Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation on Improving SERS Detection Performance Based on MoS2/Zeolitic Imidazolate Framework-67 Heterostructure

LI Binjiang ZHANG Yuchen LI Wei WANG Xuehua

Citation:

Investigation on Improving SERS Detection Performance Based on MoS2/Zeolitic Imidazolate Framework-67 Heterostructure

LI Binjiang, ZHANG Yuchen, LI Wei, WANG Xuehua
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Earth-abundant molybdenum disulfide (MoS2) has attracted considerable attention as a promising substrate for surface-enhanced Raman spectroscopy (SERS). Naturally occurring MoS2 primarily exists in the semiconducting 2H phase, but its SERS performance is limited because active sites are typically confined to its edges. Furthermore, the irregular agglomeration of MoS2 can lead to performance degradation, rendering the natural semiconducting material unsuitable for practical applications. Therefore, enhancing the performance of MoS2 in the field of SERS is of crucial importance. Metal-organic frameworks (MOFs) are ideal materials for building efficient SERS substrates due to their tunable pore structures. Among various MOF materials, zeolitic imidazolate frameworks (ZIFs) have garnered significant interest owing to their well-defined polyhedral structures, homogeneity, and small particle sizes. Therefore, this study fabricated a MoS2/zeolitic imidazolate framework-67 (ZIF-67) heterostructure by the hydrothermal method as a SERS substrate, which exhibits exceptional sensitivity with an enhancement factor of up to 6.68×106 for rhodamine 6G. Moreover, the SERS performance remained almost unchanged after four months of exposure to air, demonstrating high stability and reusability. To evaluate the actual detection ability of this substrate, bilirubin was selected as the analyte, which is a clinically relevant metabolic waste. Since both high and low concentrations of free bilirubin can contribute to cardiovascular and cerebrovascular diseases, accurate monitoring of bilirubin levels is crucial for diagnosing bilirubin-induced disorders. Using the MoS2/ZIF-67 substrate, label-free detection of bilirubin was achieved with a limit of detection (LOD) as low as 10-10 M. The outstanding performance of this substrate can be attributed to the vertically aligned MoS2 nanostructure, which exposes more active sites. Additionally, ZIF-67 provides a high specific surface area and abundant porous structures, offering numerous adsorption sites for target molecules. Furthermore, internal charge transfer facilitates the formation of a highly conductive 1T phase, thereby improving electrical conductivity. This work provides valuable insights into the rational design of noble-metal-free materials for highly sensitive SERS detection.
  • [1]

    Odum E P 1969Science 164 262

    [2]

    Guo Y, Liu Y 2022J. Geogr. Sci. 32 23

    [3]

    Zhang Y, Gao F, Wang D, Li Z, Wang X, Wang C, Zhang K, Du Y 2023Coordin. Chem. Rev. 475 214916

    [4]

    Li Y, Zhang J, Chen Q, Xia X, Chen M 2021Adv. Mater. 33 2100855

    [5]

    Hou H, Anichini C, Samorì P, Criado A, Prato M 2022Adv. Funct. Mater. 32 2207065

    [6]

    Li J, Chen C, Lv Z, Ma W, Wang M, Li Q, Dang J 2023J. Mater. Sci. Technol. 145 74

    [7]

    Gong C, Li W, Lei Y, He X, Chen H, Du X, Fang W, Wang D, Zhao L 2022Compos. Pt. B-Eng. 236 109823

    [8]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A-S, Jaccard D, Gabay M, Muller D A, Triscone J-M, Mannhart J 2007Science 317 1196

    [9]

    Ohtomo A, Hwang H Y 2004Nature 427 423

    [10]

    Chen W, Zhu X, Wang R, Wei W, Liu M, Dong S, Ostrikov K K, Zang S-Q 2022J. Energy Chem. 75 16

    [11]

    Xia T, Zhou L, Gu S, Gao H, Ren X, Li S, Wang R, Guo H 2021Mater. Des. 211 110165

    [12]

    Wang H, Niu Z, Peng Z, Wu X, Gao C, Zhao S, Kim Y D, Wu H, Du X, Liu Z, Li B 2022ACS Appl. Mater. Interfaces 14 9116

    [13]

    Xu H, Zhu J, Ma Q, Ma J, Bai H, Chen L, Mu S 2021Micromachines 12 240

    [14]

    Cao Y 2021ACS Nano 15 11014

    [15]

    He H, Li X, Huang D, Luan J, Liu S, Pang W K, Sun D, Tang Y, Zhou W, He L, Zhang C, Wang H, Guo Z 2021ACS Nano 15 8896

    [16]

    Peng H, Zhou K, Jin Y, Zhang Q, Liu J, Wang H 2022Chem. Eng. J. 429 132477

    [17]

    Wang H, Fu W, Yang X, Huang Z, Li J, Zhang H, Wang Y 2020J. Mater. Chem. A 8 6926

    [18]

    Huang Z, Yuan S, Zhang T, Cai B, Xu B, Lu X, Fan L, Dai F, Sun D 2020Appl. Catal. B-Environ. 272 118976

    [19]

    Zhang X, Zhang S, Tang Y, Huang X, Pang H 2022Compos. Pt. B-Eng. 230 109532

    [20]

    Yang J, Zhang C, Niu Y, Huang J, Qian X, Wong K-Y 2021Chem. Eng. J. 409 128293

    [21]

    Wu Y, Wang Z, Liang M, Cheng H, Li M, Liu L, Wang B, Wu J, Prasad Ghimire R, Wang X, Sun Z, Xue S, Qiao Q 2018ACS Appl. Mater. Interfaces 10 17883

    [22]

    Zhou L, Zhuang Z, Zhao H, Lin M, Zhao D, Mai L 2017Adv. Mater. 29 1602914

    [23]

    Quan Y, Li J, Hu M, Wei M, Yang J, Gao M, Liu Y 2022Appl. Surf. Sci. 598 153750

    [24]

    Li M, Cai B, Tian R, Yu X, Breese M B H, Chu X, Han Z, Li S, Joshi R, Vinu A, Wan T, Ao Z, Yi J, Chu D 2021Chem. Eng. J. 409 128158

    [25]

    Xu J, Cheng C, Shang S, Gao W, Zeng P, Jiang S 2020ACS Appl. Mater. Interfaces 12 49452

    [26]

    Li Q, Huang F, Li S, Zhang H, Yu X 2022Small 18 2104323

    [27]

    Sundara Venkatesh P, Kannan N, Ganesh Babu M, Paulraj G, Jeganathan K 2022Int. J. Hydrog. Energy 47 37256

    [28]

    Xu J, Shang S, Gao W, Zeng P, Jiang S 2021Cellulose 28 7389

    [29]

    Chen Y, Meng G, Yang T, Chen C, Chang Z, Kong F, Tian H, Cui X, Hou X, Shi J 2022Chem. Eng. J. 450 138157

    [30]

    Rafiei S, Tangestaninejad S, Horcajada P, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Kardanpour R, Zadehahmadi F 2018Chem. Eng. J. 334 1233

    [31]

    Chang J, Wang Y, Chen L, Wu D, Xu F, Bai Z, Jiang K, Gao Z 2020Int. J. Hydrog. Energy 45 12787

    [32]

    Hou B, Wu J 2020Dalton Trans. 49 17621

    [33]

    Leng X, Wang Y, Wang F 2019Adv. Mater. Interfaces 6 1900010

    [34]

    Mohammadpour E, Asadpour-Zeynali K 2020Microchem J. 157 104939

    [35]

    Hou X, Zhou H, Zhao M, Cai Y, Wei Q 2020ACS Sustainable Chem. Eng. 8 5724

    [36]

    Liu Z, Gao Z, Liu Y, Xia M, Wang R, Li N 2017ACS Appl. Mater. Interfaces 9 25291

    [37]

    Li X, Lv X, Li N, Wu J, Zheng Y-Z, Tao X 2019Appl. Catal. B-Environ. 243 76

    [38]

    Mu X, Zhu Y, Gu X, Dai S, Mao Q, Bao L, Li W, Liu S, Bao J, Mu S 2021J. Energy Chem. 62 546

    [39]

    Lei Z, Zhan J, Tang L, Zhang Y, Wang Y 2018Adv. Energy Mater. 8 1703482

    [40]

    Gao B, Zhao Y, Du X, Li D, Ding S, Li Y, Xiao C, Song Z 2021Chem. Eng. J. 411 128567

    [41]

    Kochat V, Apte A, Hachtel J A, Kumazoe H, Krishnamoorthy A, Susarla S, Idrobo J C, Shimojo F, Vashishta P, Kalia R, Nakano A, Tiwary C S, Ajayan P M 2017Adv. Mater. 29 1703754

    [42]

    Sim D M, Han H J, Yim S, Choi M-J, Jeon J, Jung Y S 2017ACS Omega 2 4678

    [43]

    Nguyen D C, Tran D T, Doan T L L, Kim D H, Kim N H, Lee J H 2020Adv. Energy Mater. 10 1903289

    [44]

    Zhu H, Zhang J, Yanzhang R, Du M, Wang Q, Gao G, Wu J, Wu G, Zhang M, Liu B, Yao J, Zhang X 2015Adv. Mater. 27 4752

    [45]

    Solomon G, Landström A, Mazzaro R, Jugovac M, Moras P, Cattaruzza E, Morandi V, Concina I, Vomiero A 2021Adv. Energy Mater. 11 2101324

    [46]

    Ganesan P, Sivanantham A, Shanmugam S 2018J. Mater. Chem. A 6 1075

    [47]

    Li W, Liu J, Guo P, Li H, Fei B, Guo Y, Pan H, Sun D, Fang F, Wu R 2021Adv. Energy Mater. 11 2102134

    [48]

    Sun H, Yao M, Song Y, Zhu L, Dong J, Liu R, Li P, Zhao B, Liu B 2019Nanoscale 11 21493

    [49]

    Wang X, Han Y, Liu Y, Yu Y, Ma J, Yang T, Hu J, Huang H 2023Int. J. Hydrog. Energy 48 3048

    [50]

    Wang Y, Zeng C, Zhang Y, Su R, Yang D, Wang Z, Wu Y, Pan H, Zhu W, Hu W, Liu H, Yang R 2022Mater. Today Phys. 22 100600

    [51]

    Sun S, Zheng J, Sun R, Wang D, Sun G, Zhang X, Gong H, Li Y, Gao M, Li D, Xu G, Liang X 2022Nanomaterials 12 896

    [52]

    Gupta J D, Jangra P, Mishra A K 2025ACS Appl. Nano Mater. 8 7449

    [53]

    Lombardi J R, Birke R L 2014J. Phys. Chem. C 118 11120

  • [1] DAI Shuo, LI Zhen, ZHANG Chao, YU Jing, ZHAO Xiaofei, WU Yang, MAN Baoyuan. Surface enhanced Raman spectroscopy effect and mechanism of vertically oriented MoS2 nanosheet composite with Ag substrate. Acta Physica Sinica, doi: 10.7498/aps.74.20241671
    [2] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, doi: 10.7498/aps.71.20220738
    [3] Wu Fan-Fan, Ji Yi-Ru, Yang Wei, Zhang Guang-Yu. Experimental research progress of electronic band structure and low temperature transport based on molybdenum disulfide. Acta Physica Sinica, doi: 10.7498/aps.71.20220015
    [4] Yang Wen, Ding Qian-Yao, Zhai Dong-Mei, Bo Kai-Wen, Feng Yan-Yan, Wen Jie, He Fang. Fabrication and electrochemical properties of hollow cage-like nickel cobalt layered hydroxides with porous structure. Acta Physica Sinica, doi: 10.7498/aps.71.20211100
    [5] Jiang Li-Ying, Yi Ying-Ting, Yi Zao, Yang Hua, Li Zhi-You, Su Ju, Zhou Zi-Gang, Chen Xi-Fang, Yi You-Gen. A four-band perfect absorber based on high quality factor and high figure of merit of monolayer molybdenum disulfide. Acta Physica Sinica, doi: 10.7498/aps.70.20202163
    [6] Liu Kai-Long, Peng Dong-Sheng. Effects of photoelectric properties of monolayer MoS2 under tensile strain. Acta Physica Sinica, doi: 10.7498/aps.70.20210816
    [7] Wu Min, Fei Hong-Ming, Lin Han, Zhao Xiao-Dan, Yang Yi-Biao, Chen Zhi-Hui. Design of asymmetric transmission of photonic crystal heterostructure based on two-dimensional hexagonal boron nitride material. Acta Physica Sinica, doi: 10.7498/aps.70.20200741
    [8] Du Jian-Bin, Feng Zhi-Fang, Zhang Qian, Han Li-Jun, Tang Yan-Lin, Li Qi-Feng. Molecular structure and electronic spectrum of MoS2under external electric field. Acta Physica Sinica, doi: 10.7498/aps.68.20190781
    [9] Meng Fan, Hu Jin-Hua, Wang Hui, Zou Ge-Yin, Cui Jian-Gong, Zhao Yue. Fluorescence enhancement of monolayer MoS2 in plasmonic resonator. Acta Physica Sinica, doi: 10.7498/aps.68.20191121
    [10] Liu Le, Tang Jian, Wang Qin-Qin, Shi Dong-Xia, Zhang Guang-Yu. Thermal stability of MoS2 encapsulated by graphene. Acta Physica Sinica, doi: 10.7498/aps.67.20181255
    [11] Zhang Xin-Cheng, Liao Wen-Hu, Zuo Min. Electronic structure and spin/valley transport properties of monolayer MoS2 under the irradiation of the off-resonant circularly polarized light. Acta Physica Sinica, doi: 10.7498/aps.67.20180213
    [12] Wei Yang, Ma Xin-Guo, Zhu Lin, He Hua, Huang Chu-Yun. Interfacial cohesive interaction and band modulation of two-dimensional MoS2/graphene heterostructure. Acta Physica Sinica, doi: 10.7498/aps.66.087101
    [13] Li Ming-Lin, Wan Ya-Ling, Hu Jian-Yue, Wang Wei-Dong. Molecular dynamics simulation of effects of temperature and chirality on the mechanical properties of single-layer molybdenum disulfide. Acta Physica Sinica, doi: 10.7498/aps.65.176201
    [14] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. First-principles study on multiphase property and phase transition of monolayer MoS2. Acta Physica Sinica, doi: 10.7498/aps.65.127101
    [15] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study. Acta Physica Sinica, doi: 10.7498/aps.64.187101
    [16] Fu Chong-Yuan, Xing Song, Shen Tao, Tai Bo, Dong Qian-Min, Shu Hai-Bo, Liang Pei. Synthesis and characterization of flower-like MoS2 microspheres by hydrothermal method. Acta Physica Sinica, doi: 10.7498/aps.64.016102
    [17] Wei Xiao-Xu, Cheng Ying, Huo Da, Zhang Yu-Han, Wang Jun-Zhuan, Hu Yong, Shi Yi. PL enhancement of MoS2 by Au nanoparticles. Acta Physica Sinica, doi: 10.7498/aps.63.217802
    [18] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, doi: 10.7498/aps.62.206101
    [19] Zhang Yang, Gu Shu-Lin, Ye Jian-Dong, Huang Shi-Min, Gu Ran, Chen Bin, Zhu Shun-Ming, Zhen You-Dou. Two-dimensional electron Gas in ZnMgO/ZnO heterostructures. Acta Physica Sinica, doi: 10.7498/aps.62.150202
    [20] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, doi: 10.7498/aps.61.227102
Metrics
  • Abstract views:  43
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  24 April 2025

/

返回文章
返回