Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Doping effect and ferroelectricity of nanoribbons of In2Se3 monolayer

Huang Hong-Fei Yao Yang Yao Cheng-Jun Hao Xiang Wu Yin-Zhong

Citation:

Doping effect and ferroelectricity of nanoribbons of In2Se3 monolayer

Huang Hong-Fei, Yao Yang, Yao Cheng-Jun, Hao Xiang, Wu Yin-Zhong
PDF
HTML
Get Citation
  • Ferroelectricity and nanostructure in low-dimensional material are a research hotspot in the condensed matter physics and material science, The low-dimensional material is significant for the application and desig of nano-electronic devices. Based on the density functional theory, the In2Se3 monolayer, whose two-dimensional ferroelectricity has already been confirmed in experiment, is selected, and the ferroelectricity in the doped film and its nanoribbons are investigated. It is found that the ferroelectricity and the conductivity can coexist in the doped monolayer, and the electron doping enhances both the in-plane polarization (PIP) and the out-of-plane polarization (POOP), while the PIP is enhanced and POOP is depressed in the case of hole doping. The mechanism of the variation of polarization in the doped film is discussed on the basis of atomic distortions and electronic structures. As the In2Se3 nanoribbons are concerned, the one-dimensional ferroelectricity can be found in the In2Se3 nanowire, and the local polarization distribution within In2Se3 nanoribbons and its band gap are calculated and discussed. Furthermore, the scaling law between the band gap and the width of nanoribbon is obtained by fitting the numerical results. It is expected that our study can broaden the application scope of 2D ferroelectric films and its nanostructures.
      Corresponding author: Wu Yin-Zhong, yzwu@usts.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274054) and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. KYCX21-3004).
    [1]

    Junquera J, Ghosez P 2003 Nature 422 506Google Scholar

    [2]

    胡婷, 阚二军 2018 物理学报 67 157701Google Scholar

    Hu T, Kan E J 2018 Acta Phys. Sin. 67 157701Google Scholar

    [3]

    Hu T, Kan E J 2019 WIREs Comput. Mol. Sci. 9 e1409Google Scholar

    [4]

    Wu M H, Puru J 2018 WIREs Comput. Mol. Sci. 8 e1365Google Scholar

    [5]

    Guan Z, Hu H, Shen X W, Xiang P H, Zhong N, Chu J H, Duan C G 2019 Adv. Electron. Mater. 6 1900818Google Scholar

    [6]

    Yuan Z L, Sun Y, Wang D, Chen K Q, Tang L M 2021 J. Phys. Condens. Matter 33 403003Google Scholar

    [7]

    Shang J, Tang X, Kou L Z 2020 WIREs Comput. Mol. Sci. 11 e1496Google Scholar

    [8]

    Liu Z, Deng L J, Peng B 2021 Nano Res. 14 1802Google Scholar

    [9]

    Qiao H, Wang C, Woo Seok C, Min Hyuk P, Yunseok K 2021 Mater. Sci. Eng. R 145 100622Google Scholar

    [10]

    吴银忠, 黄鸿飞, 卢美辰, 孙智征 2020 苏州科技大学学报 (自然科学版) 37 1Google Scholar

    Wu Y Z, Huang H F, Lu M C, Sun Z Z 2020 J. Suzhou Univ. of Sci. Tech. (Natural Science Edition) 37 1Google Scholar

    [11]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [12]

    Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601Google Scholar

    [13]

    Yang Q, Wu M, Li J 2018 J. Phys. Chem. Lett. 9 7160Google Scholar

    [14]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [15]

    Wang H, Qian X F 2017 2D Mater. 4 015042Google Scholar

    [16]

    Cui C J, Hu W J, Yan X G, Addiego C, Gao W P, Wang Y, Wang Z, Li L Z, Cheng Y C, Li P, Zhang X X, Alshareef H N, Wu T, Zhu W G, Pan X Q, Li L J 2018 Nano Lett. 18 1253Google Scholar

    [17]

    Xue F, Zhang J W, Hu W J, Hsu W T, Han A, Leung S F, Huang J K, Wan Y, Liu S H, Zhang J L, He J H, Chang W H, Wang Z L, Zhang X X, Li L J 2018 ACS Nano 12 4976Google Scholar

    [18]

    Gong C, Kim E M, Wang Y, Lee G, Zhang X 2019 Nat. Commun. 10 2657Google Scholar

    [19]

    Zhai B, Cheng R, Yao W, Yin L, Shen C, Xia C, He J 2021 Phys. Rev. B 103 214114Google Scholar

    [20]

    Zhou B, Gong S J, Jiang K, Xu L P, Zhu L Q, Shang L Y, Li Y W, Hu Z G, Chu J H 2020 J. Phys. Condens. Matter 32 055703Google Scholar

    [21]

    Yang H, Xiao M Q, Cui Y, Pan L F, Zhao K, Wei Z M 2019 Science China Information Sciences 62 220404Google Scholar

    [22]

    Sun W, Wang W X, Li H, Zhang G B, Chen D, Wang J L, Cheng Z X 2020 Nat. Commun. 11 5930Google Scholar

    [23]

    Ding J, Shao D F, Li M, Wen L W, Tsymbal E Y 2021 Phys. Rev. Lett. 126 057601Google Scholar

    [24]

    Mukherjee S, Koren E 2022 Isr. J. Chem. 62 e202100112Google Scholar

    [25]

    Ding W J, Zhu J B, Wang Z, Gao Y F, Xiao D, Gu Y, Zhang Z Y, Zhu W G 2017 Nat. Commun. 8 14956Google Scholar

    [26]

    Zhou Y, Wu D, Zhu Y H, Cho Y J, He Q, Yang X, Herrera K, Chu Z D, Han Y, Downer M C, Peng H L, Lai K J 2017 Nano Lett. 17 5508Google Scholar

    [27]

    Poh S M, Tan S J R, Wang H, Song P, Abidi I H, Zhao X, Dan J D, Chen J S, Luo Z T, Pennycook S J, Neto A H C, Loh K P 2018 Nano Lett. 18 6340Google Scholar

    [28]

    Edelstein V M 2011 Phys. Rev. B 83 113109Google Scholar

    [29]

    Wijethunge D, Zhang L, Du A J 2021 J. Mater. Chem. C 9 11343Google Scholar

    [30]

    Puggioni D, Rondinelli J M 2014 Nat. Commun. 5 3432Google Scholar

    [31]

    Puggioni D, Giovannetti G, Capone M, Rondinelli J M 2015 Phys. Rev. Lett. 115 087202Google Scholar

    [32]

    Anderson P W, Blount E I 1965 Phys. Rev. Lett. 14 532

    [33]

    Shi Y G, Guo Y F, Wang X, Princep A J, Khalyavin D, Manuel P, Michiue Y, Sato A, Tsuda K, Yu S, Arai M, Shirako Y, Akaogi M, Wang N L, Yamaura K, Boothroyd A T 2013 Nat. Mater. 12 1024Google Scholar

    [34]

    Xi X, Berger H, Forro L, Shan L and Mak K F 2016 Phys. Rev. Lett. 117 106801Google Scholar

    [35]

    Chen Z Y, Yuan H T, Xie Y W, Lu D, Inoue H, Hikita Y, Bell C and Hwang H Y 2016 Nano Lett. 16 6130Google Scholar

    [36]

    Wang Y, Liu X H, Burton J D, Jaswal S S, Tsymbal E Y 2012 Phys. Rev. Lett. 109 247601Google Scholar

    [37]

    He X, Jin K J 2016 Phys. Rev. B 94 224107Google Scholar

    [38]

    Xia C L, Chen Y, Chen H H 2019 Phys. Rev. Mater. 3 054405Google Scholar

    [39]

    Xu T, Zhang J T, Zhu Y Q, Wang J, Shimada T, Kitamura T, Zhang T Y 2020 Nanoscale Horiz. 5 1400Google Scholar

    [40]

    Yao C J, Huang H F, Yao Y, Wu Y Z, Hao X 2021 J. Phys. Condens. Matter 33 145302Google Scholar

    [41]

    Shimada T, Minaguro K, Xu T, Wang J, Kitamura T 2020 Nanomaterials 10 732Google Scholar

    [42]

    Zhang J J, Guan J, Dong S, Yakobson B I 2019 J. Am. Chem. Soc. 141 15040Google Scholar

    [43]

    Fan Z Q, Jiang X W, Wei Z M, Luo J W, Li S S 2017 J. Phys. Chem. C 121 14373Google Scholar

    [44]

    Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, Kong J, Jarillo-Herrero P 2009 Nano Lett. 9 2600Google Scholar

    [45]

    Liu X, Howell S T, Conde-Rubio A, Boero G, Brugger J 2020 Adv. Mater. 32 2001232Google Scholar

    [46]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [47]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [48]

    KingSmith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651Google Scholar

    [49]

    Resta R 1994 Rev. Mod. Phys. 66 899Google Scholar

    [50]

    Jiang X X, Feng Y X, Chen K Q, Tang L M 2020 J. Phys. Condens. Matter 32 105501Google Scholar

    [51]

    Zhong W, King-Smith R D, Vanderbilt D 1994 Phys. Rev. Lett. 72 3618Google Scholar

    [52]

    Zhu L Y, Lu Y, Wang L 2020 J. Appl. Phys. 127 014101Google Scholar

    [53]

    Soleimani M, Pourfath M 2020 Nanoscale 12 22688Google Scholar

    [54]

    Tran V, Yang L 2014 Phys. Rev. B 89 245407Google Scholar

    [55]

    Zhao X Y, Wei C M, Yang L, Chou M Y 2004 Phys. Rev. Lett. 92 236805Google Scholar

  • 图 1  α-In2Se3单层薄膜结构示意图, 其中PIP表示面内极化, POOP表示面外极化, dr和dl表示铁电相的中间层Se2原子在面外和面内方向偏移顺电相的位移

    Figure 1.  Structure of ferroelectric α-In2Se3 monolayer, where PIP stands for the in-plane polarization, and POOP denotes the out-of-plane polarization, dr and dl are the distortions of Se2 atom along the out-of-plane and in-plane directions, respectively.

    图 2  In2Se3纳米带示意图 (a) 整体图; (b) 俯视图, w表示纳米带的宽度; (c) 侧视图

    Figure 2.  Illustration of In2Se3 nanoribbon, (a) Over view; (b) top view, w denotes the width of the nanoribbon; (c) side view.

    图 3  In2Se3薄膜的极化随掺杂浓度的变化 (a)电子掺杂; (b)空穴掺杂

    Figure 3.  The in-plane and out-of-plane polarization of In2Se3 monolayer as a function of doping concentration for the case of (a) electron doping and (b) hole doping.

    图 4  掺杂In2Se3薄膜的电子态密度轨道投影图v(a)未掺杂, (b)电子掺杂ne = 0.3, (c)空穴掺杂nh = 0.3, 图中垂直的短划线表示费米面的位置, (b)和(c)中插图分别是导带底和价带顶的DOS放大图

    Figure 4.  Projected-DOS of doped In2Se3 monolayers: (a)Non-doping; (b) electron doping ne = 0.3; (c) hole doping nh = 0.3, and the dashed line indicates the Fermi level, the inserts in (b) and (c) are the enlarged images near the CBM and VBM, respectively.

    图 5  纳米带极化随纳米带宽度变化曲线

    Figure 5.  Polarization of In2Se3 nanoribbons as a function of the width.

    图 6  In2Se3面内晶格常数a和厚度t随纳米带宽度w变化曲线

    Figure 6.  The in-plane lattice constant a and the thickness t of In2Se3 nanoribbon as a function of the width w.

    图 7  纳米带极化分布图(纳米带宽度分别为 1 u. c., 2 u. c., 3 u. c. 和 4 u. c.), 其中平面内极化大小和方向用矢量表示. 垂直平面的极化大小用颜色来表示, 且负号代表面外极化方向朝下, 正号代表面外极化朝上

    Figure 7.  Distribution of polarization within In2Se3 nanoribbon with different width (w = 1 u.c., 2 u.c., 3 u.c. and 4 u.c.), where the magnitude and the direction of PIP are indicated by vector, the magnitude of POOP is described by different color, and the positive value of POOP denotes the up direction and negative value denotes the down direction.

    图 8  In2Se3纳米带带隙随纳米带宽度的变化曲线, 图中水平短划线(黑色)是薄膜的带隙, 实线(红色)是拟合曲线

    Figure 8.  Band gap of In2Se3 nanoribbon as a function of the width of nanoribbon, where the dashed line denotes the band gap of monolayer, and the red solid line is the fitted curve.

  • [1]

    Junquera J, Ghosez P 2003 Nature 422 506Google Scholar

    [2]

    胡婷, 阚二军 2018 物理学报 67 157701Google Scholar

    Hu T, Kan E J 2018 Acta Phys. Sin. 67 157701Google Scholar

    [3]

    Hu T, Kan E J 2019 WIREs Comput. Mol. Sci. 9 e1409Google Scholar

    [4]

    Wu M H, Puru J 2018 WIREs Comput. Mol. Sci. 8 e1365Google Scholar

    [5]

    Guan Z, Hu H, Shen X W, Xiang P H, Zhong N, Chu J H, Duan C G 2019 Adv. Electron. Mater. 6 1900818Google Scholar

    [6]

    Yuan Z L, Sun Y, Wang D, Chen K Q, Tang L M 2021 J. Phys. Condens. Matter 33 403003Google Scholar

    [7]

    Shang J, Tang X, Kou L Z 2020 WIREs Comput. Mol. Sci. 11 e1496Google Scholar

    [8]

    Liu Z, Deng L J, Peng B 2021 Nano Res. 14 1802Google Scholar

    [9]

    Qiao H, Wang C, Woo Seok C, Min Hyuk P, Yunseok K 2021 Mater. Sci. Eng. R 145 100622Google Scholar

    [10]

    吴银忠, 黄鸿飞, 卢美辰, 孙智征 2020 苏州科技大学学报 (自然科学版) 37 1Google Scholar

    Wu Y Z, Huang H F, Lu M C, Sun Z Z 2020 J. Suzhou Univ. of Sci. Tech. (Natural Science Edition) 37 1Google Scholar

    [11]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [12]

    Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601Google Scholar

    [13]

    Yang Q, Wu M, Li J 2018 J. Phys. Chem. Lett. 9 7160Google Scholar

    [14]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [15]

    Wang H, Qian X F 2017 2D Mater. 4 015042Google Scholar

    [16]

    Cui C J, Hu W J, Yan X G, Addiego C, Gao W P, Wang Y, Wang Z, Li L Z, Cheng Y C, Li P, Zhang X X, Alshareef H N, Wu T, Zhu W G, Pan X Q, Li L J 2018 Nano Lett. 18 1253Google Scholar

    [17]

    Xue F, Zhang J W, Hu W J, Hsu W T, Han A, Leung S F, Huang J K, Wan Y, Liu S H, Zhang J L, He J H, Chang W H, Wang Z L, Zhang X X, Li L J 2018 ACS Nano 12 4976Google Scholar

    [18]

    Gong C, Kim E M, Wang Y, Lee G, Zhang X 2019 Nat. Commun. 10 2657Google Scholar

    [19]

    Zhai B, Cheng R, Yao W, Yin L, Shen C, Xia C, He J 2021 Phys. Rev. B 103 214114Google Scholar

    [20]

    Zhou B, Gong S J, Jiang K, Xu L P, Zhu L Q, Shang L Y, Li Y W, Hu Z G, Chu J H 2020 J. Phys. Condens. Matter 32 055703Google Scholar

    [21]

    Yang H, Xiao M Q, Cui Y, Pan L F, Zhao K, Wei Z M 2019 Science China Information Sciences 62 220404Google Scholar

    [22]

    Sun W, Wang W X, Li H, Zhang G B, Chen D, Wang J L, Cheng Z X 2020 Nat. Commun. 11 5930Google Scholar

    [23]

    Ding J, Shao D F, Li M, Wen L W, Tsymbal E Y 2021 Phys. Rev. Lett. 126 057601Google Scholar

    [24]

    Mukherjee S, Koren E 2022 Isr. J. Chem. 62 e202100112Google Scholar

    [25]

    Ding W J, Zhu J B, Wang Z, Gao Y F, Xiao D, Gu Y, Zhang Z Y, Zhu W G 2017 Nat. Commun. 8 14956Google Scholar

    [26]

    Zhou Y, Wu D, Zhu Y H, Cho Y J, He Q, Yang X, Herrera K, Chu Z D, Han Y, Downer M C, Peng H L, Lai K J 2017 Nano Lett. 17 5508Google Scholar

    [27]

    Poh S M, Tan S J R, Wang H, Song P, Abidi I H, Zhao X, Dan J D, Chen J S, Luo Z T, Pennycook S J, Neto A H C, Loh K P 2018 Nano Lett. 18 6340Google Scholar

    [28]

    Edelstein V M 2011 Phys. Rev. B 83 113109Google Scholar

    [29]

    Wijethunge D, Zhang L, Du A J 2021 J. Mater. Chem. C 9 11343Google Scholar

    [30]

    Puggioni D, Rondinelli J M 2014 Nat. Commun. 5 3432Google Scholar

    [31]

    Puggioni D, Giovannetti G, Capone M, Rondinelli J M 2015 Phys. Rev. Lett. 115 087202Google Scholar

    [32]

    Anderson P W, Blount E I 1965 Phys. Rev. Lett. 14 532

    [33]

    Shi Y G, Guo Y F, Wang X, Princep A J, Khalyavin D, Manuel P, Michiue Y, Sato A, Tsuda K, Yu S, Arai M, Shirako Y, Akaogi M, Wang N L, Yamaura K, Boothroyd A T 2013 Nat. Mater. 12 1024Google Scholar

    [34]

    Xi X, Berger H, Forro L, Shan L and Mak K F 2016 Phys. Rev. Lett. 117 106801Google Scholar

    [35]

    Chen Z Y, Yuan H T, Xie Y W, Lu D, Inoue H, Hikita Y, Bell C and Hwang H Y 2016 Nano Lett. 16 6130Google Scholar

    [36]

    Wang Y, Liu X H, Burton J D, Jaswal S S, Tsymbal E Y 2012 Phys. Rev. Lett. 109 247601Google Scholar

    [37]

    He X, Jin K J 2016 Phys. Rev. B 94 224107Google Scholar

    [38]

    Xia C L, Chen Y, Chen H H 2019 Phys. Rev. Mater. 3 054405Google Scholar

    [39]

    Xu T, Zhang J T, Zhu Y Q, Wang J, Shimada T, Kitamura T, Zhang T Y 2020 Nanoscale Horiz. 5 1400Google Scholar

    [40]

    Yao C J, Huang H F, Yao Y, Wu Y Z, Hao X 2021 J. Phys. Condens. Matter 33 145302Google Scholar

    [41]

    Shimada T, Minaguro K, Xu T, Wang J, Kitamura T 2020 Nanomaterials 10 732Google Scholar

    [42]

    Zhang J J, Guan J, Dong S, Yakobson B I 2019 J. Am. Chem. Soc. 141 15040Google Scholar

    [43]

    Fan Z Q, Jiang X W, Wei Z M, Luo J W, Li S S 2017 J. Phys. Chem. C 121 14373Google Scholar

    [44]

    Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, Kong J, Jarillo-Herrero P 2009 Nano Lett. 9 2600Google Scholar

    [45]

    Liu X, Howell S T, Conde-Rubio A, Boero G, Brugger J 2020 Adv. Mater. 32 2001232Google Scholar

    [46]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [47]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [48]

    KingSmith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651Google Scholar

    [49]

    Resta R 1994 Rev. Mod. Phys. 66 899Google Scholar

    [50]

    Jiang X X, Feng Y X, Chen K Q, Tang L M 2020 J. Phys. Condens. Matter 32 105501Google Scholar

    [51]

    Zhong W, King-Smith R D, Vanderbilt D 1994 Phys. Rev. Lett. 72 3618Google Scholar

    [52]

    Zhu L Y, Lu Y, Wang L 2020 J. Appl. Phys. 127 014101Google Scholar

    [53]

    Soleimani M, Pourfath M 2020 Nanoscale 12 22688Google Scholar

    [54]

    Tran V, Yang L 2014 Phys. Rev. B 89 245407Google Scholar

    [55]

    Zhao X Y, Wei C M, Yang L, Chou M Y 2004 Phys. Rev. Lett. 92 236805Google Scholar

  • [1] Cui Yang, Li Jing, Zhang Lin. Electronic structure of graphene nanoribbons under external electric field by density functional tight binding. Acta Physica Sinica, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [2] Zhang Feng, Lian Sen, Wang Ming-Yue, Chen Xue, Yin Ji-Kang, He Lei, Pan Hua-Qing, Ren Jun-Feng, Chen Mei-Na. Doping and strain effect on hydrogen evolution reaction catalysts of NiP2. Acta Physica Sinica, 2021, 70(14): 148802. doi: 10.7498/aps.70.20210298
    [3] Yang Ru-Xia, Lu Yu-Ming, Zeng Li-Zhu, Zhang Lu-Jia, Li Guan-Nan. Effect of Gd doping on the structure, dielectric and multiferroic properties of 0.7BiFe0.95Ga0.05O3-0.3BaTiO3 ceramics. Acta Physica Sinica, 2020, 69(10): 107701. doi: 10.7498/aps.69.20200175
    [4] Li Min, Shi Xin-Na, Zhang Ze-Lin, Ji Yan-Da, Fan Ji-Yu, Yang Hao. Ferroelectricity of flexible Pb(Zr0.53Ti0.47)O3 thin film at high temperature. Acta Physica Sinica, 2019, 68(8): 087302. doi: 10.7498/aps.68.20181967
    [5] Zhang Hui, Cai Xiao-Ming, Hao Zhen-Liang, Ruan Zi-Lin, Lu Jian-Chen, Cai Jin-Ming. Fabrication and electrical engineering of graphene nanoribbons. Acta Physica Sinica, 2017, 66(21): 218103. doi: 10.7498/aps.66.218103
    [6] Shi Yu-Jun, Zhang Xu, Qin Lei, Jin Kui, Yuan Jie, Zhu Bei-Yi, Zhu Yun. Rapid preparations of Bi1-xLaxFeO3± δ thin films and their ferroelectric properties. Acta Physica Sinica, 2016, 65(5): 058101. doi: 10.7498/aps.65.058101
    [7] Zhang Run-Lan, Xing Hui, Chen Chang-Le, Duan Meng-Meng, Luo Bing-Cheng, Jin Ke-Xin. Study on ferroelectric behaviors and ferroelectric nanodomains of YMnO3 thin film. Acta Physica Sinica, 2014, 63(18): 187701. doi: 10.7498/aps.63.187701
    [8] Ren Guo-Hao, Pei Yu, Wu Yun-Tao, Chen Xiao-Feng, Li Huan-Ying, Pan Shang-Ke. Influence of Ce doping concentration on the luminescence properties of LaCl3:Ce scintillation crystals. Acta Physica Sinica, 2014, 63(3): 037802. doi: 10.7498/aps.63.037802
    [9] Tang Xin-Yue, Gao Hong, Pan Si-Ming, Sun Jian-Bo, Yao Xiu-Wei, Zhang Xi-Tian. Electrical characteristics of individual In-doped ZnO nanobelt field effect transistor. Acta Physica Sinica, 2014, 63(19): 197302. doi: 10.7498/aps.63.197302
    [10] Li Ming-Jie, Gao Hong, Li Jiang-Lu, Wen Jing, Li Kai, Zhang Wei-Guang. Electrical properties of single ZnO nanobelt in low temperature. Acta Physica Sinica, 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [11] He Jian-Ping, Lü Wen-Zhong, Wang Xiao-Hong. First-principles study of ordered structures in Ba0.5Sr0.5TiO3. Acta Physica Sinica, 2011, 60(9): 097102. doi: 10.7498/aps.60.097102
    [12] Gu Jian-Jun, Liu Li-Hu, Qi Yun-Kai, Xu Qin, Zhang Hui-Min, Sun Hui-Yuan. Magnetoelectric coupling in NiFe2 O4-BiFeO3 composite films. Acta Physica Sinica, 2011, 60(6): 067701. doi: 10.7498/aps.60.067701
    [13] Ren Guo-Hao, Chen Xiao-Feng, Mao Ri-Hua, Shen Ding-Zhong. Luminescence characteristics of lead tungstate (PbWO4) scintillation crystal doped with fluorine anions. Acta Physica Sinica, 2010, 59(7): 4812-4817. doi: 10.7498/aps.59.4812
    [14] Zhao Qing-Xun, Ma Ji-Kui, Geng Bo, Wei Da-Yong, Guan Li, Liu Bao-Ting. Effect of hydrogen on ferroelectric properties of Bi4Ti3O12 during forming gas annealing. Acta Physica Sinica, 2010, 59(11): 8042-8047. doi: 10.7498/aps.59.8042
    [15] Sun Yuan, Huang Zu-Fei, Fan Hou-Gang, Ming Xing, Wang Chun-Zhong, Chen Gang. First-principles investigation on the role of ions in ferroelectric transition of BiFeO3. Acta Physica Sinica, 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [16] Gao Jian-Sen, Zhang Ning. Influence of iron doping level upon magnetoelectric coupling in BaTi1-zFezO3+δ-Tb1-xDyxFe2-y bilayer composites. Acta Physica Sinica, 2008, 57(12): 7872-7877. doi: 10.7498/aps.57.7872
    [17] Wang Xiu-Zhang, Liu Hong-Ri. Enhanced ferroelectricity of Pb(Zr0.5Ti0.5)O3 film by the introduction of La0.3Sr0.7TiO3 template layer. Acta Physica Sinica, 2007, 56(3): 1735-1740. doi: 10.7498/aps.56.1735
    [18] Wan Jian-Feng, Fei Yan-Qiong, Wang Jian-Nong. Effect of Fe and Co on the electronic structure of (110) martensite twin boundary in Ni2MnGa alloy. Acta Physica Sinica, 2006, 55(5): 2444-2448. doi: 10.7498/aps.55.2444
    [19] Xue Wei-Dong, Chen Zhao-Yong, Yang Chun, Li Yan-Rong. First-principles study on tetragonal BaTiO3 ferroelectric. Acta Physica Sinica, 2005, 54(2): 857-862. doi: 10.7498/aps.54.857
    [20] Li Zheng-Fa, Zhong Wei-Lie, Qiu Zhong-Ping, Ge Hong-Liang, Zhang Pei-Lin, Wang Chun-Lei. Dielectric and ferroelectric properties of BaBi4Ti4O15 ceramics and their dependence on lattice structure. Acta Physica Sinica, 2004, 53(9): 3200-3204. doi: 10.7498/aps.53.3200
  • supplement 19-20220654-补充材料.pdf supplement
Metrics
  • Abstract views:  5230
  • PDF Downloads:  127
  • Cited By: 0
Publishing process
  • Received Date:  10 April 2022
  • Accepted Date:  20 May 2022
  • Available Online:  18 September 2022
  • Published Online:  05 October 2022

/

返回文章
返回