-
Fabricating integratable and high-efficiency optical polarization devices is one of the fundamentally important challenges in the field of terahertz optics. Compared with the traditional polarization materials such as quartz crystal and liquid crystal, MgO crystal is one of the most important potential candidates for fabricating terahertz optical devices due to its high transmittance in terahertz frequency region. To determine the birefringence characteristics of MgO crystal in the terahertz frequency region, the modulation of the polartization state of a terahtertz wave through a
$\left\langle {100} \right\rangle $ crystalline MgO flake is studied using terahertz focal plane imaging method. Within this approach, the polarization of a terahertz wave can be intuitively identified from the imaging of the amplitude and the phase of the z-direction component of terahertz electronic field. By measuring the imaging of both the amplitude and the phase of terahertz field with and without passing through the$\left\langle {100} \right\rangle $ crystalline MgO flake, it is found that the left and right circularly polarized light are converted into perpendicular linearly-polarized light after passing through the MgO flake. The polarization direction of the linearly polarized light changes with the rotating of MgO flake along the direction perpendicular to the light propagation. The conversion between the linearly polarized light and the circularly polarized light is analyzed by using the Jones matrix approach. These properties indicate that the$\left\langle {100} \right\rangle $ crystalline MgO flake acts as a quarter wave plate for terahertz waves. To further identify the character of terahertz quarter wave plate, the refractive index of the ordinary and extrordinary light within terahertz frequency region of crystalline MgO crystal are measured by using transmission terahertz time-domain spectroscopy system. By comparing the phase difference between the ordinary and extraordinary light after passing through the MgO flake, it is shown that a quarter of wavelength difference between the ordinary and extraordinary light is obtained. These results indicate that the$\left\langle {100} \right\rangle $ crystalline MgO crystals can be used to fabricate quarter wave plates and relevant polarization devices in the terahertz band.-
Keywords:
- terahertz /
- focal plane imagine /
- birefringence
[1] 成彬彬, 李慧萍, 安健飞, 江舸, 邓贤进, 张健 2005 太赫兹科学与电子信息学报 13 843
Cheng B B, Li H P, An J F, Jiang G, Deng X J, Zhang J 2005 J. Terahertz Sci. Electron. Inf. Technol. 13 843
[2] 沈飞, 应义斌 2009 光谱学与光谱分析 29 1445Google Scholar
Shen F, Ying Y B 2009 Spectrosc. Spectral Anal. 29 1445Google Scholar
[3] Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H, Pepper M 2002 Phys. Med. Biol. 47 3853Google Scholar
[4] 韩晓, 安景新, 钟玲玲 2018 电子世界 3 5
Han X, An J X, Zhong L L 2018 Electron. World 3 5
[5] 苏兴华, 于春香, 王瀚卿 2014 太赫兹科学与电子信息学报 12 37
Su X H, Yu C X, Wang H Q 2014 J. Terahertz Sci. Electron. Inf. Technol. 12 37
[6] Leahy-Hoppa M R, Fitch M J, Zheng X, Hayden L M, Osiander R 2007 Chem. Phys. Lett. 434 227Google Scholar
[7] Feng W 2012 J. Semicond. 33 0310011
[8] Corinna L, Dandolo K, Filtenborg T, Skou-Hansen J, Jepsen P U 2015 Appl. Phys. A 121 981Google Scholar
[9] Han P Y, CHO G C, Zhang X C 2000 Opt. Lett. 25 242Google Scholar
[10] Gong Y D, Dong H, Hong M H 2009 34th International Conference On Infrared, Millimeter, And Terahertz Waves 1-2 57
[11] Ramonova A G, Kibizov D D, Kozyrev E N, Zaalishvili V B, Grigorkina G S, Fukutani K, Magkoev T T 2018 Russ. J. Phys. Chem. A 92 122
[12] Ren G H, Zhao H W, Zhang J B, Tian Z, Gu J Q, Ouyang C M, Han J G, Zhang W L 2017 Infrared Laser Eng. 46 08250011
[13] Wiesauer K, Jordens C 2013 J. Infrared Milli Terahz Waves 34 663Google Scholar
[14] Nick C J, van der Valk, Willemine A M, van der Marel, Paul C M, Planken 2005 Opt. Lett. 30 2802Google Scholar
[15] Kanda N, Konishi K, Kuwata-Gonokami M 2007 Opt. Express 15 11117Google Scholar
[16] Zhang R X, Cui Y, Sun W F, Zhang Y 2008 Appl. Opt. 47 6422Google Scholar
[17] Wang X K, Cui Y, Sun W F, Ye J S, Zhang Y 2010 J. Opt. Soc. Am. A 27 2387Google Scholar
[18] Wang X K, Shi J, Sun W F, Feng S F, Han P, Ye J S, Zhang Y 2016 Opt. Express 24 7178Google Scholar
[19] Wang X K, Wang S, Xie Z W, Sun W F, Feng S F, Cui Y, Ye J S, Zhang Y 2014 Opt. Express 22 24622Google Scholar
[20] Shang Y J, Wang X K, Sun W F, Han P, Yu Y, Feng S F, Ye J S, Zhang Y 2018 Opt. Lett. 43 5508Google Scholar
[21] Fu M X, Quan B G, He J W, Yao Z H, Gu C Z, Li J J, Zhang Y 2016 Appl. Phys. Lett. 108 1219041
[22] Boivin A, Wolf E 1965 Phys. Rev. 138 B1561Google Scholar
[23] 沈长宇, 金尚忠 2017 光学原理 (第2版) (北京: 清华大学出版社) 第184−188页
Shen C Y, Jin S Z 2017 Principles of Optics (2th Ed.) (Beijing: Tsinghua University Press) pp184−188 (in Chinese)
[24] 姚启钧 2014 光学教程 (北京: 高等教育出版社) 第224页
Yao Q J 2014 Optical Tutorial (Beijing: Higher Education Press) p224 (in Chinese)
-
图 3 (a) 左旋圆偏振光和右旋圆偏振光的相位和振幅图像; (b) 振动方向与水平夹角为0°, 50°, 90°和140°方向的线偏振光的相位和振幅图像. 上面为相位图像, 下面为振幅图像, 模拟频率均为0.62 THz
Figure 3. (a) Phase and amplitude images of left circular polarization and right circular polarization; (b) phase and amplitude images of linear polarization with 0°, 50°, 90° and 140°angles between the vibration direction and the horizontal. The top is the phase image, the bottom is the amplitude image, the simulation frequency is 0.62 THz.
图 5 (a), (b)空气、o光和e光的时域信号和频域信号; (c) o光和e光的折射率; (d) 在不同频率下o光和e光的折射率差值与波长之间的关系
Figure 5. (a), (b) The time domain signal and the frequency domain signal of air, ordinary light, and extraordinary light respectively; (c) the real part of the refractive index of ordinary light and extraordinary light; (d) relationship between the refractive index difference and wavelength at different frequencies.
-
[1] 成彬彬, 李慧萍, 安健飞, 江舸, 邓贤进, 张健 2005 太赫兹科学与电子信息学报 13 843
Cheng B B, Li H P, An J F, Jiang G, Deng X J, Zhang J 2005 J. Terahertz Sci. Electron. Inf. Technol. 13 843
[2] 沈飞, 应义斌 2009 光谱学与光谱分析 29 1445Google Scholar
Shen F, Ying Y B 2009 Spectrosc. Spectral Anal. 29 1445Google Scholar
[3] Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H, Pepper M 2002 Phys. Med. Biol. 47 3853Google Scholar
[4] 韩晓, 安景新, 钟玲玲 2018 电子世界 3 5
Han X, An J X, Zhong L L 2018 Electron. World 3 5
[5] 苏兴华, 于春香, 王瀚卿 2014 太赫兹科学与电子信息学报 12 37
Su X H, Yu C X, Wang H Q 2014 J. Terahertz Sci. Electron. Inf. Technol. 12 37
[6] Leahy-Hoppa M R, Fitch M J, Zheng X, Hayden L M, Osiander R 2007 Chem. Phys. Lett. 434 227Google Scholar
[7] Feng W 2012 J. Semicond. 33 0310011
[8] Corinna L, Dandolo K, Filtenborg T, Skou-Hansen J, Jepsen P U 2015 Appl. Phys. A 121 981Google Scholar
[9] Han P Y, CHO G C, Zhang X C 2000 Opt. Lett. 25 242Google Scholar
[10] Gong Y D, Dong H, Hong M H 2009 34th International Conference On Infrared, Millimeter, And Terahertz Waves 1-2 57
[11] Ramonova A G, Kibizov D D, Kozyrev E N, Zaalishvili V B, Grigorkina G S, Fukutani K, Magkoev T T 2018 Russ. J. Phys. Chem. A 92 122
[12] Ren G H, Zhao H W, Zhang J B, Tian Z, Gu J Q, Ouyang C M, Han J G, Zhang W L 2017 Infrared Laser Eng. 46 08250011
[13] Wiesauer K, Jordens C 2013 J. Infrared Milli Terahz Waves 34 663Google Scholar
[14] Nick C J, van der Valk, Willemine A M, van der Marel, Paul C M, Planken 2005 Opt. Lett. 30 2802Google Scholar
[15] Kanda N, Konishi K, Kuwata-Gonokami M 2007 Opt. Express 15 11117Google Scholar
[16] Zhang R X, Cui Y, Sun W F, Zhang Y 2008 Appl. Opt. 47 6422Google Scholar
[17] Wang X K, Cui Y, Sun W F, Ye J S, Zhang Y 2010 J. Opt. Soc. Am. A 27 2387Google Scholar
[18] Wang X K, Shi J, Sun W F, Feng S F, Han P, Ye J S, Zhang Y 2016 Opt. Express 24 7178Google Scholar
[19] Wang X K, Wang S, Xie Z W, Sun W F, Feng S F, Cui Y, Ye J S, Zhang Y 2014 Opt. Express 22 24622Google Scholar
[20] Shang Y J, Wang X K, Sun W F, Han P, Yu Y, Feng S F, Ye J S, Zhang Y 2018 Opt. Lett. 43 5508Google Scholar
[21] Fu M X, Quan B G, He J W, Yao Z H, Gu C Z, Li J J, Zhang Y 2016 Appl. Phys. Lett. 108 1219041
[22] Boivin A, Wolf E 1965 Phys. Rev. 138 B1561Google Scholar
[23] 沈长宇, 金尚忠 2017 光学原理 (第2版) (北京: 清华大学出版社) 第184−188页
Shen C Y, Jin S Z 2017 Principles of Optics (2th Ed.) (Beijing: Tsinghua University Press) pp184−188 (in Chinese)
[24] 姚启钧 2014 光学教程 (北京: 高等教育出版社) 第224页
Yao Q J 2014 Optical Tutorial (Beijing: Higher Education Press) p224 (in Chinese)
Catalog
Metrics
- Abstract views: 6372
- PDF Downloads: 93
- Cited By: 0