Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Anisotropic energy funneling effect in wrinkled monolayer GeSe

Liu Jun-Jie Zuo Hui-Ling Tan Xin Dong Jian-Sheng

Citation:

Anisotropic energy funneling effect in wrinkled monolayer GeSe

Liu Jun-Jie, Zuo Hui-Ling, Tan Xin, Dong Jian-Sheng
cstr: 32037.14.aps.73.20241155
PDF
HTML
Get Citation
  • Two-dimensional materials with tunable wrinkled structures open up a new way to modulate their electronic and optoelectronic properties. However, the mechanisms of forming wrinkles and their influences on the band structures and associated properties are still unclear. Here, we investigate the strain distribution, bandgap, and anisotropic energy funneling effect of wrinkled monolayer GeSe and their evolution with the wrinkle wavelength based on the atomic-bond-relaxation approach and continuum medium mechanics. We find that the top region and valley region of wrinkled monolayer GeSe exhibit tensile and compressive strains, respectively, and the strain increases with wrinkle wavelength decreasing. Moreover, the periodic undulation strain in the wrinkles can lead to continuously adjustable bandgaps and band edges in wrinkled monolayer GeSe. For zigzag wrinkled monolayer GeSe, when the wrinkle wavelength is long, the conduction band minimum value (valence band maximum value) continuously decreases (increases) from the top to the valley, forming an energy funnel. As a result, the excitons accumulate in the valleys of wrinkles, and their accumulation capability increases with wrinkle wavelength decreasing. However, as the wavelength further decreases, the energy funnel will disappear, causing some excitons to t accumulate at the top of wrinkles, while the remaining excitons will accumulate in the valleys of wrinkles. The critical wavelength for the energy funnel of zigzag wrinkled GeSe to disappear is 106nm. The physical origin is that when the top strain exceeds 4%, the bandgap will decrease. Owing to the monotonic variation of bandgap with strain, the energy funneling effect of armchair wrinkled monolayer GeSe is still retained when the wavelength decreases to 80 nm, and the accumulation of excitons is further enhanced. Our results demonstrate that the energy funneling effect induced by nonuniform can realize excitons’ accumulation in one material without the need of p-n junctions, which is of great benefit to the collection of photogenerated excitons. Therefore, the proposed theory not only clarifies the physical mechanism regarding the anisotropic energy funneling effect of wrinkled monolayer GeSe, but also provides a new avenue for designing the next-generation optoelectronic devices.
      Corresponding author: Dong Jian-Sheng, jsdong@jsu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12364007), the Innovation Foundation for Postgraduate of Hunan Province, China (Grant No. CX20240945), Hunan Students' Platform for Innovation and Entrepreneurship Training Program, China (Grant No. S202310531036), and the National Students' Platform for Innovation and Entrepreneurship Training Program of China (Grant No. S202410531045).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [3]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [4]

    Zhao H Q, Mao Y L, Mao X, Shi X, Xu C S, Wang C X, Zhang S M, Zhou D H 2018 Adv. Funct. Mater. 28 1704855Google Scholar

    [5]

    Zhou X, Hu X Z, Jin B, Yu J, Liu K L, Li H Q, Zhai T Y 2018 Adv. Sci. 5 1800478Google Scholar

    [6]

    Hu Y H, Zhang S L, Sun S F, Xie M Q, Cai B, Zeng H B 2015 Appl. Phys. Lett. 107 122107Google Scholar

    [7]

    Xia C X, Du J, Huang X W, Xiao W B, Xiong W Q, Wang T X, Wei Z M, Jia Y, Shi J J, Li J B 2018 Phys. Rev. B 97 115416Google Scholar

    [8]

    Xu Y F, Zhang H, Shao H Z, Ni G, Li J, Lu H L, Zhang R J, Peng Bo, Zhu Y Y, Zhu H Y, Soukoulis C M 2017 Phys. Rev. B 96 245421Google Scholar

    [9]

    Kong X, Deng J K, Li L, Liu Y L, Ding X D, Sun J, Liu J Z 2018 Phys. Rev. B 98 184104Google Scholar

    [10]

    Mao Y L, Xu C S, Yuan J M, Zhao H Q 2019 J. Mater. Chem. A 7 11265Google Scholar

    [11]

    Lu Q L, Yang W H, Xiong F B, Lin H F, Zhuang Q Q 2020 Acta Phys. Sin. 69 196801 [卢群林, 杨伟煌, 熊飞兵, 林海峰, 庄芹芹 2020 物理学报 69 196801]Google Scholar

    Lu Q L, Yang W H, Xiong F B, Lin H F, Zhuang Q Q 2020 Acta Phys. Sin. 69 196801Google Scholar

    [12]

    Muhammad Z, Li Y L, Abbas G, Usman M, Sun Z, Zhang Y, Lv Z Y, Wang Y, Zhao W S 2022 Adv. Electron. Mater. 8 2101112Google Scholar

    [13]

    Huang L, Wu F G, Li J B 2016 J. Chem. Phys. 144 114708Google Scholar

    [14]

    Li Z B, Liu X S, Wang X, Yang Y, Liu S C, Shi W, Li Y, Xing X B, Xue D J, Hu J S 2020 Phys. Chem. Chem. Phys. 22 914Google Scholar

    [15]

    Zuo B Min, Yuan J M, Feng Z, Mao Y L 2019 Acta Phys. Sin. 68 113103 [左博敏, 袁健美, 冯志, 毛宇亮 2019 物理学报 68 113103]Google Scholar

    Zuo B Min, Yuan J M, Feng Z, Mao Y L 2019 Acta Phys. Sin. 68 113103Google Scholar

    [16]

    Guo G X, Bi G 2018 Micro Nano Lett. 13 600Google Scholar

    [17]

    Wang J J, Zhao Y F, Zheng J D, Wang X T, Deng X, Guan Z, Ma R R Zhong Ni, Yue F Y, Wei Z M, Xiang P H, Duan C G 2021 Phys. Chem. Chem. Phys. 23 26997Google Scholar

    [18]

    Li Y, Ma K, Fan X, Liu F S, Li J Q, Xie H P 2020 Appl. Sur. Sci. 521 146256Google Scholar

    [19]

    Feng J, Qian X F, Huang C W, Li J 2012 Nat. Photonics 6 866Google Scholar

    [20]

    Li H, Contryman A W, Qian X F, Ardakani S Mo, Gong Y J, Wang X L, Weisse J M, Lee C H, Zhao J H, Ajayan P M, Li Ju, Manoharan H C, Zheng X L 2015 Nat. Commun. 6 7381Google Scholar

    [21]

    San-Jose P, Parente V, Guinea F, Roldán R, Prada E 2016 Phys. Rev. X 6 031046

    [22]

    Lam N H, Nguyen P, Cho S, Kim J 2023 Surf. Sci. 730 122251Google Scholar

    [23]

    Zheng J D, Zhao Y F, Bao Z Q, Shen Y H, Guan Z, Zhong N, Yue F Yu, Xiang P H, Duan C G 2022 2D Mater. 9 035005Google Scholar

    [24]

    Harats M G, Kirchhof J N, Qiao M X, Greben K, Bolotin  K I 2020 Nat. Photonics 14 324Google Scholar

    [25]

    Lee J, Yun S J, Seo C, Cho K, Kim T S, An G H, Kang K, Lee H S, Kim J Y 2021 Nano Lett. 21 43Google Scholar

    [26]

    Wang J W, Han M J, Wang Q, Ji Y Q, Zhang X, Shi R, Wu Z F, Zhang L, Amini A, Guo L, Wang N, Lin J H, Cheng C 2021 ACS Nano 15 6633Google Scholar

    [27]

    Hao S J, Hao Y L, Li J, Wang K Y, Fan C, Zhang S W, Wei Y H, Hao G L 2024 Appl. Phys. Lett. 125 072102Google Scholar

    [28]

    Dastgeer G, Afzal A M, Nazir G, Sarwar N 2021 Adv. Mater. Interfaces 8 2100705Google Scholar

    [29]

    Song Q C, An M, Chen X D, Peng Z, Zang J F, Yang N 2016 Nanoscale 8 14943Google Scholar

    [30]

    Ouyang G, Wang C X, Yang G W 2009 Chem. Rev. 109 4221Google Scholar

    [31]

    Zhu Z M, Zhang A, Ouyang G, Yang G W 2011 Appl. Phys. Lett. 98 263112Google Scholar

    [32]

    Dong J S, Zhao Y P, Ouyang G, Yang G W 2022 Appl. Phys. Lett. 120 080501Google Scholar

    [33]

    Huang R 2005 J. Mech. Phys. Solids 53 63Google Scholar

    [34]

    Jiang H Q, Khang D Y, Song J Z, Sun Y G, Huang Y G, Rogers J A 2007 Proc. Natl. Acad. Sci. 104 15607Google Scholar

    [35]

    Khang D Y, Rogers J A, Lee H H 2009 Adv. Funct. Mater. 19 1526

    [36]

    Iguiñiz N, Frisenda R, Bratschitsch R, Gomez A C 2019 Adv. Mater. 31 1807150Google Scholar

    [37]

    Guo Q L, Zhang M, Xue Z Y, Ye L, Wang G, Huang G S, Mei Y F, Wang X, Di Z F 2013 Appl. Phys. Lett. 103 264102Google Scholar

    [38]

    Vellaa D, Bicoa J, Boudaoudb A, Romana B, Reis P M 2009 Proc. Natl. Acad. Sci. 106 10901Google Scholar

    [39]

    Gomez A C, Roldan R, Cappelluti E, Buscema M, Guinea F, Zant H S J, Steele G A 2013 Nano Lett. 13 5361Google Scholar

    [40]

    Jiang J W, Zhou Y P 2017 Parameterization of Stillinger-Weber Potential for Two-Dimensional Atomic Crystals DOI: 10.5772/intechopen.71929

    [41]

    Sun C Q 2007 Prog. Solid State Chem. 35 1Google Scholar

    [42]

    Zhu Y F, Jiang Q 2016 Coordin. Chem. Rev. 326 1Google Scholar

    [43]

    Marcus R A 1956 J. Chem. Phys. 24 966Google Scholar

    [44]

    Wang J H, Ding T, Gao K M, Wang L F, Zhou P W, Wu K F 2021 Nat. Commun. 12 6333Google Scholar

    [45]

    Ghosh R, Papnai B, Chen Y S, Yadav K, Sankar R, Hsieh Y P, Hofmann M, Chen Y F 2023 Adv. Mater. 35 2210746Google Scholar

    [46]

    Garzona L V, Frisenda R, Gomez A C 2019 Nanoscale 11 12080Google Scholar

    [47]

    Shang H X, Liang X, Deng F, Hu S L, Shen S P 2022 Int. J. Mech. Sci. 234 107685Google Scholar

    [48]

    Shang H X, Dong H T, Wu Y H, Deng F, Liang X, Hu S L, Shen S P 2024 Phys. Rev. Lett. 132 116201Google Scholar

    [49]

    Zhang Z, Zhao Y P, Ouyang G 2017 J. Phys. Chem. C 121 19296Google Scholar

    [50]

    Furchi M M, Pospischil A, Libisch F, Burgdörfer J, Mueller T 2014 Nano Lett. 14 4785Google Scholar

    [51]

    Lee C H, Lee G H, Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [52]

    Cao G Y, Shang A X, Zhang C, Gong Y P, Li S J, Bao Q L, Li X F 2016 Nano Energy 30 260Google Scholar

  • 图 1  褶皱状单层GeSe/衬底结构示意图以及单层GeSe的俯视图和侧视图

    Figure 1.  Schematic illustration of wrinkled monolayer GeSe/ substrate as well as the top and side views of monolayer GeSe.

    图 2  (a) 褶皱状单层GeSe振幅与波长之间的关系; (b) 不同波长下褶皱状单层GeSe应变的分布情况; (c) 单层GeSe带隙随应变的变化规律; (d) 不同波长下褶皱状单层GeSe带隙的分布情况

    Figure 2.  (a) The relationship between the amplitude and wavelength of wrinkled monolayer GeSe; (b) distribution of strain of wrinkled monolayer GeSe with different wavelengths; (c) strain dependent bandgap of monolayer GeSe; (d) distribution of bandgaps of wrinkled monolayer GeSe with different wavelengths.

    图 3  (a) 锯齿型褶皱状单层GeSe和 (b) 扶手椅型褶皱状单层GeSe在不同波长下单个周期内带边的分布情况

    Figure 3.  Energy profiles of (a) zigzag wrinkled monolayer GeSe and (b) armchair wrinkled monolayer GeSe with different wavelengths.

    图 4  褶皱状单层GeSe峰导带底和价带顶的一阶导数随波长的变化规律

    Figure 4.  The first derivatives of CBM and VBM of top as a function of wavelength in zigzag wrinkled GeSe and armchair wrinkled GeSe.

    图 5  褶皱状单层GeSe驱动力和激子转移速率随波长的变换规律

    Figure 5.  The driving force and exciton transfer rate of wrinkled GeSe as a function of wavelength.

    表 1  理论计算所需参数

    Table 1.  Input parameters for calculations of monolayer GeSe.

    GeSe Ef/GPa a b h EC/eV ν1(3) ν2(4) me mh Eg/eV
    Zigzag 66[8] 3.96[6] 4.16[6] 2.62[6] 3.1[4] 0.42[40]
    (0.14)
    –0.43[9]
    (0.58)
    0.31[6]
    (m0)
    0.38[6]
    (m0)
    1.16[6]
    Armchair 25[8]
    DownLoad: CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [3]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [4]

    Zhao H Q, Mao Y L, Mao X, Shi X, Xu C S, Wang C X, Zhang S M, Zhou D H 2018 Adv. Funct. Mater. 28 1704855Google Scholar

    [5]

    Zhou X, Hu X Z, Jin B, Yu J, Liu K L, Li H Q, Zhai T Y 2018 Adv. Sci. 5 1800478Google Scholar

    [6]

    Hu Y H, Zhang S L, Sun S F, Xie M Q, Cai B, Zeng H B 2015 Appl. Phys. Lett. 107 122107Google Scholar

    [7]

    Xia C X, Du J, Huang X W, Xiao W B, Xiong W Q, Wang T X, Wei Z M, Jia Y, Shi J J, Li J B 2018 Phys. Rev. B 97 115416Google Scholar

    [8]

    Xu Y F, Zhang H, Shao H Z, Ni G, Li J, Lu H L, Zhang R J, Peng Bo, Zhu Y Y, Zhu H Y, Soukoulis C M 2017 Phys. Rev. B 96 245421Google Scholar

    [9]

    Kong X, Deng J K, Li L, Liu Y L, Ding X D, Sun J, Liu J Z 2018 Phys. Rev. B 98 184104Google Scholar

    [10]

    Mao Y L, Xu C S, Yuan J M, Zhao H Q 2019 J. Mater. Chem. A 7 11265Google Scholar

    [11]

    Lu Q L, Yang W H, Xiong F B, Lin H F, Zhuang Q Q 2020 Acta Phys. Sin. 69 196801 [卢群林, 杨伟煌, 熊飞兵, 林海峰, 庄芹芹 2020 物理学报 69 196801]Google Scholar

    Lu Q L, Yang W H, Xiong F B, Lin H F, Zhuang Q Q 2020 Acta Phys. Sin. 69 196801Google Scholar

    [12]

    Muhammad Z, Li Y L, Abbas G, Usman M, Sun Z, Zhang Y, Lv Z Y, Wang Y, Zhao W S 2022 Adv. Electron. Mater. 8 2101112Google Scholar

    [13]

    Huang L, Wu F G, Li J B 2016 J. Chem. Phys. 144 114708Google Scholar

    [14]

    Li Z B, Liu X S, Wang X, Yang Y, Liu S C, Shi W, Li Y, Xing X B, Xue D J, Hu J S 2020 Phys. Chem. Chem. Phys. 22 914Google Scholar

    [15]

    Zuo B Min, Yuan J M, Feng Z, Mao Y L 2019 Acta Phys. Sin. 68 113103 [左博敏, 袁健美, 冯志, 毛宇亮 2019 物理学报 68 113103]Google Scholar

    Zuo B Min, Yuan J M, Feng Z, Mao Y L 2019 Acta Phys. Sin. 68 113103Google Scholar

    [16]

    Guo G X, Bi G 2018 Micro Nano Lett. 13 600Google Scholar

    [17]

    Wang J J, Zhao Y F, Zheng J D, Wang X T, Deng X, Guan Z, Ma R R Zhong Ni, Yue F Y, Wei Z M, Xiang P H, Duan C G 2021 Phys. Chem. Chem. Phys. 23 26997Google Scholar

    [18]

    Li Y, Ma K, Fan X, Liu F S, Li J Q, Xie H P 2020 Appl. Sur. Sci. 521 146256Google Scholar

    [19]

    Feng J, Qian X F, Huang C W, Li J 2012 Nat. Photonics 6 866Google Scholar

    [20]

    Li H, Contryman A W, Qian X F, Ardakani S Mo, Gong Y J, Wang X L, Weisse J M, Lee C H, Zhao J H, Ajayan P M, Li Ju, Manoharan H C, Zheng X L 2015 Nat. Commun. 6 7381Google Scholar

    [21]

    San-Jose P, Parente V, Guinea F, Roldán R, Prada E 2016 Phys. Rev. X 6 031046

    [22]

    Lam N H, Nguyen P, Cho S, Kim J 2023 Surf. Sci. 730 122251Google Scholar

    [23]

    Zheng J D, Zhao Y F, Bao Z Q, Shen Y H, Guan Z, Zhong N, Yue F Yu, Xiang P H, Duan C G 2022 2D Mater. 9 035005Google Scholar

    [24]

    Harats M G, Kirchhof J N, Qiao M X, Greben K, Bolotin  K I 2020 Nat. Photonics 14 324Google Scholar

    [25]

    Lee J, Yun S J, Seo C, Cho K, Kim T S, An G H, Kang K, Lee H S, Kim J Y 2021 Nano Lett. 21 43Google Scholar

    [26]

    Wang J W, Han M J, Wang Q, Ji Y Q, Zhang X, Shi R, Wu Z F, Zhang L, Amini A, Guo L, Wang N, Lin J H, Cheng C 2021 ACS Nano 15 6633Google Scholar

    [27]

    Hao S J, Hao Y L, Li J, Wang K Y, Fan C, Zhang S W, Wei Y H, Hao G L 2024 Appl. Phys. Lett. 125 072102Google Scholar

    [28]

    Dastgeer G, Afzal A M, Nazir G, Sarwar N 2021 Adv. Mater. Interfaces 8 2100705Google Scholar

    [29]

    Song Q C, An M, Chen X D, Peng Z, Zang J F, Yang N 2016 Nanoscale 8 14943Google Scholar

    [30]

    Ouyang G, Wang C X, Yang G W 2009 Chem. Rev. 109 4221Google Scholar

    [31]

    Zhu Z M, Zhang A, Ouyang G, Yang G W 2011 Appl. Phys. Lett. 98 263112Google Scholar

    [32]

    Dong J S, Zhao Y P, Ouyang G, Yang G W 2022 Appl. Phys. Lett. 120 080501Google Scholar

    [33]

    Huang R 2005 J. Mech. Phys. Solids 53 63Google Scholar

    [34]

    Jiang H Q, Khang D Y, Song J Z, Sun Y G, Huang Y G, Rogers J A 2007 Proc. Natl. Acad. Sci. 104 15607Google Scholar

    [35]

    Khang D Y, Rogers J A, Lee H H 2009 Adv. Funct. Mater. 19 1526

    [36]

    Iguiñiz N, Frisenda R, Bratschitsch R, Gomez A C 2019 Adv. Mater. 31 1807150Google Scholar

    [37]

    Guo Q L, Zhang M, Xue Z Y, Ye L, Wang G, Huang G S, Mei Y F, Wang X, Di Z F 2013 Appl. Phys. Lett. 103 264102Google Scholar

    [38]

    Vellaa D, Bicoa J, Boudaoudb A, Romana B, Reis P M 2009 Proc. Natl. Acad. Sci. 106 10901Google Scholar

    [39]

    Gomez A C, Roldan R, Cappelluti E, Buscema M, Guinea F, Zant H S J, Steele G A 2013 Nano Lett. 13 5361Google Scholar

    [40]

    Jiang J W, Zhou Y P 2017 Parameterization of Stillinger-Weber Potential for Two-Dimensional Atomic Crystals DOI: 10.5772/intechopen.71929

    [41]

    Sun C Q 2007 Prog. Solid State Chem. 35 1Google Scholar

    [42]

    Zhu Y F, Jiang Q 2016 Coordin. Chem. Rev. 326 1Google Scholar

    [43]

    Marcus R A 1956 J. Chem. Phys. 24 966Google Scholar

    [44]

    Wang J H, Ding T, Gao K M, Wang L F, Zhou P W, Wu K F 2021 Nat. Commun. 12 6333Google Scholar

    [45]

    Ghosh R, Papnai B, Chen Y S, Yadav K, Sankar R, Hsieh Y P, Hofmann M, Chen Y F 2023 Adv. Mater. 35 2210746Google Scholar

    [46]

    Garzona L V, Frisenda R, Gomez A C 2019 Nanoscale 11 12080Google Scholar

    [47]

    Shang H X, Liang X, Deng F, Hu S L, Shen S P 2022 Int. J. Mech. Sci. 234 107685Google Scholar

    [48]

    Shang H X, Dong H T, Wu Y H, Deng F, Liang X, Hu S L, Shen S P 2024 Phys. Rev. Lett. 132 116201Google Scholar

    [49]

    Zhang Z, Zhao Y P, Ouyang G 2017 J. Phys. Chem. C 121 19296Google Scholar

    [50]

    Furchi M M, Pospischil A, Libisch F, Burgdörfer J, Mueller T 2014 Nano Lett. 14 4785Google Scholar

    [51]

    Lee C H, Lee G H, Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [52]

    Cao G Y, Shang A X, Zhang C, Gong Y P, Li S J, Bao Q L, Li X F 2016 Nano Energy 30 260Google Scholar

  • [1] Duan Cong, Liu Jun-Jie, Chen Yong-Jie, Zuo Hui-Ling, Dong Jian-Sheng, Ouyang Gang. Adhesion properties of MoS2/SiO2 interface: Size and temperature effects. Acta Physica Sinica, 2024, 73(5): 056801. doi: 10.7498/aps.73.20231648
    [2] Liu JunJie, Zuo HuiLing, Tan Xin, Dong JianSheng. Anisotropic energy funneling effect in wrinkled monolayer GeSe. Acta Physica Sinica, 2024, 73(23): . doi: 10.7498/aps.20241155
    [3] Hu Wei-Wei, Sun Jin-Chang, Zhang Yu, Gong Yue, Fan Yu-Ting, Tang Xin-Feng, Tan Gang-Jian. Improving thermoelectric performance of GeSe compound by crystal structure engineering. Acta Physica Sinica, 2022, 71(4): 047101. doi: 10.7498/aps.71.20211843
    [4] Meng Yu-Xin, Zhao Yi-Fan, Li Shao-Chun. Research progress of puckered honeycomb monolayers. Acta Physica Sinica, 2021, 70(14): 148101. doi: 10.7498/aps.70.20210638
    [5] Crystal Structure Engineering as a Means of Boosting the Thermoelectric Performance of GeSe. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211843
    [6] Chen Chao, Duan Fang-Li. Effect of functional groups on crumpling behavior and structure of graphene oxide. Acta Physica Sinica, 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [7] Chen Lu, Li Ye-Fei, Zheng Qiao-Ling, Liu Qing-Kun, Gao Yi-Min, Li Bo, Zhou Chang-Meng. Theoretical study of atomic relaxation, surface energy, electronic structure and properties of B2- and B19'-NiTi surfaces. Acta Physica Sinica, 2019, 68(5): 053101. doi: 10.7498/aps.68.20181944
    [8] Jin Feng, Zhang Zhen-Hua, Wang Cheng-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Twisting effects on energy band structures and transmission behaviors of graphene nanoribbons. Acta Physica Sinica, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [9] Sun Wei-Feng, Zheng Xiao-Xia. First-principles study of interface relaxation effects on interface structure, band structure and optical property of InAs/GaSb superlattices. Acta Physica Sinica, 2012, 61(11): 117301. doi: 10.7498/aps.61.117301
    [10] Huang Duo-Hui, Wang Fan-Hou, Cheng Xiao-Hong, Wan Ming-Jie, Jiang Gang. The study of structure characteristics of GeTe and GeSe molecules under the external electric field. Acta Physica Sinica, 2011, 60(12): 123101. doi: 10.7498/aps.60.123101
    [11] Sang Cui-Cui, Wan Jian-Jie, Dong Chen-Zhong, Ding Xiao-Bin, Jiang Jun. Relaxation effect in photoionization processes of lithium. Acta Physica Sinica, 2008, 57(4): 2152-2160. doi: 10.7498/aps.57.2152
    [12] Shao Ming-Zhu, Luo Shi-Yu. The sine-squared potential and the band structure for channelling effects. Acta Physica Sinica, 2007, 56(6): 3407-3410. doi: 10.7498/aps.56.3407
    [13] Ma Xin-Guo, Tang Chao-Qun, Huang Jin-Qiu, Hu Lian-Feng, Xue Xia, Zhou Wen-Bin. First-principle calculations on the geometry and relaxation structure of anatase TiO2(101) surface. Acta Physica Sinica, 2006, 55(8): 4208-4213. doi: 10.7498/aps.55.4208
    [14] CHAO YUE-SHENG, SUN SHAO-QUAN, TENG GONG-QING, LAI ZU-HAN. ACCELERATING EFFECT OF HIGH DENSITY ELECTRO-PULSING UPON STRUCTURE RELAXATION AND CRYSTALLIZATION OF AMORPHOUS ALLOY. Acta Physica Sinica, 1996, 45(9): 1506-1512. doi: 10.7498/aps.45.1506
    [15] LI FU-BIN. THEORY OF THE BAND NONPARABOLICITY EFFECTS ON FR?HLICH POLARONS. Acta Physica Sinica, 1991, 40(4): 610-615. doi: 10.7498/aps.40.610
    [16] LI YU-ZHANG, XU ZHONG-YING, GE WEI-KUN, XU JI-SONG, ZHENG BAO-ZHEN, ZHUANG WEI-HUA. NONEQUILIBRIUM PHONON EFFECTS IN HOT CARRIER RELAXATION PROCESSES OF MULTIPLE QUANTUM WELL STRUCTURES. Acta Physica Sinica, 1989, 38(9): 1540-1544. doi: 10.7498/aps.38.1540
    [17] FAN XI-QING, WANG GUO-LIANG, LIU FU-SUI. THE INFRARED DIVERGENCE RESPONSE OF STRUCTURAL RELAXATION IN GLASSES. Acta Physica Sinica, 1986, 35(7): 896-904. doi: 10.7498/aps.35.896
    [18] XIA JIAN-BAI. RELAXATION EFFECTS OF THE (111) SURFACE OF Si AND GaAs. Acta Physica Sinica, 1984, 33(2): 143-153. doi: 10.7498/aps.33.143
    [19] LI JING-DE. THE PYROELECTRIC RELAXATION EFFECT. Acta Physica Sinica, 1984, 33(11): 1563-1568. doi: 10.7498/aps.33.1563
    [20] АНАЛИЗ ПРОЧНОСТИ МЕЖАТОМНОЙ СВЯЗИ МЕТАЛЛОВ ПО ЭЛЕКТРОННЫМ СТРУКТУРАМ. Acta Physica Sinica, 1961, 17(8): 1-8. doi: 10.7498/aps.17.1-2
Metrics
  • Abstract views:  480
  • PDF Downloads:  47
  • Cited By: 0
Publishing process
  • Received Date:  19 August 2024
  • Accepted Date:  08 September 2024
  • Available Online:  14 November 2024
  • Published Online:  05 December 2024

/

返回文章
返回