Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Exploration of Majorana bound states in topological superconductors

Liang Qi-Feng Wang Zhi Kawakami Takuto Hu Xiao

Citation:

Exploration of Majorana bound states in topological superconductors

Liang Qi-Feng, Wang Zhi, Kawakami Takuto, Hu Xiao
PDF
HTML
Get Citation
  • Majorana bound states are considered useful for realizing topological quantum computation since they obey the non-Abelian quantum statistics. Recent experiments have provided evidences for their existence in some superconducting systems, triggering significant interests from scientists in the field of condensed matter physics and related materials science. In this article, we briefly review the basic concepts and recent developments in the study of Majorana bound states. We first discuss about the origin of the nontrivial topology in superconducting systems within the Bogoliubov-de Gennes mean-field scheme. Then we show the construction of Majorana quasiparticle excitations from an electronic state, and the realization of non-Abelian statistics based on position exchanges of the Majorana bound states hosted in superconductivity vortices. Afterwards we talk about specific one-dimensional and two-dimensional topological superconductors, and propose possible experimental methods for detecting Majorana bound states and operating the Majorana qubits. In particular, a quantum device for Majorana braiding without moving vortices is introduced. Finally, perspectives of the study on Majorana bound states are provided.
      Corresponding author: Hu Xiao, Hu.Xiao@nims.go.jp
    [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [2]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [3]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [4]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [5]

    Qi XL, Zhang SC 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [6]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [7]

    Read N, Green D 2000 Phys. Rev. B 61 10267Google Scholar

    [8]

    Sato M 2014 BUTSURI 69 297

    [9]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [10]

    Beenakker C W J 2013 Ann. Rev. Cond. Matt. Phys. 4 113Google Scholar

    [11]

    Berry M V 1984 Proc. Roy. Soc. London A: Math. Phys. Sci. 392 45

    [12]

    Weng H, Yu R, Hu X, Dai X, Fang Z 2015 Adv.Phys. 64 227Google Scholar

    [13]

    Majorana E 2008 Il Nuovo Cimento (1924-1942) 14 171

    [14]

    Ivanov D A 2001 Phys. Rev. Lett. 86 268Google Scholar

    [15]

    Kitaev A Y 2001 Physics-Uspekhi 44 131Google Scholar

    [16]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [17]

    Sato M, Takahashi Y, Fujimoto S 2009 Phys. Rev. Lett. 103 020401Google Scholar

    [18]

    Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502Google Scholar

    [19]

    Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001Google Scholar

    [20]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [21]

    NadjPerge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar

    [22]

    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001Google Scholar

    [23]

    Wiedenmann J, Bocquillon E, Deacon R S, Hartinger S, Herrmann O, Klapwijk T M, Maier L, Ames C, Brüne C, Gould C, Oiwa A, Ishibashi K, Tarucha S, Buhmann H, Molenkamp L W 2016 Nat. Comm. 7 10303Google Scholar

    [24]

    Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P, Marcus C M 2016 Nature 531 206Google Scholar

    [25]

    Wang Z, Huang W C, Liang Q F, Hu X 2018 Sci. Rep. 8 7920Google Scholar

    [26]

    Hu X, Lin SZ 2010 Supercond. Sci. Tech. 23 053001Google Scholar

    [27]

    Fu L 2010 Phys. Rev. Lett. 104 056402Google Scholar

    [28]

    Wang Z, Hu XY, Liang Q F, Hu X 2013 Phys. Rev. B 87 214513Google Scholar

    [29]

    Kawakami T, Hu X 2015 Phys. Rev. Lett. 115 177001Google Scholar

    [30]

    Teo J C Y, Kane C L 2010 Phys. Rev. B 82 115120Google Scholar

    [31]

    Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li SC, Zhang F C, Jia J F 2016 Phys. Rev. Lett. 116 257003Google Scholar

    [32]

    Liang Q F, Wang Z, Hu X 2012 Europhys. Lett. 99 50004Google Scholar

    [33]

    Wu LH, Liang Q F, Hu X 2014 Sci.Tech. Adv. Mat. 15 064402Google Scholar

    [34]

    Liang Q F, Wang Z, Hu X 2014 Phys. Rev. B 89 224514Google Scholar

    [35]

    Maeno Y, Kittaka S, Nomura T, Yonezawa S, Ishida K 2011 J. Phys. Soc. Japan 81 011009

    [36]

    Tsutsumi Y, Ishikawa M, Kawakami T, Mizushima T, Sato M, Ichioka M, Machida K 2013 J. Phys. Soc. Japan 82 113707Google Scholar

    [37]

    Sakano M, Okawa K, Kanou M, Sanjo H, Okuda T, Sasagawa T, Ishizaka K 2015 Nat. Comm. 6 8595Google Scholar

    [38]

    Yonezawa S, Tajiri K, Nakata S, Nagai Y, Wang Z, Segawa K, Ando Y, Maeno Y 2016 Nat. Phys. 13 123

    [39]

    Matano K, Kriener M, Segawa K, Ando Y, Zheng G Q 2016 Nat. Phys. 12 852Google Scholar

    [40]

    Mizushima T, Tsutsumi Y, Kawakami T, Sato M, Ichioka M, Machida K 2016 J. Phys. Soc. Japan 85 022001Google Scholar

  • 图 1  (a) 量子霍尔效应及量子反常霍尔效应; (b)量子自旋霍尔效应; (c) 拓扑超导的体能带结构(红线和蓝线)和边缘态(绿色)的色散关系; (d)实空间边缘态的示意图

    Figure 1.  Schematic energy band structures for (a) quantum Hall effect and quantum anomalous Hall effect, (b) quantum spin Hall effect, (c) a topological superconductor and (d) sche-matic diagram of topological edge/surface states in real space.

    图 2  拓扑超导约化能隙$ {{g}}\left({{k}}\right)/\left|{{g}}\left({{k}}\right)\right| $的动量空间分布

    Figure 2.  Distribution of normalized topological superconduc-tivity gap $ {{g}}\left({{k}}\right)/\left|{{g}}\left({{k}}\right)\right| $ in momentum space.

    图 3  利用拓扑超导量子涡旋里的Majorana束缚态实现非阿贝尔统计的示意图, 其中黑色箭号代表量子涡旋位置交换的轨迹, 当量子涡旋跨越红线时超导相位发生2π的不连续跳跃

    Figure 3.  Schematics of realization of non-Abelian statistics using Majorana bound states in vortex cores of a topological superconductor. Black arrows denote the exchanging paths of two quantum vortices. Superconducting phase takes a 2π jump when a vortex crosses the red cuts.

    图 4  (a)具有自旋轨道耦合的半导体纳米线和s波超导的混合系统的示意图; (b)半导体纳米线在有限磁场(实线)和零磁场(虚线)下的色散关系

    Figure 4.  (a) Schematics of a heterostructure consisting of a spin-orbital coupling semiconductor nanowire and an s wave superconductor; (b) the band dispersion of the nanowire with finite magnetic field (solid lines) and zero magnetic field (dashed lines).

    图 5  (a) 通过电压差控制Majorana量子比特的设计; (b) Majorana量子比特的两能级系统; (c)-(e) 量子比特在电流脉冲下的LZS震荡: (c)短脉冲, (d)长脉冲, (e)序列脉冲[25]

    Figure 5.  (a) Schematic design of a universal quantum gate for Majorana qubit, where the qubit is manipulated by voltage across the Josephson-Majorana junction; (b) the two energy levels of the Majorana qubit depending on the phase difference across the junction; (c)-(e) the LZS oscillation of Majorana qubit under current pulse: (c) a short pulse, (d) a long pulse, (e) a sequence of pulses[25].

    图 6  (a) Majorana束缚态与量子点耦合体系; (b)两个量子点的占据态关联函数[28]

    Figure 6.  (a) System with couplings between Majorana bound states and two quantum dots; (b) correlation between the electron occupations on the two quantum dots[28].

    图 7  三维拓扑绝缘体(TI)色散关系(a)及TI-s波超导(SC)的异质结(b)的示意图, (b)中的红点代表Majorana束缚态[29]

    Figure 7.  (a) Schematic of the linear dispersion of surface state of a 3D TI; (b) schematic of a TI/s-SC heterostructure, where the red points denote the Majorana bound states at the center of a quantum vortex[29].

    图 8  (a)拓扑超导量子涡旋里的低能准粒子激发的自旋分辨波函数; (b)准粒子激发的自旋向上态密度和自旋向下态密度之比的能量-空间分布[29]

    Figure 8.  (a) Spin-resolved wavefunctions of the low energy quasiparticle states in the vortex core of a topological superconductor; (b) spectrum of the ratio between densities of states for the spin-up and spin-down components[29].

    图 9  (a), (c), (e), (g)为利用栅极电压移动边界Majorana束缚态的示意图; (b), (d), (f)给出了与(a), (c), (e) 相对应的Majorana束缚态的波函数分布[32]

    Figure 9.  (a), (c), (e), (g) Schematic of the device which transports edge Majorana states using gate voltages; (b), (d), (f) corresponding wavefunctions of the edge Majorana states in (a), (c), (e)[32].

    图 10  (a), (b) Majorana量子比特的NOT量子门操作; (c), (d) 基于边界Mojorana束缚态的单电子泵[34]

    Figure 10.  (a), (b) NOT quantum gate operation of the Majorana qubit; (c), (d) a single-electron pumping based on the edge Majorana states[34].

  • [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [2]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [3]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [4]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [5]

    Qi XL, Zhang SC 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [6]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [7]

    Read N, Green D 2000 Phys. Rev. B 61 10267Google Scholar

    [8]

    Sato M 2014 BUTSURI 69 297

    [9]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [10]

    Beenakker C W J 2013 Ann. Rev. Cond. Matt. Phys. 4 113Google Scholar

    [11]

    Berry M V 1984 Proc. Roy. Soc. London A: Math. Phys. Sci. 392 45

    [12]

    Weng H, Yu R, Hu X, Dai X, Fang Z 2015 Adv.Phys. 64 227Google Scholar

    [13]

    Majorana E 2008 Il Nuovo Cimento (1924-1942) 14 171

    [14]

    Ivanov D A 2001 Phys. Rev. Lett. 86 268Google Scholar

    [15]

    Kitaev A Y 2001 Physics-Uspekhi 44 131Google Scholar

    [16]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [17]

    Sato M, Takahashi Y, Fujimoto S 2009 Phys. Rev. Lett. 103 020401Google Scholar

    [18]

    Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502Google Scholar

    [19]

    Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001Google Scholar

    [20]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [21]

    NadjPerge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar

    [22]

    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001Google Scholar

    [23]

    Wiedenmann J, Bocquillon E, Deacon R S, Hartinger S, Herrmann O, Klapwijk T M, Maier L, Ames C, Brüne C, Gould C, Oiwa A, Ishibashi K, Tarucha S, Buhmann H, Molenkamp L W 2016 Nat. Comm. 7 10303Google Scholar

    [24]

    Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P, Marcus C M 2016 Nature 531 206Google Scholar

    [25]

    Wang Z, Huang W C, Liang Q F, Hu X 2018 Sci. Rep. 8 7920Google Scholar

    [26]

    Hu X, Lin SZ 2010 Supercond. Sci. Tech. 23 053001Google Scholar

    [27]

    Fu L 2010 Phys. Rev. Lett. 104 056402Google Scholar

    [28]

    Wang Z, Hu XY, Liang Q F, Hu X 2013 Phys. Rev. B 87 214513Google Scholar

    [29]

    Kawakami T, Hu X 2015 Phys. Rev. Lett. 115 177001Google Scholar

    [30]

    Teo J C Y, Kane C L 2010 Phys. Rev. B 82 115120Google Scholar

    [31]

    Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li SC, Zhang F C, Jia J F 2016 Phys. Rev. Lett. 116 257003Google Scholar

    [32]

    Liang Q F, Wang Z, Hu X 2012 Europhys. Lett. 99 50004Google Scholar

    [33]

    Wu LH, Liang Q F, Hu X 2014 Sci.Tech. Adv. Mat. 15 064402Google Scholar

    [34]

    Liang Q F, Wang Z, Hu X 2014 Phys. Rev. B 89 224514Google Scholar

    [35]

    Maeno Y, Kittaka S, Nomura T, Yonezawa S, Ishida K 2011 J. Phys. Soc. Japan 81 011009

    [36]

    Tsutsumi Y, Ishikawa M, Kawakami T, Mizushima T, Sato M, Ichioka M, Machida K 2013 J. Phys. Soc. Japan 82 113707Google Scholar

    [37]

    Sakano M, Okawa K, Kanou M, Sanjo H, Okuda T, Sasagawa T, Ishizaka K 2015 Nat. Comm. 6 8595Google Scholar

    [38]

    Yonezawa S, Tajiri K, Nakata S, Nagai Y, Wang Z, Segawa K, Ando Y, Maeno Y 2016 Nat. Phys. 13 123

    [39]

    Matano K, Kriener M, Segawa K, Ando Y, Zheng G Q 2016 Nat. Phys. 12 852Google Scholar

    [40]

    Mizushima T, Tsutsumi Y, Kawakami T, Sato M, Ichioka M, Machida K 2016 J. Phys. Soc. Japan 85 022001Google Scholar

  • [1] Cui Na-Wei, Gao Jia-Xin, Dong Hui-Ru, Li Chuan-Qi, Luo Xiao-Bing, Xiao Jin-Peng. Topological superconducting phase competition in magnetic atomic rings. Acta Physica Sinica, 2024, 73(23): 237301. doi: 10.7498/aps.73.20241095
    [2] Chu Chun-Guang, Wang An-Qi, Liao Zhi-Min. Josephson effect in topological semimetal-superconductor heterojunctions. Acta Physica Sinica, 2023, 72(8): 087401. doi: 10.7498/aps.72.20230397
    [3] Wang Chen-Xu, He Ran, Li Rui-Rui, Chen Yan, Fang Ding, Cui Jin-Ming, Huang Yun-Feng, Li Chuan-Feng, Guo Guang-Can. Advances in the study of ion trap structures in quantum computation and simulation. Acta Physica Sinica, 2022, 71(13): 133701. doi: 10.7498/aps.71.20220224
    [4] Zhou Zong-Quan. “Quantum memory” quantum computers and noiseless phton echoes. Acta Physica Sinica, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [5] Wang Ning, Wang Bao-Chuan, Guo Guo-Ping. New progress of silicon-based semiconductor quantum computation. Acta Physica Sinica, 2022, 71(23): 230301. doi: 10.7498/aps.71.20221900
    [6] Su Fei-Fan, Yang Zhao-Hua, Zhao Shou-Kuan, Yan Hai-Sheng, Tian Ye, Zhao Shi-Ping. Fabrication of superconducting qubits and auxiliary devices with niobium base layer. Acta Physica Sinica, 2022, 71(5): 050303. doi: 10.7498/aps.71.20211865
    [7] Jiang Da, Yu Dong-Yang, Zheng Zhan, Cao Xiao-Chao, Lin Qiang, Liu Wu-Ming. Research progress of material, physics, and device of topological superconductors for quantum computing. Acta Physica Sinica, 2022, 71(16): 160302. doi: 10.7498/aps.71.20220596
    [8] Zhang Jie-Yin, Gao Fei, Zhang Jian-Jun. Research progress of silicon and germanium quantum computing materials. Acta Physica Sinica, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [9] Zhang Shi-Hao, Zhang Xiang-Dong, Li Lü-Zhou. Research progress of measurement-based quantum computation. Acta Physica Sinica, 2021, 70(21): 210301. doi: 10.7498/aps.70.20210923
    [10] Ding Chen, Li Tan, Zhang Shuo, Guo Chu, Huang He-Liang, Bao Wan-Su. A quantum state readout method based on a single ancilla qubit. Acta Physica Sinica, 2021, 70(21): 210303. doi: 10.7498/aps.70.20211066
    [11] Wen Lian-Jun, Pan Dong, Zhao Jian-Hua. From high-quality semiconductor/superconductor nanowires to Majorana zero mode. Acta Physica Sinica, 2021, 70(5): 058101. doi: 10.7498/aps.70.20201750
    [12] Gu Kai-Yuan, Luo Tian-Chuang, Ge Jun, Wang Jian. Superconductivity in topological materials. Acta Physica Sinica, 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [13] He Ying-Ping, Hong Jian-Song, Liu Xiong-Jun. Non-abelian statistics of Majorana modes and the applications to topological quantum computation. Acta Physica Sinica, 2020, 69(11): 110302. doi: 10.7498/aps.69.20200812
    [14] Tian Yu-Ling, Feng Tian-Feng, Zhou Xiao-Qi. Collaborative quantum computation with redundant graph state. Acta Physica Sinica, 2019, 68(11): 110302. doi: 10.7498/aps.68.20190142
    [15] Fan Heng. Quantum computation and quantum simulation. Acta Physica Sinica, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [16] Zhao Shi-Ping, Liu Yu-Xi, Zheng Dong-Ning. Novel superconducting qubits and quantum physics. Acta Physica Sinica, 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [17] Wang Su-Xin, Li Yu-Xian, Wang Ning, Liu Jian-Jun. Andreev reflection in a T-shaped double quantum-dot with coupled Majorana bound states. Acta Physica Sinica, 2016, 65(13): 137302. doi: 10.7498/aps.65.137302
    [18] Zhao Na, Liu Jian-She, Li Tie-Fu, Chen Wei. Progress of coupled superconducting qubits. Acta Physica Sinica, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [19] Ye Bin, Xu Wen-Bo, Gu Bin-Jie. Robust quantum computation of the quantum kicked Harper model and dissipative decoherence. Acta Physica Sinica, 2008, 57(2): 689-695. doi: 10.7498/aps.57.689
    [20] Ye Bin, Gu Rui-Jun, Xu Wen-Bo. Robust quantum computation of the kicked Harper model and quantum chaos. Acta Physica Sinica, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
Metrics
  • Abstract views:  12964
  • PDF Downloads:  976
  • Cited By: 0
Publishing process
  • Received Date:  20 June 2019
  • Accepted Date:  09 September 2019
  • Published Online:  05 June 2020

/

返回文章
返回