-
The THz wave has good photonic and electronic properties, and has high penetration for non-polar materials, but its own photon energy is low. In addition, the THz wave also has characteristics such as wide bandwidth and large communication capacity, thereby making the THz wave possess important academic value and wide application prospects in the fields of non-destructive testing, biomedical imaging and communication. The development of THz technology requires not only high-performance THz waveguide technology for efficient transmission of THz waves, but also important optical devices such as optical switches, modulators, and couplers that are suitable for THz bands. With the in-depth study of THz waveguide technology, researchers have proposed many high-performance THz waveguide structures, such as metal hollow core tube waveguide, parallel metal plate waveguide, photonic crystal fiber and microstructure hollow core fibers, among which hollow-core photonic crystal fibers and hollow-core anti-resonant fibers (HC-ARF) have developed rapidly in recent years. So far, THz single-mode single-polarization fiber and high-birefringence fiber have been widely studied, but the researches on the fiber structure and devices that realize THz wave directional coupling are relatively rare. In this paper, we study the influences of the arrangement and distribution of the inner and outer claddings of HC-ARF on transmission characteristics, and thus design a new type of THz dual-core anti-resonant fiber. Compared with ordinary quartz fiber couplers and dual-core photonic crystal fibers, it can utilize a relatively simple structure and achieve directional coupling above 2 THz. Using the finite element analysis method to theoretically analyze the loss characteristics and coupling characteristics of the fiber, it is found that HC-ARF changes the periodic arrangement and distribution of the inner cladding tube within a certain range, which can achieve mode leakage without affecting the fiber transmission characteristics. So the THz dual-core anti-resonant fiber can be designed by using the mode leakage coupling mechanism. By changing the core distance and core gap size, the directional coupling with a coupling length of 0.72 m is realized at a transmission frequency of 2.5 THz. This terahertz dual-core anti-resonance fiber will have an important application value in terahertz optical devices such as terahertz optical switches, modulators and couplers.
-
Keywords:
- terahertz /
- dual-core anti-resonant fiber /
- directional coupling /
- coupling length
[1] Zhong K, Shi W, Xu D G, Liu P X, Wang Y Y, Mei J L, Yan C, F u, S J, Yao J Q 2017 Sci. China Technol. Sc. 60 1801Google Scholar
[2] Homare M, Yoshiaki S, Isao Y, Shigenori N, Tetsuya Y, Chiko O 2020 Opt. Express 28 12279Google Scholar
[3] Cao Y Q, Huang P J, Li X, Ge W T, Hou D B, Zhang G X 2018 Phys. Med. Biol. 63 035016Google Scholar
[4] Withayachumnankul W, Yamada R, Fujita M, Nagatsuma T 2018 APL Photonics 3 051707Google Scholar
[5] Otter W J, Ridler N M, Yasukochi H, Soeda K, Konishi K, Yumoto J, Kuwata-Gonokami M, Lucyszyn S 2017 Electron Lett. 53 471Google Scholar
[6] Yoo S, Park J, Choo H 2020 Results Phys. 16 102881Google Scholar
[7] Islam M S, Sultana J, Atai J, Islam M R, Abbott D 2017 Optik 145 398Google Scholar
[8] 魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢 2019 物理学报 68 114209Google Scholar
Wei W, Zhang Z M, Tang L Q, Ding L, Fan W D, Li Y G 2019 Acta Phys. Sin. 68 114209Google Scholar
[9] Wei C L, Weiblen R J, Menyuk C R, Hu J 2017 Adv. Opt. Photonics 9 504Google Scholar
[10] Hasanuzzaman G K M, Iezekiel S, Markos C, Habib M S 2018 Opt. Commun. 426 477
[11] Zhang W, Lian Z G, Trevor B, Wang X, Lou S Q 2019 J. Opt. 21 025001Google Scholar
[12] Wang X Y, Li S G, Liu Q, Wang G Y, Zhao Y Y 2017 Plasmonics 12 1325Google Scholar
[13] Sultana J, Islam M S, Faisal M, Islam M R, Ng B W, Ebendorff-Heidepriem H, Abbott D 2018 Opt. Commun. 407 92Google Scholar
[14] Hasan M R, Akter S, Khatun T, Rifat A A, Anower M S 2017 Opt. Eng. 56 043108Google Scholar
[15] Wang D D, Mu C L, Kong D P, Guo C Y 2019 Chin. Phys. B 28 118701Google Scholar
[16] Dupuis A, Allard J, Morris D, Stoeffler K, Dubois C, Skorobogatiy M 2009 Opt. Express 17 8012Google Scholar
[17] 姜子伟, 白晋军, 侯宇, 王湘晖, 常胜江 2013 物理学报 62 028702Google Scholar
Jiang Z W, Bai J J, Hou Y, Wang X H, Chang S J 2013 Acta Phys. Sin. 62 028702Google Scholar
[18] Busch S F, Weidenbach M, Balzer J C, Koch M 2015 J. Infrared Milli. Terahz. Waves 37 303Google Scholar
[19] Cunningham P D, Valdes N N, Vallejo F A, Hayden L M, Polishak B, Zhou X H, Luo J D, Jen A K, Williams J C, Twieg R J 2011 J. Appl. Phys. 109 043505Google Scholar
[20] Liang J, Ren L Y, Chen N N, Zhou C H 2013 Opt. Commun. 295 257Google Scholar
[21] Li S H, Wang J 2015 Opt. Express 23 18736Google Scholar
-
-
[1] Zhong K, Shi W, Xu D G, Liu P X, Wang Y Y, Mei J L, Yan C, F u, S J, Yao J Q 2017 Sci. China Technol. Sc. 60 1801Google Scholar
[2] Homare M, Yoshiaki S, Isao Y, Shigenori N, Tetsuya Y, Chiko O 2020 Opt. Express 28 12279Google Scholar
[3] Cao Y Q, Huang P J, Li X, Ge W T, Hou D B, Zhang G X 2018 Phys. Med. Biol. 63 035016Google Scholar
[4] Withayachumnankul W, Yamada R, Fujita M, Nagatsuma T 2018 APL Photonics 3 051707Google Scholar
[5] Otter W J, Ridler N M, Yasukochi H, Soeda K, Konishi K, Yumoto J, Kuwata-Gonokami M, Lucyszyn S 2017 Electron Lett. 53 471Google Scholar
[6] Yoo S, Park J, Choo H 2020 Results Phys. 16 102881Google Scholar
[7] Islam M S, Sultana J, Atai J, Islam M R, Abbott D 2017 Optik 145 398Google Scholar
[8] 魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢 2019 物理学报 68 114209Google Scholar
Wei W, Zhang Z M, Tang L Q, Ding L, Fan W D, Li Y G 2019 Acta Phys. Sin. 68 114209Google Scholar
[9] Wei C L, Weiblen R J, Menyuk C R, Hu J 2017 Adv. Opt. Photonics 9 504Google Scholar
[10] Hasanuzzaman G K M, Iezekiel S, Markos C, Habib M S 2018 Opt. Commun. 426 477
[11] Zhang W, Lian Z G, Trevor B, Wang X, Lou S Q 2019 J. Opt. 21 025001Google Scholar
[12] Wang X Y, Li S G, Liu Q, Wang G Y, Zhao Y Y 2017 Plasmonics 12 1325Google Scholar
[13] Sultana J, Islam M S, Faisal M, Islam M R, Ng B W, Ebendorff-Heidepriem H, Abbott D 2018 Opt. Commun. 407 92Google Scholar
[14] Hasan M R, Akter S, Khatun T, Rifat A A, Anower M S 2017 Opt. Eng. 56 043108Google Scholar
[15] Wang D D, Mu C L, Kong D P, Guo C Y 2019 Chin. Phys. B 28 118701Google Scholar
[16] Dupuis A, Allard J, Morris D, Stoeffler K, Dubois C, Skorobogatiy M 2009 Opt. Express 17 8012Google Scholar
[17] 姜子伟, 白晋军, 侯宇, 王湘晖, 常胜江 2013 物理学报 62 028702Google Scholar
Jiang Z W, Bai J J, Hou Y, Wang X H, Chang S J 2013 Acta Phys. Sin. 62 028702Google Scholar
[18] Busch S F, Weidenbach M, Balzer J C, Koch M 2015 J. Infrared Milli. Terahz. Waves 37 303Google Scholar
[19] Cunningham P D, Valdes N N, Vallejo F A, Hayden L M, Polishak B, Zhou X H, Luo J D, Jen A K, Williams J C, Twieg R J 2011 J. Appl. Phys. 109 043505Google Scholar
[20] Liang J, Ren L Y, Chen N N, Zhou C H 2013 Opt. Commun. 295 257Google Scholar
[21] Li S H, Wang J 2015 Opt. Express 23 18736Google Scholar
Catalog
Metrics
- Abstract views: 6751
- PDF Downloads: 156
- Cited By: 0