-
A magnetic flux threading through magnetic atomic rings can induce topological superconductivity. It provides a novel approach to achieving low-dimensional topological superconductivity for the tradition ways require spin-orbit coupling or helical magnetic order. In this paper, we introduce a topological superconductor model by depositing a ferromagnetic atomic ring on the surface of a two-dimensional s-wave superconductor. When the moments of the magnetic atoms are perpendicular to the external magnetic field, a magnetic flux can induce topological superconductivity. Considering practical experiments, for the magnetic atomic chain breaks the inversion symmetry of the surface of the two-dimensional substrate, the Rashba spin-orbit coupling (SOC) thereby is introduced, leading to the appearance of helical magnetic order in the atomic chain. According to previous researches, this helical magnetic order ensures that the magnetic moments of the ring are perpendicular to the external magnetic field, and the patch angle of neighbor moments of the helical order is proportional to the strength of the SOC. However, the helical order or Rashba SOC may introduce topological superconductivity by them own. It is meaningful to investigate the influence of the effects of the Rashba SOC and helical magnetic order on the flux induced topological superconducting states. We find that the Rashba SOC has a disruptive effect on the existing topological state, while helical magnetic order merely shifts its transition position in the parameter space. Therefore, when selecting materials for experiment, it's advisable to choose those with a small strength of Rashba SOC.
-
[1] Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602.
[2] Li J, Chen H, Drozdov I K, Yazdani A, Bernevig B A, MacDonald A H. 2014 Phys. Rev. B 90 235433.
[3] Sau J D, Brydon P M R 2015 Phys. Rev. Lett. 115 127003.
[4] Heimes A, Mendler D, Kotetes P 2015 New J. Phys 17 23023.
[5] Brydon P M R, Das Sarma S, Hui H, Sau J D 2015 Phys. Rev. B 91 064505.
[6] Kim H, Palacio-Morales A, Posske T, Rózsa L, Palotás K, Szunyogh L, Thorwart M, Wiesendanger R 2018 Sci Adv 4 eaar5251.
[7] Schneider L, Beck P, Posske T, Crawford D, Mascot E, Rachel S, Wiesendanger R, Wiebe J. 2021 Nat. Phys. 17 943.
[8] Schneider L, Beck P, Rózsa L, Posske T, Wiebe J, Wiesendanger R 2023 Nat. Commun. 14 2742.
[9] Choy T P, Edge J M, Akhmerov A R, Beenakker C W J 2011 Phys. Rev. B 84 195442.
[10] Martin I, Morpurgo A F 2012 Phys. Rev. B 85 144505.
[11] Braunecker B, Simon P 2013 Phys. Rev. Lett. 111 147202.
[12] Pientka F, Glazman L I, von Oppen F 2013 Phys. Rev. B 88 155420.
[13] Klinovaja J, Stano P, Yazdani A, Loss D 2013 Phys. Rev. Lett. 111 186805.
[14] Vazifeh M M, Franz M 2013 Phys. Rev. Lett. 111 206802.
[15] Nadj-Perge S, Drozdov I K, Bernevig B A, Yazdani A 2013 Phys. Rev. B 88 020407.
[16] Pöyhönen K, Westström A, Röntynen J, Ojanen T 2014 Phys. Rev. B 89 115109.
[17] Kim Y, Cheng M, Bauer B, Lutchyn R M, Das Sarma S 2014 Phys. Rev. B 90 060401(R).
[18] Reis I, Marchand D J J, Franz M 2014 Phys. Rev. B 90 085124
[19] Westström A, Pöyhönen K, Ojanen T 2015 Phys. Rev. B 91 064502.
[20] Xiao J, An J 2015 New J. Phys 17 113034.
[21] Pawlak R, Kisiel M, Klinovaja J, Meier T, Kawai S, Glatzel T, Loss D, Meyer E 2016 npj Quantum Inf 2 16035.
[22] Hess R, Legg H F, Loss D, Klinovaja J. 2022 Phys. Rev. B 106 104503.
[23] Röntynen J, Ojanen T 2014 Phys. Rev. B 90 180503.
[24] Schneider L, Brinker S, Steinbrecher M, Hermenau J, Posske T, Dias M D S, Lounis S, Wiesendanger R, Wiebe J. 2020 Nat. Commun. 11 4707.
[25] Xiao J, Hu Q, Luo X 2024 Phys. Rev. B 109 205420.
[26] Li J, Neupert T, Bernevig B A, Yazdani A 2016 Nat. Commun. 7 10395.
[27] Kitaev A Y 2001 Phys. Usp. 44 131.
[28] Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 19725.
[29] Ryu S, Schnyder A P, Furusaki A, Ludwig A W W 2010 New J. Phys 12 06170.
Metrics
- Abstract views: 71
- PDF Downloads: 2
- Cited By: 0