Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication of superconducting qubits and auxiliary devices with niobium base layer

Su Fei-Fan Yang Zhao-Hua Zhao Shou-Kuan Yan Hai-Sheng Tian Ye Zhao Shi-Ping

Citation:

Fabrication of superconducting qubits and auxiliary devices with niobium base layer

Su Fei-Fan, Yang Zhao-Hua, Zhao Shou-Kuan, Yan Hai-Sheng, Tian Ye, Zhao Shi-Ping
PDF
HTML
Get Citation
  • Over the past two decades significant advances have been made in the research of superconducting quantum computing and quantum simulation, in particular of the device design and fabrication that leads to ever-increasing superconducting qubit coherence times and scales. With Google’s announcement of the realization of “quantum supremacy”, superconducting quantum computing has attracted even more attention. Superconducting qubits are macroscopic objects with quantum properties such as quantized energy levels and quantum-state superposition and entanglement. Their quantum states can be precisely manipulated by tuning the magnetic flux, charge, and phase difference of the Josephson junctions with nonlinear inductance through electromagnetic pulse signals, thereby implementing the quantum information processing. They have advantages in many aspects and are expected to become the central part of universal quantum computing. Superconducting qubits and auxiliary devices prepared with niobium or other hard metals like tantalum as bottom layers of large-area components have unique properties and potentials for further development. In this paper the research work in this area is briefly reviewed, starting from the design and working principle of a variety of superconducting qubits, to the detailed procedures of substrate selection and pretreatment, film growth, pattern transfer, etching, and Josephson junction fabrication, and finally the practical superconducting qubit and their auxiliary device fabrications with niobium base layers are also presented. We aim to provide a clear overview for the fabrication process of these superconducting devices as well as an outlook for further device improvement and optimization in order to help establish a perspective for future progress.
      Corresponding author: Zhao Shi-Ping, spzhao@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11874063) and the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2018B030326001)
    [1]

    Makhlin Y, Schon G, Shnirman A 2001 Rev. Mod. Phys. 73 357Google Scholar

    [2]

    Clarke J, Wilhelm F K 2008 Nature 19 459

    [3]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar

    [4]

    Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Lett. 60 21318

    [5]

    Kjaergaard M, Schwartz M E, Braumüller J, Krantz P, Wang I J, Gustavsson S, Oliver W D 2020 Annu. Rev. 11 369

    [6]

    Mi X, Ippoliti M, Quintana C, et al. 2021 arXiv: 2107.13571 v2 [quant-ph]

    [7]

    Makhlin Y, Schon G, Shnirman A 2007 Physics 73 357

    [8]

    Paik H, Schuster D I, Bishop L S, Kirchmair G, Catelani G, Sears A P, Johnson B R, Reagor M J, Frunzio L, Glazman L I, Girvin S M, Devoret M H, Schoelkopf R J 2011 Phys. Rev. Lett. 107 240501Google Scholar

    [9]

    Nakamura Y, Pashkin Y A, Tsai J S 1999 Nature 398 786Google Scholar

    [10]

    Swingle B 2018 Nat. Phys. 14 988Google Scholar

    [11]

    Salathé Y, Mondal M, Oppliger M, Heinsoo J, Kurpiers P, Potocnik A, Mezzacapo A, Heras U Las, Lamata L, Solano E, Filipp S, Wallraff A 2015 Phys. Rev. X 5 021027

    [12]

    Barends R, Lamata L, Kelly J, et al. 2015 Nat. Commun. 6 7654Google Scholar

    [13]

    Zhong Y P, Xu D, Wang P, Song C, Guo Q J, Liu W X, Xu K, Xia B X, Lu C Y, Han S, Pan J W, Wang H 2016 Phys. Rev. Lett. 117 110501Google Scholar

    [14]

    Flurin E, Ramasesh V V, Hacohen-Gourgy S, Martin L S, Yao N Y, Siddiqi I 2017 Phys. Rev. X 7 031023

    [15]

    Roushan P, Neill C, Tangpanitanon J, et al. 2017 Science 358 1175Google Scholar

    [16]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N, Fan H 2018 Phys. Rev. Lett. 120 050507Google Scholar

    [17]

    Song C, Xu D, Zhang P, Wang J, Guo Q, Liu W, Xu K, Deng H, Huang K, Zheng D, Zheng S B, Wang H, Zhu X, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 121 030502Google Scholar

    [18]

    Ma R, Saxberg B, Owens C, Leung N, Lu Y, Simon J, Schuster D I 2019 Nature 566 51Google Scholar

    [19]

    Guo X Y, Yang C, Zeng Y, Peng Y, Li H K, Deng H, Jin Y R, Chen S, Zheng D N, Fan H 2019 Phys. Rev. Appl. 11 044080Google Scholar

    [20]

    Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G, Buell D A 2019 Nature 574 505Google Scholar

    [21]

    Xu K, Sun Z H, Liu W, Zhang Y R, Li H, Dong H, Ren W, Zhang P, Nori F, Zheng D, Fan H, Wang H 2020 Sci. Adv. 6 4935Google Scholar

    [22]

    Guo Q, Cheng C, Sun Z H, Song Z, Li H, Wang Z, Ren W, Dong H, Zheng D, Zhang Y R, Mondaini R, Fan H, Wang H 2021 Nat. Phys. 17 234Google Scholar

    [23]

    Kandala A, Temme K, Corcoles A D, Mezzacapo A, Chow J M, Gambetta J M 2019 Nature 567 491Google Scholar

    [24]

    KassalI, WhitfieldJD, Perdomo-OrtizA, YungMH, Aspuru-GuzikA, 2011 Ann. Rev. Phys. Chem. 62 185Google Scholar

    [25]

    Lloyd S 1996 Science 273 1073Google Scholar

    [26]

    O’Malley P J J, Babbush R, Kivlichan I D, et al. 2016 Phys. Rev. X. 6 031007

    [27]

    Peruzzo A, McClean J, Shadbolt P, Yung M H, Zhou X Q, Love P J, Aspuru-Guzik A, O’Brien J L 2014 Nat. Comm. 5 4213Google Scholar

    [28]

    Emani P S, Warrell J, Anticevic A, et al. 2021 Nat. Methods. 18 701Google Scholar

    [29]

    Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S 2017 Nature 549 195Google Scholar

    [30]

    Ristè D, Silva M P, Ryan C A, Cross A W, Corcoles A D, Smolin J A, Gambetta J M, Chow J M, Johnson B R 2017 NPJ Quant. Inf. 3 16Google Scholar

    [31]

    Woerner S, Egger D J 2019 NPJ Quant. Inf. 5 15Google Scholar

    [32]

    Chakrabarti S, Krishnakumar R, Mazzola G, Stamatopoulos N, Woerner S, Zeng W J arXiv2012: 03819 [quant-ph]

    [33]

    Chang J B, Vissers M R, Corcoles A D, Sandberg M, Gao J S, Abraham D W, Chow J M, Gambetta J M, Rothwell M B, Keefe G A, Steffen M, Pappas D P 2013 Appl. Phys. Lett. 103 012602Google Scholar

    [34]

    Zhang G Y, Liu Y B, James J, Andrew R, Houck A 2017 npj Quant. Info. 3 1Google Scholar

    [35]

    Blok M S, Ramasesh V V, Schuster T, Brien K O, Kreikebaum J M, Dahlen D, Morvan A, Yoshida B, Yao N Y, Siddiqi I arXiv: 2003.03307 v1 [quant-ph]

    [36]

    Sage J M, Bolkhovsky V, Oliver W D, Turek B, Welander P B 2011 J. Appl. Phys. 109 063915Google Scholar

    [37]

    Stammeier M, Garcia S, Wallraff A 2018 Quantum Sci. Technol. 3 045007Google Scholar

    [38]

    Su F F, Liu W Y, Xu H K, Deng H, Li Z Y, Tian Y, Zhu X B, Zheng D N, Lu L, Zhao S P 2017 Chin. Phys. B 26 060308Google Scholar

    [39]

    Su F F, Yang Z H, Zhao S K, Yan H S, Wang Z T, Song X H, Tian Y, Zhao S P 2021 Chin. Phys. B 30 100304Google Scholar

    [40]

    Liu W Y, Su F F, Xu H K, Li Z Y, Tian Y, Zhu X B, Lu Li, Han S Y, Zhao S P 2018 Supercond. Sci. Tech. 31 045003Google Scholar

    [41]

    Su F F, Wang Z T, Xu H K, Zhao S K, Yan H S, Yang Z H, TianY, Zhao S P 2019 Chin. Phys. B 28 110303Google Scholar

    [42]

    Wang C L, Li X, Xu H K, et al. arXiv: 2105.09890 [quant-ph]

    [43]

    Chiorescu I, Nakamura Y, Harmans C J, Mooij J E 2003 Science 299 1869Google Scholar

    [44]

    Simmonds R W, Lang K M, Hite D A, Nam S, Pappas D P, Martinis J M 2004 Phys. Rev. Lett. 93 077003Google Scholar

    [45]

    Koch J, Terri M Y, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar

    [46]

    Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 443Google Scholar

    [47]

    Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Cleland A N, Martinis J M 2013 Phys. Rev. Lett. 111 080502Google Scholar

    [48]

    Manucharyan V E, Koch J, Glazman L I, DevoretM H 2009 Science 326 113Google Scholar

    [49]

    Yan F, Gustavsson S, Kamal A, Birenbaum J, Sears A P, Hover D, Gudmundsen T J, Rosenberg D, Samach G, Weber S, Yoder J L, Orlando T P, Clarke J, Kerman A J, Oliver W D 2016 Nat. Comm. 7 12964Google Scholar

    [50]

    Zhong Y P, Li C Y, Wang H H, Chen Y 2013 Chin. Phys. B 22 110313Google Scholar

    [51]

    Johnson M W, Amin M H S, Gildert S, Lanting T, Hamze F, Dickson N, Harris R, Berkley A J, Johansson J, Bunyk P 2011 Nature 473 194Google Scholar

    [52]

    Su F F, Yang Z H 2021 Physics and Engineering 31 73

    [53]

    Houck A A, Schreier J A, Johnson B R, Chow J M, Koch J, Gambetta J M, Schuster D I, Frunzio L, Devoret M H, Girvin S M, Schoelkopf R J 2008 Phys. Rev. Lett. 101 080502Google Scholar

    [54]

    Gambetta J M, Murrayc E, Fung YK K 2017 IEEE Transactions on Applied Superconductivity 27 1

    [55]

    Pop I M, Geerlings K, Catelani G, Schoelkopf R J, Glazman L I, Devoret M H 2014 Nature 508 369Google Scholar

    [56]

    Martinis J M, Megrant A arXiv: 14105793 [quant-ph]

    [57]

    Megrant A, Neill C, Barends R, et al. 2012 Appl. Phys. Lett. 100 113510Google Scholar

    [58]

    Quintana C M, Megrant A, Chen Z, et al. 2014 Appl. Phys. Lett. 105 062601Google Scholar

    [59]

    Wang C, Axline C, Gao Y Y, Brecht T, Chu Y, Frunzio L, Devoret M H, Schoelkopf R J 2015 Appl. Phys. Lett. 107 162601Google Scholar

    [60]

    Gambetta J M, Murray C E, Fung Y K K, McClure D T, Dial O, Shanks W, Sleight J, Senior, Steffen M 2017 IEEE Trans. Appl. Supercond. 27 1

    [61]

    Leonard E, Beck M A, Nelson J, et al. 2019 Phys. Rev. Appl. 11 014009Google Scholar

    [62]

    Bruno A, de Lange G, Asaad S, van der Enden K L, Langford N K, DiCarlo L 2015 Appl. Phys. Lett. 106 182601Google Scholar

    [63]

    Vissers M R, Gao J, Wisbey D S, Hite D A, Tseui C C, Corcoles A D, Steffen M, Pappas D P 2010 Appl. Phys. Lett. 97 232509Google Scholar

    [64]

    Gambetta J M, Murray C E, Fung Y K K, McClure D T, Dial O, Shanks W, Sleight J W, Steffen M 2017 IEEE Trans. Appl. Supercond. 27 1700205

    [65]

    Wisbey D S, Gao J, Vissers M R, da Silva F C S, Kline J S, Vale L, Pappas D P 2010 J. Appl. Phys. 108 093918Google Scholar

    [66]

    Ohya S, Chiaro B, Megrant A, et al. 2014 Supercond. Sci. Tech. 27 015009Google Scholar

    [67]

    Melville A, Calusine G, Woods W, Serniak K, Golden E, Niedzielski B M, Kim D K, Sevi A, Yoder J L, Dauler E A, Oliver W D 2020 Appl. Phys. Lett. 117 124004Google Scholar

    [68]

    Geerlings K, Shankar S, Edwards E, Frunzio L, Schoelkopf R J, Devoret M H 2012 Appl. Phys. Lett. 100 192601Google Scholar

    [69]

    Dunsworth A, Megrant A, Quintana C, et al. 2017 Appl. Phys. Lett. 111 022601Google Scholar

    [70]

    Nersisyan A, Poletto S, Alidoust N, Manenti R, Renzas R, Bui C V, Vu K, Whyland T, Mohan Y, Sete E A, Stanwyck S, Bestwick A, Reagor M arxXiv1901.08042[quant-ph]

    [71]

    Altoé M V P, Banerjee A, Berk C, et al. arXiv2012.07604[quant-ph]

    [72]

    Premkumar A, Weiland C, Hwang S, et al. arXiv: 2004.02908 v1[quant-ph]

    [73]

    Kamal A, Yoder J L, Yan F, Gudmundsen T J, Hover D, Sears A P, Welander P, Orlando T P, Gustavsson S, Oliver W D arXiv1606.09262[cond-mat. mes-hall]

    [74]

    Earnest C T, Béjanin J H, McConkey T G, Peters E A, Korinek A, Yuan H, Mariantoni M 2018 Supercond. Sci. Tech. 31 125013Google Scholar

    [75]

    You J Q and Nori F 2011 Nature 474 589Google Scholar

    [76]

    Kjaergaard A, Schwartz M E, Braumüller J, Krantz P, Wang J I J, Gustavsson S, Oliver W D 2020 Ann. Rev. Cond. Matter Phys. 11 369Google Scholar

    [77]

    Kreikebaum J M, Dove A, Livingston W, Kim E, Siddiqi I 2016 Supercond. Sci. Tech. 29 104002Google Scholar

    [78]

    Segall K, Crankshaw D, Nakada D, Orlando T P, Levitov L S, Lloyd S, Markovic N, Valenzuela S O, Tinkham M, Berggren K K 2003 Phys. Rev. B 67 220506Google Scholar

    [79]

    Gurvitch M, Washington M A, Huggins H A 1983 Appl. Phys. Lett. 42 472Google Scholar

    [80]

    Cava R J, Batlogg B, Krajewski J J, Poulsen H F, Gammel P, Peck W F, Rupp L W 1991 Phys. Rev. B 44 6973Google Scholar

    [81]

    Verjauw J, Potočnik A, Mongillo M, et al. 2021 Phys. Rev. Applied 16 014018Google Scholar

    [82]

    Place A P M, Rodgers L V H, Rodgers L V H, et al. 2021 Nat. Comm. 12 1779Google Scholar

    [83]

    Gladczuk L, Patel A, Paur C S, Sosnowski M 2004 Thin Solid Films 467 150Google Scholar

    [84]

    Face D W, Probe D E 1987 J. Vac. Sci. Tech. 5 3406

    [85]

    Barends R, Baselmans J J A, Hovenier J N, Gao J R, Yates S J C, Klapwijk T M, Hoevers H F C 2007 IEEE Trans. Appl. Supercond. 17 263Google Scholar

    [86]

    Schauer A, Roschy M 1972 Thin Solid Films 12 313Google Scholar

    [87]

    Fàbrega L, Fernández-Martínez I, Parra-Borderías M, Gil O, Camón A, Arrabal R G, Sesé J, Santiso J, Costa-Krämer J L, Briones F 2009 IEEE Trans. Appl. Supercond. 19 3779Google Scholar

    [88]

    Shearrow A, Koolstra G, Whiteley S J, Earnest N, Barry P S, Heremans F J, Awschalom D D, Shirokoff E, Schuster D I arXiv1808.06009 [cond-mat. mes-hall]

    [89]

    Profeta G, Franchini C, Lathiotakis N N, Floris A, Sanna A, Marques M A L, Lüders M, Massidda S, Gross E K U, Continenza A 2006 Phys. Rev. Lett. 96 047003Google Scholar

    [90]

    Pickard C J, Errea I, Eremets M I 2020 Ann. Rev. Condens. Matter. Phys. 11 57Google Scholar

    [91]

    Lisenfeld J, Bilmes A, Megrant A, Barends R, Kelly J, Klimov P, Weiss G, Martinis J M, Ustinov A V 2019 NPJ Quantum Inf. 5 105Google Scholar

    [92]

    Park J, Yan A, Tilka J A, Sampson K C, Savage D E, Prance J R, Simmons C B, Lagally M G, Coppersmith S N, Eriksson M A, Holt M V, Evans P G 2016 Appl. Phys. Lett. 4 066102

    [93]

    Lisenfeld J, Grabovskij G J, Müller C, Cole J H, Weiss G, Ustinov A V 2015 Nat. Comm. 6 6182Google Scholar

    [94]

    Pateras A, Park Y, Ahn Y, Tilka J A, Holt M V, Reichl C, Wegscheider W, Baart T A, Dehollain J P, Mukhopadhyay U, Vandersypen L M K, Evans P G 2018 Nano Lett. 18 2780Google Scholar

    [95]

    Anderson A C, Smith S C 1973 J. Phys. Chem. Solids 34 111Google Scholar

    [96]

    Wang H, Shi C, Hu J, Han S, Yu C, Wu R Q 2015 Phys. Rev. Lett. 115 077002Google Scholar

    [97]

    Lee D, Du Bois J L, Lordi V 2014 Phys. Rev. Lett. 112 017001Google Scholar

    [98]

    Kumar P, Sendelbach S, Beck M A, Freeland J W, Wang Z, Wang H, Yu C C, Wu R Q, Pappas D P, McDermott R 2016 Phys. Rev. Appl. 6 041001Google Scholar

    [99]

    Choi S, Lee D H, Louie S G, Clarke J 2009 Phys. Rev. Lett. 103 197001Google Scholar

    [100]

    Neill C, Megrant A, Barends R, Chen Y, Chiaro B, Kelly J, Mutus J Y, O’Malley P J J, Sank D, Wenner J, White T C, Yin Y, Cleland A N, Martinis J M 2013 Appl. Phys. Lett. 103 072601Google Scholar

    [101]

    Lock E H, Xu P, Kohler T, Camacho L, Prestigiacomo J, Rosen Y J, Osborn K D 2019 IEEE Trans. Appl. Supercond. 29 1700108

    [102]

    Woods W, Calusine G, Melville A, Sevi A, Golden E, Kim D K, Rosenberg D, Yoder J L, Oliver W D 2019 Phys. Rev. Appl. 12 014012Google Scholar

    [103]

    Dolan G J 1977 Appl. Phys. Lett. 31 337Google Scholar

    [104]

    Costache M V, Bridoux G, Neumann I, Valenzuela S O 2012 J. Vac. Sci. Tech. B. 30 104

    [105]

    Kreikebaum J M, O’Brien K P, Morvan A, Siddiqi I 2020 Supercond. Sci. Tech. 33 0602Google Scholar

    [106]

    Shapiro S 1963 Phys. Rev. Lett. 11 80Google Scholar

    [107]

    Clarke J 1972 Phys. Rev. Lett. 28 1363Google Scholar

    [108]

    Cai N, Zhou G, Müller K, Starr D E 2012 Appl. Phys. Lett. 101 171605Google Scholar

    [109]

    Ambegaokar V, Baratoff A 1963 Phys. Rev. Lett. 10 486Google Scholar

    [110]

    Steinbach A, Joyez P, Cottet A, Esteve D, Devoret M H, Huber M E, Martinis J M 2001 Phys. Rev. Lett. 87 137003Google Scholar

    [111]

    Zhang E, Srinivasan S, Sundaresan N, et al. arXiv: 2012.08475 [quant-ph]

    [112]

    Bilmes A, Neumann A K, Volosheniuk S, Ustinov A V, Lisenfeld J arXiv: 2101.01453 v2 [quant-ph]

    [113]

    Osman A, Simon J, Bengtsson A, Kosen S, Krantz P, Perez D, Scigliuzzo M, Bylander J, Roudsari A F arXiv: 2011.05230 v1 [cond-mat. supr-con]

    [114]

    Chen Z, Megrant A, Kelly J, et al. 2014 Appl. Phys. Lett. 104 052602Google Scholar

    [115]

    Rosenberg D, Weber S J, Conway D, Jost D R W, Mallek J, Calusine G, Das R, Kim D, Schwartz M E, Woods W, Yoder J L, Oliver W D 2020 IEEE Micro. Mag. 21 72

    [116]

    Jin Z C, Wu H T, Yu H F, Yu Y 2018 Chin. Phys. B 27 100310Google Scholar

    [117]

    Burnett J J, Bylander J, Bengtsson A, Scigliuzzo M, Niepce D 2019 NPJ Quantum Inf. 5 1Google Scholar

    [118]

    Schlor S, Lisenfeld J, Mueller C, Bilmes A, Schneider A, Pappas D P, Ustinov A V, Weides M 2019 Phys. Rev. Lett. 123 190502Google Scholar

    [119]

    Nersisyan A, Poletto S, Alidoust N, Manenti R, Renzas R, Bui C V, Vu K, Whyland T, Mohan Y, Sete E A, Stanwyck S, Bestwick A, Reagor M arXiv1901.08042 [quant-ph]

    [120]

    Oliver W D, Welander P B 2013 MRS Bulletin 38 816Google Scholar

    [121]

    de Graaf S E, Faoro L, Burnett J, Adamyan A A, Tzalenchuk A Y, Kubatkin S E, Lindström T, Danilov A V 2018 Nat. Commun. 9 1143Google Scholar

    [122]

    Lisenfeld J, Mueller C, Cole J H, Bushev P, Lukashenko A, Shnirman A, Ustinov A V 2010 Phys. Rev. Lett. 105 230504Google Scholar

    [123]

    Paz A, Lebedeva I, Tokatly I, Rubio A 2014 Phys. Rev. B 90 224202Google Scholar

    [124]

    Muller C, Cole J H, Lisenfeld J 2019 Rep. Prog. Phys. 82 124501Google Scholar

    [125]

    Martinis J M, Cooper K B, McDermott R, Steffen M, Ansmann M, Osborn K D, Cicak K, Oh S, Pappas D P, Simmonds RW and Yu C C 2005 Phys. Rev. Lett. 95 210503Google Scholar

    [126]

    Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Katz N, Lucero E, O’Connell A, Wang H, Cleland A N and Martinis J 2008 Phys. Rev. B 77 180508Google Scholar

    [127]

    Martinis J M 2009 Quantum Inf. Process. 8 81Google Scholar

    [128]

    Weides M, Bialczak R C, Lenander M, Lucero E, Mariantoni M, Neeley M, O’Connell A D, Sank D, Wang H, Wenner J, Yamamoto T, Yin Y, Cleland A N and Martinis J 2011 Supercond. Sci. Technol. 24 055005Google Scholar

    [129]

    Lecocq F, Pop I M, Peng Z H, Matei I, Crozes T, Fournier T, Naud C, Guichard W and Buisson O 2011 Nanotechnology 22 315302Google Scholar

    [130]

    Semenov V K, Danilov G V, Averin D V 2003 IEEE Trans. Appl. Supecond. 13 938Google Scholar

    [131]

    Semenov V K, Danilov G V, Averin D V 2007 IEEE Trans. Appl. Supecond. 17 455Google Scholar

    [132]

    Ren J, Semenov V K, Polyakov Y A, Averin D V, Tsai J S 2009 IEEE Trans. Appl. Supecond. 19 961Google Scholar

    [133]

    Averin D V, Xu K, Zhong Y P, Song C, Wang H, Han S 2016 Phys. Rev. Lett. 116 010501Google Scholar

    [134]

    Han S, Lapointe J, Lukens J E 1989 Phys. Rev. Lett. 63 1712Google Scholar

    [135]

    Li S X, Yu Y, Zhang Y, Qiu W, Han S 2002 Phys. Rev. Lett. 89 098301Google Scholar

    [136]

    Balestro F, Claudon J, Pekola J P, Buisson O 2003 Phys. Rev. Lett. 91 158301Google Scholar

    [137]

    Lei C U, Krayzman L, Ganjam S, Frunzio L, Schoelkopf R J 2020 Appl. Phys. Lett. 116 154002

    [138]

    Barends R, Vercruyssen N, Endo A, de Visser P J, Zijlstra T, Klapwijk T M, Diener P, Yates S J C, Baselmans J J A 2010 Appl. Phys. Lett. 97 023508Google Scholar

    [139]

    Leduc H G, Bumble B, Day P K, Eom B H, Gao J, Golwala S, Mazin B A, McHugh S, Merrill A, Moore D C, Noroozian O, Turner A D, Zmuidzinas J 2010 Appl. Phys. Lett. 97 102509Google Scholar

    [140]

    Foxen B, Mutus J Y, Lucero E, et al. 2018 Quantum Sci. Technol. 3 014005Google Scholar

    [141]

    Levenson-Falk E M, Vijay R, Siddiqi I 2011 Appl. Phys. Lett. 98 123115Google Scholar

    [142]

    Castellanos-Beltran M A, Irwin K D, Hilton G C, Vale L R, Lehnert K W 2008 Nat. Phys. 4 929Google Scholar

    [143]

    Siddiqi I, Vijay R, Pierre F, Wilson C M, Metcalfe M, Rigetti C, Frunzio L, Devoret M H 2004 Phys. Rev. Lett. 93 207002Google Scholar

    [144]

    Reed M D, DiCarlo L, Johnson B R, Sun L, Schuster D I, Frunzio L, Schoelkopf R J 2010 Phys. Rev. Lett. 105 173601Google Scholar

    [145]

    Huang K Q, Guo Q J, Song C, Zheng Y R, Deng H, Wu Y L, Jin Y R, Zhu X B, Zheng D N 2017 Chin. Phys. B 26 094203Google Scholar

    [146]

    Yang R, DengH 2020 IEEE Trans. APP. Supercon. 30 4Google Scholar

    [147]

    Roy T, Kundu S, Chand M, Vadiraj A M, Ranadive A, Nehra N, Patankar M P, Aumentado J, Clerk A A, Vijaz R 2015 Appl. Phy. Lett. 107 262601Google Scholar

    [148]

    Xue H, Lin Z R, Jiang W B, Niu Z Q, Liu K, Peng W, Wang Z 2021 Chin. Phys. B 30 068503Google Scholar

    [149]

    Lu Y P, Zuo Q, Pan J Z, Jiang J L, Wei X Y, Li Z S, Xu W Q, Zhang K X, Guo T T, Wang S, Cao C H, Xu W W, Sun G Z, Wu P H 2021 Chin. Phys. B 30 068504Google Scholar

    [150]

    Eom B H, Day P K, LeDay H G, Zmuidzinas J 2012 Nat. Phy. 8 623Google Scholar

    [151]

    White T C, Mutus J Y, Kelly J, Sank D, Martinis J M 2015 Appl. Phy. Lett. 106 242601Google Scholar

    [152]

    Macklin C, O’Brien, Hover D, Schwartz M E, Bolkhovsky V, Zhang X, Oliver W D, Siddiqi I 2015 Science 350 307Google Scholar

    [153]

    Harrow A W, Montanaro A 2017 Nature 549 203Google Scholar

    [154]

    Kelly J, Barends R, Fowler A G, et al. 2015 Nature 519 66Google Scholar

    [155]

    Xu H K, Song C, Liu W Y, Xue G M, Su F F, Deng H, Tian Y, Zheng D N, Han S Y, Zhong Y P, Wang H, Liu Y X, Zhao S P 2016 Nat. Comm. 7 11018Google Scholar

    [156]

    Wu Y L, Bao W S, Cao S R, Chen F S, Chen M C, Pan J W, et al. arXiv: 2106.14734 v1 [quant-ph]

  • 图 1  早期3种超导量子比特的电路模型、势能和能级图[50] (a)电荷量子比特; (b)磁通量子比特; (c)位相量子比特

    Figure 1.  Circuit diagram, potential energy and energy levels of three superconducting qubits: (a) Charge qubit; (b) flux qubit; (c) phase qubit [50].

    图 2  Xmon超导量子比特[47] (a) 器件照片; (b) 约瑟夫森结区放大图; (c) 电路示意图

    Figure 2.  Superconducting Xmon qubit [47]: (a) Optical micrograph; (b) magnified view of Josephson-junction area; (c) circuit diagram.

    图 3  Fluxonium量子比特[48] (a) 器件照片; (b) 天线; (c) 3D腔; (d) 电路示意; (e) 势能和能级示意图

    Figure 3.  Superconducting fluxonium qubit [48]: (a) Optical micrograph; (b) antenna; (c) 3D resonator; (d) circuit diagram; (e) potential energy and energy levels.

    图 4  并联电容磁通量子比特[49] (a) 样品基本结构; (b) 电容部分; (c) 约瑟夫森结部分

    Figure 4.  C-shunt flux qubit[49]: (a) Device structure; (b) capacitor area; (c) Josephson-junction area.

    图 5  HiPIMS工艺制备的铌膜与普通磁控溅射方法生长的铌膜致密性对比[72]

    Figure 5.  Comparison of the density of niobium film prepared by Hipims process with that by conventional magnetron sputtering[72].

    图 6  两种约瑟夫森结设计方案 (a), (c)设计图; (b), (d)对应设计图制备的约瑟夫森结电镜照片[112,113]

    Figure 6.  Two designs of Josephson junctions: (a), (c) Design drawings; (b), (d) electron micrographs of Josephson junctions prepared by corresponding designs [112,113].

    图 7  (a)铌基位相量子位中心区域的光学显微镜照片, 硅基片呈绿色, 而较暗和较亮的金属部分是Nb和Al薄膜; (b)位相量子比特能谱与能量弛豫时间的测量结果[38]

    Figure 7.  (a) Optical microscope image of the central region of Nb-based phase qubit, the substrate appears greenish in color while the darker and brighter parts are the Nb and Al films; (b) measurement results of energy spectrum and energy relaxation time of phase qubit[38].

    图 8  (a) 铌基nSQUID量子比特中心部分的假色光学照片, 衬底、Nb层、Al层和α-Si层分别呈灰色、浅黄色、白色和棕色; (b)—(e) nSQUID量子比特不同条件下的典型二维势阱[40]

    Figure 8.  (a) False-colored optical photograph of the central part of Nb-based nSQUID qubit with the substrate, Nb layer, Al layers, and α-Si layer appearing in gray, light yellow, white, and brown, respectively; (b)–(e) Typical 2D potential landscapes of the nSQUID qubit [40].

    图 9  (a)铌基耦合10比特器件中心区域; (b)跨过控制线的空气桥; (c)包含两个约瑟夫森结的SQUID环区域; (d)样品能量弛豫时间测量结果[39]

    Figure 9.  Microscope images of (a) the central region of Nb-based coupled 10-qubit device; (b) an airbridge across the control line; (c) the SQUID loop area containing two Josephson junctions; (d) measurement results of sample energy relaxation time[39].

    图 10  (a)铌基JPA光学照片; (b)增益与(c)噪声温度随频率的关系 [41]

    Figure 10.  (a) False-colored optical photograph of Nb-based JPA device; (b) frequency dependences of the device gain and noise temperature (c) [41].

    表 1  不同生长模式制备的铌薄膜器件性质[72]

    Table 1.  Properties of niobium thin film devices with different growth modes[72].

    DepositionSputteredHiPIMS optHiPIMS norm
    T1/μs56 ± 1233 ± 217 ± 9
    RRR8.9 ± 0.15.0 ± 0.22.9 ± 0.1
    Tc/K9.0 ± 0.18.6 ± 0.18.1 ± 0.1
    GSA/nm21140 ± 70500 ± 50180 ± 30
    Nb61 ± 364 ± 345 ± 2
    NbOx15.1 ± 0.216.0 ± 0.320.4 ± 0.8
    NbO0 ± 20 ± 15 ± 1
    NbO23.1 ± 0.43.5 ± 0.210 ± 2
    Nb2O520 ± 115.9 ± 0.819 ± 2
    Suboxide19 ± 220 ± 136 ± 2
    DownLoad: CSV

    表 2  不同方法生长铌薄膜以及所制备谐振腔的性质[57]

    Table 2.  Growth of niobium thin films by different methods and fabricated resonator properties [57].

    ProcessaIn vacuo cleaningw/μmf0/GHzQi-H×106Qi-L×106
    (A) Sputter100 eV Ar+ mill for 2 min3
    15
    3.833
    6.129
    4.30
    4.50
    0.16
    0.40
    (B) E-beam60 eV Ar+ mill for 2 min3
    15
    3.810
    6.089
    9.90
    4.40
    0.66
    0.72
    (C) MBENone6
    15
    4.973
    6.120
    5.70
    4.33
    0.53
    0.76
    (D) MBELLb anneal3
    15
    3.773
    6.125
    6.58
    5.38
    0.75
    0.80
    (E) MBELLb and 850 ℃ anneal3
    15
    3.876
    6.127
    10.10
    6.40
    1.15
    0.92
    DownLoad: CSV
  • [1]

    Makhlin Y, Schon G, Shnirman A 2001 Rev. Mod. Phys. 73 357Google Scholar

    [2]

    Clarke J, Wilhelm F K 2008 Nature 19 459

    [3]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar

    [4]

    Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Lett. 60 21318

    [5]

    Kjaergaard M, Schwartz M E, Braumüller J, Krantz P, Wang I J, Gustavsson S, Oliver W D 2020 Annu. Rev. 11 369

    [6]

    Mi X, Ippoliti M, Quintana C, et al. 2021 arXiv: 2107.13571 v2 [quant-ph]

    [7]

    Makhlin Y, Schon G, Shnirman A 2007 Physics 73 357

    [8]

    Paik H, Schuster D I, Bishop L S, Kirchmair G, Catelani G, Sears A P, Johnson B R, Reagor M J, Frunzio L, Glazman L I, Girvin S M, Devoret M H, Schoelkopf R J 2011 Phys. Rev. Lett. 107 240501Google Scholar

    [9]

    Nakamura Y, Pashkin Y A, Tsai J S 1999 Nature 398 786Google Scholar

    [10]

    Swingle B 2018 Nat. Phys. 14 988Google Scholar

    [11]

    Salathé Y, Mondal M, Oppliger M, Heinsoo J, Kurpiers P, Potocnik A, Mezzacapo A, Heras U Las, Lamata L, Solano E, Filipp S, Wallraff A 2015 Phys. Rev. X 5 021027

    [12]

    Barends R, Lamata L, Kelly J, et al. 2015 Nat. Commun. 6 7654Google Scholar

    [13]

    Zhong Y P, Xu D, Wang P, Song C, Guo Q J, Liu W X, Xu K, Xia B X, Lu C Y, Han S, Pan J W, Wang H 2016 Phys. Rev. Lett. 117 110501Google Scholar

    [14]

    Flurin E, Ramasesh V V, Hacohen-Gourgy S, Martin L S, Yao N Y, Siddiqi I 2017 Phys. Rev. X 7 031023

    [15]

    Roushan P, Neill C, Tangpanitanon J, et al. 2017 Science 358 1175Google Scholar

    [16]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N, Fan H 2018 Phys. Rev. Lett. 120 050507Google Scholar

    [17]

    Song C, Xu D, Zhang P, Wang J, Guo Q, Liu W, Xu K, Deng H, Huang K, Zheng D, Zheng S B, Wang H, Zhu X, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 121 030502Google Scholar

    [18]

    Ma R, Saxberg B, Owens C, Leung N, Lu Y, Simon J, Schuster D I 2019 Nature 566 51Google Scholar

    [19]

    Guo X Y, Yang C, Zeng Y, Peng Y, Li H K, Deng H, Jin Y R, Chen S, Zheng D N, Fan H 2019 Phys. Rev. Appl. 11 044080Google Scholar

    [20]

    Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G, Buell D A 2019 Nature 574 505Google Scholar

    [21]

    Xu K, Sun Z H, Liu W, Zhang Y R, Li H, Dong H, Ren W, Zhang P, Nori F, Zheng D, Fan H, Wang H 2020 Sci. Adv. 6 4935Google Scholar

    [22]

    Guo Q, Cheng C, Sun Z H, Song Z, Li H, Wang Z, Ren W, Dong H, Zheng D, Zhang Y R, Mondaini R, Fan H, Wang H 2021 Nat. Phys. 17 234Google Scholar

    [23]

    Kandala A, Temme K, Corcoles A D, Mezzacapo A, Chow J M, Gambetta J M 2019 Nature 567 491Google Scholar

    [24]

    KassalI, WhitfieldJD, Perdomo-OrtizA, YungMH, Aspuru-GuzikA, 2011 Ann. Rev. Phys. Chem. 62 185Google Scholar

    [25]

    Lloyd S 1996 Science 273 1073Google Scholar

    [26]

    O’Malley P J J, Babbush R, Kivlichan I D, et al. 2016 Phys. Rev. X. 6 031007

    [27]

    Peruzzo A, McClean J, Shadbolt P, Yung M H, Zhou X Q, Love P J, Aspuru-Guzik A, O’Brien J L 2014 Nat. Comm. 5 4213Google Scholar

    [28]

    Emani P S, Warrell J, Anticevic A, et al. 2021 Nat. Methods. 18 701Google Scholar

    [29]

    Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S 2017 Nature 549 195Google Scholar

    [30]

    Ristè D, Silva M P, Ryan C A, Cross A W, Corcoles A D, Smolin J A, Gambetta J M, Chow J M, Johnson B R 2017 NPJ Quant. Inf. 3 16Google Scholar

    [31]

    Woerner S, Egger D J 2019 NPJ Quant. Inf. 5 15Google Scholar

    [32]

    Chakrabarti S, Krishnakumar R, Mazzola G, Stamatopoulos N, Woerner S, Zeng W J arXiv2012: 03819 [quant-ph]

    [33]

    Chang J B, Vissers M R, Corcoles A D, Sandberg M, Gao J S, Abraham D W, Chow J M, Gambetta J M, Rothwell M B, Keefe G A, Steffen M, Pappas D P 2013 Appl. Phys. Lett. 103 012602Google Scholar

    [34]

    Zhang G Y, Liu Y B, James J, Andrew R, Houck A 2017 npj Quant. Info. 3 1Google Scholar

    [35]

    Blok M S, Ramasesh V V, Schuster T, Brien K O, Kreikebaum J M, Dahlen D, Morvan A, Yoshida B, Yao N Y, Siddiqi I arXiv: 2003.03307 v1 [quant-ph]

    [36]

    Sage J M, Bolkhovsky V, Oliver W D, Turek B, Welander P B 2011 J. Appl. Phys. 109 063915Google Scholar

    [37]

    Stammeier M, Garcia S, Wallraff A 2018 Quantum Sci. Technol. 3 045007Google Scholar

    [38]

    Su F F, Liu W Y, Xu H K, Deng H, Li Z Y, Tian Y, Zhu X B, Zheng D N, Lu L, Zhao S P 2017 Chin. Phys. B 26 060308Google Scholar

    [39]

    Su F F, Yang Z H, Zhao S K, Yan H S, Wang Z T, Song X H, Tian Y, Zhao S P 2021 Chin. Phys. B 30 100304Google Scholar

    [40]

    Liu W Y, Su F F, Xu H K, Li Z Y, Tian Y, Zhu X B, Lu Li, Han S Y, Zhao S P 2018 Supercond. Sci. Tech. 31 045003Google Scholar

    [41]

    Su F F, Wang Z T, Xu H K, Zhao S K, Yan H S, Yang Z H, TianY, Zhao S P 2019 Chin. Phys. B 28 110303Google Scholar

    [42]

    Wang C L, Li X, Xu H K, et al. arXiv: 2105.09890 [quant-ph]

    [43]

    Chiorescu I, Nakamura Y, Harmans C J, Mooij J E 2003 Science 299 1869Google Scholar

    [44]

    Simmonds R W, Lang K M, Hite D A, Nam S, Pappas D P, Martinis J M 2004 Phys. Rev. Lett. 93 077003Google Scholar

    [45]

    Koch J, Terri M Y, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar

    [46]

    Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 443Google Scholar

    [47]

    Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Cleland A N, Martinis J M 2013 Phys. Rev. Lett. 111 080502Google Scholar

    [48]

    Manucharyan V E, Koch J, Glazman L I, DevoretM H 2009 Science 326 113Google Scholar

    [49]

    Yan F, Gustavsson S, Kamal A, Birenbaum J, Sears A P, Hover D, Gudmundsen T J, Rosenberg D, Samach G, Weber S, Yoder J L, Orlando T P, Clarke J, Kerman A J, Oliver W D 2016 Nat. Comm. 7 12964Google Scholar

    [50]

    Zhong Y P, Li C Y, Wang H H, Chen Y 2013 Chin. Phys. B 22 110313Google Scholar

    [51]

    Johnson M W, Amin M H S, Gildert S, Lanting T, Hamze F, Dickson N, Harris R, Berkley A J, Johansson J, Bunyk P 2011 Nature 473 194Google Scholar

    [52]

    Su F F, Yang Z H 2021 Physics and Engineering 31 73

    [53]

    Houck A A, Schreier J A, Johnson B R, Chow J M, Koch J, Gambetta J M, Schuster D I, Frunzio L, Devoret M H, Girvin S M, Schoelkopf R J 2008 Phys. Rev. Lett. 101 080502Google Scholar

    [54]

    Gambetta J M, Murrayc E, Fung YK K 2017 IEEE Transactions on Applied Superconductivity 27 1

    [55]

    Pop I M, Geerlings K, Catelani G, Schoelkopf R J, Glazman L I, Devoret M H 2014 Nature 508 369Google Scholar

    [56]

    Martinis J M, Megrant A arXiv: 14105793 [quant-ph]

    [57]

    Megrant A, Neill C, Barends R, et al. 2012 Appl. Phys. Lett. 100 113510Google Scholar

    [58]

    Quintana C M, Megrant A, Chen Z, et al. 2014 Appl. Phys. Lett. 105 062601Google Scholar

    [59]

    Wang C, Axline C, Gao Y Y, Brecht T, Chu Y, Frunzio L, Devoret M H, Schoelkopf R J 2015 Appl. Phys. Lett. 107 162601Google Scholar

    [60]

    Gambetta J M, Murray C E, Fung Y K K, McClure D T, Dial O, Shanks W, Sleight J, Senior, Steffen M 2017 IEEE Trans. Appl. Supercond. 27 1

    [61]

    Leonard E, Beck M A, Nelson J, et al. 2019 Phys. Rev. Appl. 11 014009Google Scholar

    [62]

    Bruno A, de Lange G, Asaad S, van der Enden K L, Langford N K, DiCarlo L 2015 Appl. Phys. Lett. 106 182601Google Scholar

    [63]

    Vissers M R, Gao J, Wisbey D S, Hite D A, Tseui C C, Corcoles A D, Steffen M, Pappas D P 2010 Appl. Phys. Lett. 97 232509Google Scholar

    [64]

    Gambetta J M, Murray C E, Fung Y K K, McClure D T, Dial O, Shanks W, Sleight J W, Steffen M 2017 IEEE Trans. Appl. Supercond. 27 1700205

    [65]

    Wisbey D S, Gao J, Vissers M R, da Silva F C S, Kline J S, Vale L, Pappas D P 2010 J. Appl. Phys. 108 093918Google Scholar

    [66]

    Ohya S, Chiaro B, Megrant A, et al. 2014 Supercond. Sci. Tech. 27 015009Google Scholar

    [67]

    Melville A, Calusine G, Woods W, Serniak K, Golden E, Niedzielski B M, Kim D K, Sevi A, Yoder J L, Dauler E A, Oliver W D 2020 Appl. Phys. Lett. 117 124004Google Scholar

    [68]

    Geerlings K, Shankar S, Edwards E, Frunzio L, Schoelkopf R J, Devoret M H 2012 Appl. Phys. Lett. 100 192601Google Scholar

    [69]

    Dunsworth A, Megrant A, Quintana C, et al. 2017 Appl. Phys. Lett. 111 022601Google Scholar

    [70]

    Nersisyan A, Poletto S, Alidoust N, Manenti R, Renzas R, Bui C V, Vu K, Whyland T, Mohan Y, Sete E A, Stanwyck S, Bestwick A, Reagor M arxXiv1901.08042[quant-ph]

    [71]

    Altoé M V P, Banerjee A, Berk C, et al. arXiv2012.07604[quant-ph]

    [72]

    Premkumar A, Weiland C, Hwang S, et al. arXiv: 2004.02908 v1[quant-ph]

    [73]

    Kamal A, Yoder J L, Yan F, Gudmundsen T J, Hover D, Sears A P, Welander P, Orlando T P, Gustavsson S, Oliver W D arXiv1606.09262[cond-mat. mes-hall]

    [74]

    Earnest C T, Béjanin J H, McConkey T G, Peters E A, Korinek A, Yuan H, Mariantoni M 2018 Supercond. Sci. Tech. 31 125013Google Scholar

    [75]

    You J Q and Nori F 2011 Nature 474 589Google Scholar

    [76]

    Kjaergaard A, Schwartz M E, Braumüller J, Krantz P, Wang J I J, Gustavsson S, Oliver W D 2020 Ann. Rev. Cond. Matter Phys. 11 369Google Scholar

    [77]

    Kreikebaum J M, Dove A, Livingston W, Kim E, Siddiqi I 2016 Supercond. Sci. Tech. 29 104002Google Scholar

    [78]

    Segall K, Crankshaw D, Nakada D, Orlando T P, Levitov L S, Lloyd S, Markovic N, Valenzuela S O, Tinkham M, Berggren K K 2003 Phys. Rev. B 67 220506Google Scholar

    [79]

    Gurvitch M, Washington M A, Huggins H A 1983 Appl. Phys. Lett. 42 472Google Scholar

    [80]

    Cava R J, Batlogg B, Krajewski J J, Poulsen H F, Gammel P, Peck W F, Rupp L W 1991 Phys. Rev. B 44 6973Google Scholar

    [81]

    Verjauw J, Potočnik A, Mongillo M, et al. 2021 Phys. Rev. Applied 16 014018Google Scholar

    [82]

    Place A P M, Rodgers L V H, Rodgers L V H, et al. 2021 Nat. Comm. 12 1779Google Scholar

    [83]

    Gladczuk L, Patel A, Paur C S, Sosnowski M 2004 Thin Solid Films 467 150Google Scholar

    [84]

    Face D W, Probe D E 1987 J. Vac. Sci. Tech. 5 3406

    [85]

    Barends R, Baselmans J J A, Hovenier J N, Gao J R, Yates S J C, Klapwijk T M, Hoevers H F C 2007 IEEE Trans. Appl. Supercond. 17 263Google Scholar

    [86]

    Schauer A, Roschy M 1972 Thin Solid Films 12 313Google Scholar

    [87]

    Fàbrega L, Fernández-Martínez I, Parra-Borderías M, Gil O, Camón A, Arrabal R G, Sesé J, Santiso J, Costa-Krämer J L, Briones F 2009 IEEE Trans. Appl. Supercond. 19 3779Google Scholar

    [88]

    Shearrow A, Koolstra G, Whiteley S J, Earnest N, Barry P S, Heremans F J, Awschalom D D, Shirokoff E, Schuster D I arXiv1808.06009 [cond-mat. mes-hall]

    [89]

    Profeta G, Franchini C, Lathiotakis N N, Floris A, Sanna A, Marques M A L, Lüders M, Massidda S, Gross E K U, Continenza A 2006 Phys. Rev. Lett. 96 047003Google Scholar

    [90]

    Pickard C J, Errea I, Eremets M I 2020 Ann. Rev. Condens. Matter. Phys. 11 57Google Scholar

    [91]

    Lisenfeld J, Bilmes A, Megrant A, Barends R, Kelly J, Klimov P, Weiss G, Martinis J M, Ustinov A V 2019 NPJ Quantum Inf. 5 105Google Scholar

    [92]

    Park J, Yan A, Tilka J A, Sampson K C, Savage D E, Prance J R, Simmons C B, Lagally M G, Coppersmith S N, Eriksson M A, Holt M V, Evans P G 2016 Appl. Phys. Lett. 4 066102

    [93]

    Lisenfeld J, Grabovskij G J, Müller C, Cole J H, Weiss G, Ustinov A V 2015 Nat. Comm. 6 6182Google Scholar

    [94]

    Pateras A, Park Y, Ahn Y, Tilka J A, Holt M V, Reichl C, Wegscheider W, Baart T A, Dehollain J P, Mukhopadhyay U, Vandersypen L M K, Evans P G 2018 Nano Lett. 18 2780Google Scholar

    [95]

    Anderson A C, Smith S C 1973 J. Phys. Chem. Solids 34 111Google Scholar

    [96]

    Wang H, Shi C, Hu J, Han S, Yu C, Wu R Q 2015 Phys. Rev. Lett. 115 077002Google Scholar

    [97]

    Lee D, Du Bois J L, Lordi V 2014 Phys. Rev. Lett. 112 017001Google Scholar

    [98]

    Kumar P, Sendelbach S, Beck M A, Freeland J W, Wang Z, Wang H, Yu C C, Wu R Q, Pappas D P, McDermott R 2016 Phys. Rev. Appl. 6 041001Google Scholar

    [99]

    Choi S, Lee D H, Louie S G, Clarke J 2009 Phys. Rev. Lett. 103 197001Google Scholar

    [100]

    Neill C, Megrant A, Barends R, Chen Y, Chiaro B, Kelly J, Mutus J Y, O’Malley P J J, Sank D, Wenner J, White T C, Yin Y, Cleland A N, Martinis J M 2013 Appl. Phys. Lett. 103 072601Google Scholar

    [101]

    Lock E H, Xu P, Kohler T, Camacho L, Prestigiacomo J, Rosen Y J, Osborn K D 2019 IEEE Trans. Appl. Supercond. 29 1700108

    [102]

    Woods W, Calusine G, Melville A, Sevi A, Golden E, Kim D K, Rosenberg D, Yoder J L, Oliver W D 2019 Phys. Rev. Appl. 12 014012Google Scholar

    [103]

    Dolan G J 1977 Appl. Phys. Lett. 31 337Google Scholar

    [104]

    Costache M V, Bridoux G, Neumann I, Valenzuela S O 2012 J. Vac. Sci. Tech. B. 30 104

    [105]

    Kreikebaum J M, O’Brien K P, Morvan A, Siddiqi I 2020 Supercond. Sci. Tech. 33 0602Google Scholar

    [106]

    Shapiro S 1963 Phys. Rev. Lett. 11 80Google Scholar

    [107]

    Clarke J 1972 Phys. Rev. Lett. 28 1363Google Scholar

    [108]

    Cai N, Zhou G, Müller K, Starr D E 2012 Appl. Phys. Lett. 101 171605Google Scholar

    [109]

    Ambegaokar V, Baratoff A 1963 Phys. Rev. Lett. 10 486Google Scholar

    [110]

    Steinbach A, Joyez P, Cottet A, Esteve D, Devoret M H, Huber M E, Martinis J M 2001 Phys. Rev. Lett. 87 137003Google Scholar

    [111]

    Zhang E, Srinivasan S, Sundaresan N, et al. arXiv: 2012.08475 [quant-ph]

    [112]

    Bilmes A, Neumann A K, Volosheniuk S, Ustinov A V, Lisenfeld J arXiv: 2101.01453 v2 [quant-ph]

    [113]

    Osman A, Simon J, Bengtsson A, Kosen S, Krantz P, Perez D, Scigliuzzo M, Bylander J, Roudsari A F arXiv: 2011.05230 v1 [cond-mat. supr-con]

    [114]

    Chen Z, Megrant A, Kelly J, et al. 2014 Appl. Phys. Lett. 104 052602Google Scholar

    [115]

    Rosenberg D, Weber S J, Conway D, Jost D R W, Mallek J, Calusine G, Das R, Kim D, Schwartz M E, Woods W, Yoder J L, Oliver W D 2020 IEEE Micro. Mag. 21 72

    [116]

    Jin Z C, Wu H T, Yu H F, Yu Y 2018 Chin. Phys. B 27 100310Google Scholar

    [117]

    Burnett J J, Bylander J, Bengtsson A, Scigliuzzo M, Niepce D 2019 NPJ Quantum Inf. 5 1Google Scholar

    [118]

    Schlor S, Lisenfeld J, Mueller C, Bilmes A, Schneider A, Pappas D P, Ustinov A V, Weides M 2019 Phys. Rev. Lett. 123 190502Google Scholar

    [119]

    Nersisyan A, Poletto S, Alidoust N, Manenti R, Renzas R, Bui C V, Vu K, Whyland T, Mohan Y, Sete E A, Stanwyck S, Bestwick A, Reagor M arXiv1901.08042 [quant-ph]

    [120]

    Oliver W D, Welander P B 2013 MRS Bulletin 38 816Google Scholar

    [121]

    de Graaf S E, Faoro L, Burnett J, Adamyan A A, Tzalenchuk A Y, Kubatkin S E, Lindström T, Danilov A V 2018 Nat. Commun. 9 1143Google Scholar

    [122]

    Lisenfeld J, Mueller C, Cole J H, Bushev P, Lukashenko A, Shnirman A, Ustinov A V 2010 Phys. Rev. Lett. 105 230504Google Scholar

    [123]

    Paz A, Lebedeva I, Tokatly I, Rubio A 2014 Phys. Rev. B 90 224202Google Scholar

    [124]

    Muller C, Cole J H, Lisenfeld J 2019 Rep. Prog. Phys. 82 124501Google Scholar

    [125]

    Martinis J M, Cooper K B, McDermott R, Steffen M, Ansmann M, Osborn K D, Cicak K, Oh S, Pappas D P, Simmonds RW and Yu C C 2005 Phys. Rev. Lett. 95 210503Google Scholar

    [126]

    Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Katz N, Lucero E, O’Connell A, Wang H, Cleland A N and Martinis J 2008 Phys. Rev. B 77 180508Google Scholar

    [127]

    Martinis J M 2009 Quantum Inf. Process. 8 81Google Scholar

    [128]

    Weides M, Bialczak R C, Lenander M, Lucero E, Mariantoni M, Neeley M, O’Connell A D, Sank D, Wang H, Wenner J, Yamamoto T, Yin Y, Cleland A N and Martinis J 2011 Supercond. Sci. Technol. 24 055005Google Scholar

    [129]

    Lecocq F, Pop I M, Peng Z H, Matei I, Crozes T, Fournier T, Naud C, Guichard W and Buisson O 2011 Nanotechnology 22 315302Google Scholar

    [130]

    Semenov V K, Danilov G V, Averin D V 2003 IEEE Trans. Appl. Supecond. 13 938Google Scholar

    [131]

    Semenov V K, Danilov G V, Averin D V 2007 IEEE Trans. Appl. Supecond. 17 455Google Scholar

    [132]

    Ren J, Semenov V K, Polyakov Y A, Averin D V, Tsai J S 2009 IEEE Trans. Appl. Supecond. 19 961Google Scholar

    [133]

    Averin D V, Xu K, Zhong Y P, Song C, Wang H, Han S 2016 Phys. Rev. Lett. 116 010501Google Scholar

    [134]

    Han S, Lapointe J, Lukens J E 1989 Phys. Rev. Lett. 63 1712Google Scholar

    [135]

    Li S X, Yu Y, Zhang Y, Qiu W, Han S 2002 Phys. Rev. Lett. 89 098301Google Scholar

    [136]

    Balestro F, Claudon J, Pekola J P, Buisson O 2003 Phys. Rev. Lett. 91 158301Google Scholar

    [137]

    Lei C U, Krayzman L, Ganjam S, Frunzio L, Schoelkopf R J 2020 Appl. Phys. Lett. 116 154002

    [138]

    Barends R, Vercruyssen N, Endo A, de Visser P J, Zijlstra T, Klapwijk T M, Diener P, Yates S J C, Baselmans J J A 2010 Appl. Phys. Lett. 97 023508Google Scholar

    [139]

    Leduc H G, Bumble B, Day P K, Eom B H, Gao J, Golwala S, Mazin B A, McHugh S, Merrill A, Moore D C, Noroozian O, Turner A D, Zmuidzinas J 2010 Appl. Phys. Lett. 97 102509Google Scholar

    [140]

    Foxen B, Mutus J Y, Lucero E, et al. 2018 Quantum Sci. Technol. 3 014005Google Scholar

    [141]

    Levenson-Falk E M, Vijay R, Siddiqi I 2011 Appl. Phys. Lett. 98 123115Google Scholar

    [142]

    Castellanos-Beltran M A, Irwin K D, Hilton G C, Vale L R, Lehnert K W 2008 Nat. Phys. 4 929Google Scholar

    [143]

    Siddiqi I, Vijay R, Pierre F, Wilson C M, Metcalfe M, Rigetti C, Frunzio L, Devoret M H 2004 Phys. Rev. Lett. 93 207002Google Scholar

    [144]

    Reed M D, DiCarlo L, Johnson B R, Sun L, Schuster D I, Frunzio L, Schoelkopf R J 2010 Phys. Rev. Lett. 105 173601Google Scholar

    [145]

    Huang K Q, Guo Q J, Song C, Zheng Y R, Deng H, Wu Y L, Jin Y R, Zhu X B, Zheng D N 2017 Chin. Phys. B 26 094203Google Scholar

    [146]

    Yang R, DengH 2020 IEEE Trans. APP. Supercon. 30 4Google Scholar

    [147]

    Roy T, Kundu S, Chand M, Vadiraj A M, Ranadive A, Nehra N, Patankar M P, Aumentado J, Clerk A A, Vijaz R 2015 Appl. Phy. Lett. 107 262601Google Scholar

    [148]

    Xue H, Lin Z R, Jiang W B, Niu Z Q, Liu K, Peng W, Wang Z 2021 Chin. Phys. B 30 068503Google Scholar

    [149]

    Lu Y P, Zuo Q, Pan J Z, Jiang J L, Wei X Y, Li Z S, Xu W Q, Zhang K X, Guo T T, Wang S, Cao C H, Xu W W, Sun G Z, Wu P H 2021 Chin. Phys. B 30 068504Google Scholar

    [150]

    Eom B H, Day P K, LeDay H G, Zmuidzinas J 2012 Nat. Phy. 8 623Google Scholar

    [151]

    White T C, Mutus J Y, Kelly J, Sank D, Martinis J M 2015 Appl. Phy. Lett. 106 242601Google Scholar

    [152]

    Macklin C, O’Brien, Hover D, Schwartz M E, Bolkhovsky V, Zhang X, Oliver W D, Siddiqi I 2015 Science 350 307Google Scholar

    [153]

    Harrow A W, Montanaro A 2017 Nature 549 203Google Scholar

    [154]

    Kelly J, Barends R, Fowler A G, et al. 2015 Nature 519 66Google Scholar

    [155]

    Xu H K, Song C, Liu W Y, Xue G M, Su F F, Deng H, Tian Y, Zheng D N, Han S Y, Zhong Y P, Wang H, Liu Y X, Zhao S P 2016 Nat. Comm. 7 11018Google Scholar

    [156]

    Wu Y L, Bao W S, Cao S R, Chen F S, Chen M C, Pan J W, et al. arXiv: 2106.14734 v1 [quant-ph]

  • [1] Yang Xiao-Kun, Li Wei, Huang Yong-Chang. Quantum game— “PQ” problem. Acta Physica Sinica, 2024, 73(3): 030301. doi: 10.7498/aps.73.20230592
    [2] Wu Yu-Kai, Duan Lu-Ming. Research progress of ion trap quantum computing. Acta Physica Sinica, 2023, 72(23): 230302. doi: 10.7498/aps.72.20231128
    [3] Fan Heng. Breakthrough of error correction in quantum computing. Acta Physica Sinica, 2023, 72(7): 070303. doi: 10.7498/aps.72.20230330
    [4] Wang Mei-Hong, Hao Shu-Hong, Qin Zhong-Zhong, Su Xiao-Long. Research advances in continuous-variable quantum computation and quantum error correction. Acta Physica Sinica, 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [5] Wang Chen-Xu, He Ran, Li Rui-Rui, Chen Yan, Fang Ding, Cui Jin-Ming, Huang Yun-Feng, Li Chuan-Feng, Guo Guang-Can. Advances in the study of ion trap structures in quantum computation and simulation. Acta Physica Sinica, 2022, 71(13): 133701. doi: 10.7498/aps.71.20220224
    [6] Zhou Zong-Quan. “Quantum memory” quantum computers and noiseless phton echoes. Acta Physica Sinica, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [7] Wang Ning, Wang Bao-Chuan, Guo Guo-Ping. New progress of silicon-based semiconductor quantum computation. Acta Physica Sinica, 2022, 71(23): 230301. doi: 10.7498/aps.71.20221900
    [8] Jiang Da, Yu Dong-Yang, Zheng Zhan, Cao Xiao-Chao, Lin Qiang, Liu Wu-Ming. Research progress of material, physics, and device of topological superconductors for quantum computing. Acta Physica Sinica, 2022, 71(16): 160302. doi: 10.7498/aps.71.20220596
    [9] Xu Da, Wang Yi-Pu, Li Tie-Fu, You Jian-Qiang. Coherent coupling in a driven qubit-magnon hybrid quantum system. Acta Physica Sinica, 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [10] Zhang Jie-Yin, Gao Fei, Zhang Jian-Jun. Research progress of silicon and germanium quantum computing materials. Acta Physica Sinica, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [11] Zhang Shi-Hao, Zhang Xiang-Dong, Li Lü-Zhou. Research progress of measurement-based quantum computation. Acta Physica Sinica, 2021, 70(21): 210301. doi: 10.7498/aps.70.20210923
    [12] He Ying-Ping, Hong Jian-Song, Liu Xiong-Jun. Non-abelian statistics of Majorana modes and the applications to topological quantum computation. Acta Physica Sinica, 2020, 69(11): 110302. doi: 10.7498/aps.69.20200812
    [13] Yu Wan-Rang, Ji Xin. Superadiabatic scheme for fast generating Greenberger-Horne-Zeilinger state of three superconducting qubits. Acta Physica Sinica, 2019, 68(3): 030302. doi: 10.7498/aps.68.20181922
    [14] Fan Heng. Quantum computation and quantum simulation. Acta Physica Sinica, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [15] Zhao Shi-Ping, Liu Yu-Xi, Zheng Dong-Ning. Novel superconducting qubits and quantum physics. Acta Physica Sinica, 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [16] Pan Jian, Yu Qi, Peng Xin-Hua. Experimental technique for multi-qubit nuclear magnetic resonance system. Acta Physica Sinica, 2017, 66(15): 150302. doi: 10.7498/aps.66.150302
    [17] Zhao Na, Liu Jian-She, Li Tie-Fu, Chen Wei. Progress of coupled superconducting qubits. Acta Physica Sinica, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [18] Zhao Hu, Li Tie-Fu, Liu Jian-She, Chen Wei. Progress of electromagnetically induced transparency based on superconducting qubits. Acta Physica Sinica, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [19] Ye Bin, Xu Wen-Bo, Gu Bin-Jie. Robust quantum computation of the quantum kicked Harper model and dissipative decoherence. Acta Physica Sinica, 2008, 57(2): 689-695. doi: 10.7498/aps.57.689
    [20] Ye Bin, Gu Rui-Jun, Xu Wen-Bo. Robust quantum computation of the kicked Harper model and quantum chaos. Acta Physica Sinica, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
Metrics
  • Abstract views:  7561
  • PDF Downloads:  293
  • Cited By: 0
Publishing process
  • Received Date:  08 October 2021
  • Accepted Date:  05 November 2021
  • Available Online:  28 February 2022
  • Published Online:  05 March 2022

/

返回文章
返回