Xu-Dong, Yang De-Cao, Wei Wen-Jing, Li Gong-Ping. Simulation study of electron beam irradiation damage to ZnO and TiO2. Acta Physica Sinica, 2021, 70(23): 234101. doi: 10.7498/aps.70.20211223
    [2] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [3] Xu Jia-Nan, Chen Huan-Ming, Pan Feng-Chun, Lin Xue-Ling, Ma Zhi, Chen Zhi-Peng. Electronic structures and ferroelectric properties of Ba-doped ZnO. Acta Physica Sinica, 2018, 67(10): 107701. doi: 10.7498/aps.67.20172263
    [4] Tang Xin-Yue, Gao Hong, Pan Si-Ming, Sun Jian-Bo, Yao Xiu-Wei, Zhang Xi-Tian. Electrical characteristics of individual In-doped ZnO nanobelt field effect transistor. Acta Physica Sinica, 2014, 63(19): 197302. doi: 10.7498/aps.63.197302
    [5] Li Ming-Jie, Gao Hong, Li Jiang-Lu, Wen Jing, Li Kai, Zhang Wei-Guang. Electrical properties of single ZnO nanobelt in low temperature. Acta Physica Sinica, 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [6] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [7] Liu Wei-Jie, Sun Zheng-Hao, Huang Yu-Xin, Leng Jing, Cui Hai-Ning. Electronic structures and optical properties of rare earth element (Yb) with different valences doped in ZnO. Acta Physica Sinica, 2013, 62(12): 127101. doi: 10.7498/aps.62.127101
    [8] Bao Shan-Yong, Dong Wu-Jun, Xu Xing, Luan Tian-Bao, Li Jie, Zhang Qing-Yu. Influence of oxygen partial pressure on the crystal quality and optical properties of Mg-doped ZnO films. Acta Physica Sinica, 2011, 60(3): 036804. doi: 10.7498/aps.60.036804
    [9] Zhang Fu-Chun, Zhang Wei-Hu, Dong Jun-Tang, Zhang Zhi-Yong. Electronic structure and magnetism of Cr-doped ZnO nanowires. Acta Physica Sinica, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [10] Zhang Yu-Fei, Guo Zhi-You, Cao Dong-Xing. Electronic structure and optical property of Boron adsorption on wurtzite ZnO(0001) surface. Acta Physica Sinica, 2011, 60(6): 066802. doi: 10.7498/aps.60.066802
    [11] Yuan Di, Huang Duo-Hui, Luo Hua-Feng, Wang Fan-Hou. First-principles study of Li-N acceptor pair codoped p-type ZnO. Acta Physica Sinica, 2010, 59(9): 6457-6465. doi: 10.7498/aps.59.6457
    [12] Hu Zhi-Gang, Duan Man-Yi, Xu Ming, Zhou Xun, Chen Qing-Yun, Dong Cheng-Jun, Linghu Rong-Feng. Electronic structure and optical properties of ZnO doped with Fe and Ni. Acta Physica Sinica, 2009, 58(2): 1166-1172. doi: 10.7498/aps.58.1166
    [13] Guan Li, Li Qiang, Zhao Qing-Xun, Guo Jian-Xin, Zhou Yang, Jin Li-Tao, Geng Bo, Liu Bao-Ting. First-principles study of the optical properties of ZnO doped with Al, Ni. Acta Physica Sinica, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [14] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [15] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Chen Qing-Yun, Hu Zhi-Gang, Dong Cheng-Jun. Electronic structure and optical properties of ZnO doped with carbon. Acta Physica Sinica, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [16] Shen Yi-Bin, Zhou Xun, Xu Ming, Ding Ying-Chun, Duan Man-Yi, Linghu Rong-Feng, Zhu Wen-Jun. Electronic structure and optical properties of ZnO doped with transition metals. Acta Physica Sinica, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [17] Li Hui, Xie Er-Qing, Zhang Hong-Liang, Pan Xiao-Jun, Zhang Yong-Zhe. Optical properties of ZnO and MgxZn1-xO nanoparticles prepared by flame spray synthesis. Acta Physica Sinica, 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [18] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [19] Chen Zhi-Quan, Kawasuso Atsuo. Vacancy-type defects induced by He-implantation in ZnO studied by a slow positron beam. Acta Physica Sinica, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [20] Liu Xue-Chao, Shi Er-Wei, Song Li-Xin, Zhang Hua-Wei, Chen Zhi-Zhan. Magnetic and optical properties of Co doped ZnO powders synthesized by solid-state reaction. Acta Physica Sinica, 2006, 55(5): 2557-2561. doi: 10.7498/aps.55.2557
Metrics
  • Abstract views:  8464
  • PDF Downloads:  167
  • Cited By: 0
Publishing process
  • Received Date:  14 August 2018
  • Accepted Date:  28 November 2018
  • Published Online:  05 January 2019

/

返回文章
返回