Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and performance analysis of THz microcavity-enhanced graphene photodetector

Liang Zhen-Jiang Liu Hai-Xia Niu Yan-Xiong Liu Kai-Ming Yin Yi-Heng

Citation:

Design and performance analysis of THz microcavity-enhanced graphene photodetector

Liang Zhen-Jiang, Liu Hai-Xia, Niu Yan-Xiong, Liu Kai-Ming, Yin Yi-Heng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Detection of the terahertz (THz) electromagnetic spectrum(wavelengths range 0.03-3 mm) is a promising technique for a large variety of strategic applications, such as biomedical diagnostics and process, quality control, homeland security, and environmental monitoring, etc. Graphene has been recognized internationally to have dominant advantages in photodetectors operating due to its high carrier mobility, gapless spectrum, and frequency-independent absorption coefficient. Graphene photodetector operating in the THz region has been extensively studied with great interests. A graphene microcavity photodetector with THz electromagnetic spectrum is demonstrated in this paper, and its responsivity and detectivity under THz electromagnetic spectrum are evaluated. In the designed device, we adopt a distributed bragger reflection (DBR) consisting of two semiconductor materials SiO2 and TiO2 to form an alternating cavity with high-finesse planar, sandwich the absorbing graphene layer between the cavitys top and bottom layers, and design the DBRs reflectivity by the optical transmission matrix method. The monolayer graphenes optical absorption mechanism of the THz radiation spectrum is studied by the conductivity matrix and Maxwells equations with the electromagnetic boundary conditions. Graphenes transfer matrix and absorption coefficient equation are further derived. It is found that at THz region, graphenes conductivity plays an important role in its absorptionand its absorption is 9-22 times enhanced compared with that at the visible region. An optical absorption model of microcavity-enhanced graphene photodetector at THz region is established. The photodetectors absorption rate and responsitivity are analyzed specifically. Theoretical analysis shows that absorption rate is symmetrical to the microcavitys center position and changes periodically, and the shift of the microcavity length influences the period numbers. The maximum rate of the photodetectors absorption reaches 0.965 at 0.12 THz, which increases 93% compared with its maximum absorption rate 0.5 with no cavity. The optimal structure parameters for the designed photodetector are as follows, the top and bottom mirrors reflectivity are 0.928 and 0.998 respectively, the microcavity length is 2.5 mm, the graphene is 0.035 mm away from the top mirror. Under the optimal structure, the photodetectors responsivity reaches 236.7 A/W, and its full width at half maximum reaches 0.035 THz. The designed graphene microcavity photodetector can exhibit high responsivity and detectivity in THz radiation spectrum.
      Corresponding author: Liu Hai-Xia, liuhx08@buaa.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Beijing, China (Grant No. 7152089).
    [1]

    Yoneyama H, Yamashita M, Kasai S, Kawase K, Ito H, Ouchi T 2008 Opt. Commun. 281 1909

    [2]

    Liu S G, Zhong R B 2009 Journal of University of Electronic Science and Technology of China 38 481

    [3]

    Zhang Z L, Mu K J, Zhang C L 2009 Science and Technology 8 11

    [4]

    Li H, Cao J C, Han Y J, Guo X G, Tan Z Y, Lue J T, Luo H, Laframboise S R, Liu H C 2008 J. Appl. Phys. 104 043101

    [5]

    Williams B S 2007 Nat. Photonics 1 517

    [6]

    Guo X G, Tan Z Y, Cao J C, Liu H C 2009 Appl. Phys. Lett. 94 201101

    [7]

    Luo H, Liu H C, Song C Y, Wasilewski Z R 2005 Appl. Phys. Lett. 86 231103

    [8]

    Zhang R, Guo X G, Cao J C 2011 Acta Phys. Sin. 60 050705 (in Chinese) [张戎, 郭旭光, 曹俊诚 2011 物理学报 60 050705]

    [9]

    Phaedon A 2010 Nano Lett. 10 4285

    [10]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [11]

    Wright A R, Cao J C, Zhang C 2009 Phys. Rev. Lett. 103 207401

    [12]

    Ryzhii M, Otsuji T, Mitin V, Ryzhii V 2011 Jpn. J. Appl. Phys. 50 070117

    [13]

    Vicarelli L, Vitiello M S, Coquillat D, Lombardo A, Ferrari A C, Knap W, Polini M, Pellegrini V, Tredicucci A 2012 Nat. Mater. 11 865

    [14]

    Mittendorff M, Winnerl S, Kamann J, Eroms J, Weiss D, Schneider H, Helm M 2013 Appl. Phys. Lett. 103 021113

    [15]

    Muraviev A V, Rumyantsev S L, Liu G, Balandin A A, Knap W, Shur M S 2013 Appl. Phys. Lett. 103 181114

    [16]

    Zak A, Andersson M A, Bauer M, Matukas J, Lisauskas A, Roskos H G, Stake J 2014 Nano Lett. 14 5834

    [17]

    Spirito D, Coquillat D, Bonis S L, Lombardo A, Bruna M, Ferrari A C, Pellegrini V, Tredicucci A, Knap W, Vitiello M S 2014 Appl. Phys. Lett. 104 061111

    [18]

    Engel M, Steiner M, Lombardo A, Ferrari A C, Lohneysen H V, Avouris P, Krupke R 2012 Nat. Commun. 3 906

    [19]

    Furchi M M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H 2012 Nano Lett. 12 2773

    [20]

    Xia F N, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechnol. 4 839

    [21]

    Deng X H, Liu J T, Yuan J R, Wang T B 2015 Acta Phys. Sin. 64 057801 (in Chinese) [邓新华, 刘江涛, 袁吉仁, 王同标 2015 物理学报 64 057801]

    [22]

    Dong H M, Zhang J, Peeters F M, Xu W 2009 J. Appl. Phys. 106 043103

    [23]

    Chen Y L, Feng X B, Hou D D 2013 Acta Phys. Sin. 62 187301 (in Chinese) [陈英良, 冯小波, 侯德东 2013 物理学报 62 187301]

    [24]

    Horng J, Chen C F, Geng B, Girit C, Zhang Y, Hao Z, Bechtel H A, Martin M, Zettl A, Crommie M F, Shen Y R, Wang F 2011 Phys. Rev. B 83 165113

    [25]

    Song S F 2012 Laser & Infrared 42 1367

    [26]

    Zhou Y 2009 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [周勇 2009 硕士学位论文 (成都: 电子科技大学)]

    [27]

    Ferreira A, Peres N M R, Ribeiro R M, Stauber T 2012 Phys. Rev. B 85 115438

  • [1]

    Yoneyama H, Yamashita M, Kasai S, Kawase K, Ito H, Ouchi T 2008 Opt. Commun. 281 1909

    [2]

    Liu S G, Zhong R B 2009 Journal of University of Electronic Science and Technology of China 38 481

    [3]

    Zhang Z L, Mu K J, Zhang C L 2009 Science and Technology 8 11

    [4]

    Li H, Cao J C, Han Y J, Guo X G, Tan Z Y, Lue J T, Luo H, Laframboise S R, Liu H C 2008 J. Appl. Phys. 104 043101

    [5]

    Williams B S 2007 Nat. Photonics 1 517

    [6]

    Guo X G, Tan Z Y, Cao J C, Liu H C 2009 Appl. Phys. Lett. 94 201101

    [7]

    Luo H, Liu H C, Song C Y, Wasilewski Z R 2005 Appl. Phys. Lett. 86 231103

    [8]

    Zhang R, Guo X G, Cao J C 2011 Acta Phys. Sin. 60 050705 (in Chinese) [张戎, 郭旭光, 曹俊诚 2011 物理学报 60 050705]

    [9]

    Phaedon A 2010 Nano Lett. 10 4285

    [10]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [11]

    Wright A R, Cao J C, Zhang C 2009 Phys. Rev. Lett. 103 207401

    [12]

    Ryzhii M, Otsuji T, Mitin V, Ryzhii V 2011 Jpn. J. Appl. Phys. 50 070117

    [13]

    Vicarelli L, Vitiello M S, Coquillat D, Lombardo A, Ferrari A C, Knap W, Polini M, Pellegrini V, Tredicucci A 2012 Nat. Mater. 11 865

    [14]

    Mittendorff M, Winnerl S, Kamann J, Eroms J, Weiss D, Schneider H, Helm M 2013 Appl. Phys. Lett. 103 021113

    [15]

    Muraviev A V, Rumyantsev S L, Liu G, Balandin A A, Knap W, Shur M S 2013 Appl. Phys. Lett. 103 181114

    [16]

    Zak A, Andersson M A, Bauer M, Matukas J, Lisauskas A, Roskos H G, Stake J 2014 Nano Lett. 14 5834

    [17]

    Spirito D, Coquillat D, Bonis S L, Lombardo A, Bruna M, Ferrari A C, Pellegrini V, Tredicucci A, Knap W, Vitiello M S 2014 Appl. Phys. Lett. 104 061111

    [18]

    Engel M, Steiner M, Lombardo A, Ferrari A C, Lohneysen H V, Avouris P, Krupke R 2012 Nat. Commun. 3 906

    [19]

    Furchi M M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H 2012 Nano Lett. 12 2773

    [20]

    Xia F N, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechnol. 4 839

    [21]

    Deng X H, Liu J T, Yuan J R, Wang T B 2015 Acta Phys. Sin. 64 057801 (in Chinese) [邓新华, 刘江涛, 袁吉仁, 王同标 2015 物理学报 64 057801]

    [22]

    Dong H M, Zhang J, Peeters F M, Xu W 2009 J. Appl. Phys. 106 043103

    [23]

    Chen Y L, Feng X B, Hou D D 2013 Acta Phys. Sin. 62 187301 (in Chinese) [陈英良, 冯小波, 侯德东 2013 物理学报 62 187301]

    [24]

    Horng J, Chen C F, Geng B, Girit C, Zhang Y, Hao Z, Bechtel H A, Martin M, Zettl A, Crommie M F, Shen Y R, Wang F 2011 Phys. Rev. B 83 165113

    [25]

    Song S F 2012 Laser & Infrared 42 1367

    [26]

    Zhou Y 2009 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [周勇 2009 硕士学位论文 (成都: 电子科技大学)]

    [27]

    Ferreira A, Peres N M R, Ribeiro R M, Stauber T 2012 Phys. Rev. B 85 115438

  • [1] Hou Lei, Guan Shu-Yang, Yin Jun, Zhang Yu-Jun, Xiao Yi-Ming, Xu Wen, Ding Lan. High-order cavity coupled plasmon polaritons in resonant cavity-monolayer MoS2 system. Acta Physica Sinica, 2024, 73(22): 227102. doi: 10.7498/aps.73.20241106
    [2] Wang Jian, Zhang Chao-Yue, Yao Zhao-Yu, Zhang Chi, Xu Feng, Yang Yuan. A method of rapidly designing graphene-based terahertz diffusion surface. Acta Physica Sinica, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [3] Yan Zhi-Jin, Shi Wei. Radiation characteristics of terahertz GaAs photoconductive antenna arrays. Acta Physica Sinica, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [4] Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb. Acta Physica Sinica, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [5] Wei Xiang-Fei, He Rui, Zhang Gang, Liu Xiang-Yuan. Terahertz photoconductivity in InAs/GaSb based quantum well system. Acta Physica Sinica, 2018, 67(18): 187301. doi: 10.7498/aps.67.20180769
    [6] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng. Ultrafast terahertz detectors. Acta Physica Sinica, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [7] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [8] Li Dan, Liu Yong, Wang Huai-Xing, Xiao Long-Sheng, Ling Fu-Ri, Yao Jian-Quan. Gain characteristics of grapheme plasmain terahertz range. Acta Physica Sinica, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [9] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [10] Liang Zhen-Jiang, Liu Hai-Xia, Niu Yan-Xiong, Yin Yi-heng. Design and performance analysis of microcavity-enhanced graphene photodetector. Acta Physica Sinica, 2016, 65(13): 138501. doi: 10.7498/aps.65.138501
    [11] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [12] Feng Wei, Zhang Rong, Cao Jun-Cheng. Progress of terahertz devices based on graphene. Acta Physica Sinica, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [13] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [14] Dong Hai-Ming. Electrically-controlled nonlinear terahertz optical properties of graphene. Acta Physica Sinica, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [15] Dai Yu-Han, Chen Xiao-Lang, Zhao Qiang, Zhang Ji-Hua, Chen Hong-Wei, Yang Chuan-Ren. Tunable split ring resonators in terahertz band. Acta Physica Sinica, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [16] Han Yu, Yuan Xue-Song, Ma Chun-Yan, Yan Yang. Study of a gyrotron oscillator with corrugated interaction cavity. Acta Physica Sinica, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [17] Su Fa-Gang, Liang Jing-Qiu, Liang Zhong-Zhu, Zhu Wan-Bin. Study on the surface morphology and absorptivity of light-absorbing materials. Acta Physica Sinica, 2011, 60(5): 057802. doi: 10.7498/aps.60.057802
    [18] Ma Shi-Hua, Shi Yu-Lei, Xu Xin-Long, Yan Wei, Yang Yu-Ping, Wang Li. Low-frequency collective vibrational modes of asparagine by terahertz time-domain spectroscopy. Acta Physica Sinica, 2006, 55(8): 4091-4095. doi: 10.7498/aps.55.4091
    [19] Zhang Duan-Ming, Li Li, Li Zhi-Hua, Guan Li, Hou Si-Pu, Tan Xin-Yu. Variation of the target absorptance and target temperature distribution before melting in the pulsed laser ablation process. Acta Physica Sinica, 2005, 54(3): 1283-1289. doi: 10.7498/aps.54.1283
    [20] LIN XIU-CHUAN, SHAO TIAN-MIN. LUMPED METHOD FOR THE MEASUREMENT OF LASER ABSORPTANCE OF MATERIALS . Acta Physica Sinica, 2001, 50(5): 856-859. doi: 10.7498/aps.50.856
Metrics
  • Abstract views:  7230
  • PDF Downloads:  543
  • Cited By: 0
Publishing process
  • Received Date:  23 April 2016
  • Accepted Date:  30 May 2016
  • Published Online:  05 August 2016

/

返回文章
返回