Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Low Intensity of Broadband Terahertz Radiation Promotes Neuronal Growth and Development

Shaoqing Ma Shixiang Gong Wei Zhang Chengbiao Lu Xiaoli Li Yingwei Li

Citation:

Low Intensity of Broadband Terahertz Radiation Promotes Neuronal Growth and Development

Shaoqing Ma, Shixiang Gong, Wei Zhang, Chengbiao Lu, Xiaoli Li, Yingwei Li, et al.
PDF
Get Citation
  • Terahertz waves are located in the energy level range of hydrogen bonding and van der Waals forces, and can directly couple with proteins to excite the nonlinear resonance effect of proteins. Therefore, terahertz can affect the conformation of proteins, the structure and function of neurons. Primary cerebral cortex neurons of SD rats were cultured in vitro. Neurons were radiated 3 days by THz with frequency of 0.3-3THz and a power of 100μW; record the growth and development indicators of neurons (Cell body area, total length of process). At the end of a radiation programme, Western blotting was used to detect the protein expressions of GluA1, GluN1, postsynaptic density protein-95(PSD-95) and synaptophysin 38(SYP-38). After the first day of terahertz radiation, the increase in cell area increased by 144.9% (P<0.05); On the second and third days of terahertz radiation, the growth value of the total length of neuronal neurites increased by 65.1% (P<0.05) and 109.4% (P<0.05), respectively; Three days after terahertz irradiation, the protein expressions of GluA1 and SY-38 were increased by 38.1% (P<0.05) and 19.2% (P<0.05), respectively. The results show that (1)The use of Low intensity of broadband terahertz in this study will not cause the death of cortical neurons, and will not affect their growth regularity;(2)Low intensity of broadband terahertz radiation. can promote the growth of cortical neuron cell bodies and processes, but the effects on cortical neuron cell bodies and processes are different. This may be related to the developmental cycle of cultured cortical neurons in vitro, and there is a cumulative effect on the promotion of neuronal processes by low intensity of broadband terahertz;(3) The promotion of neuronal growth and development by low intensity of broadband terahertz radiation may be related to the proportion of AMPA receptor subtypes and the expression of presynaptic specific protein SY-38. These results herald specific frequencies and energies of terahertz radiation as a novel neuromodulation technology for the treatment or intervention of diseases such as neurodevelopmental disorders.
  • [1]

    Giovanni A,Capone F,di Biase L,Ferreri F,Florio L,Guerra A,Marano M,Paolucci M,Ranieri F,Salomone G,Tombini M,Thut G,Di Lazzaro V 2017Front. Aging. Neurosci 9 189

    [2]

    Lui JH, Hansen DV, Kriegstein AR 2011Cell 146 18

    [3]

    Jones SR,Kerr CE,Wan Q,Pritchett DL,Hämäläinen,Moore CI 2010J. Neurosci 30 13760

    [4]

    Kanaan NM,Pigino GF,Brady ST,Lazarov O,Binder LI,Morfini GA 2013Exp. Neurol 246 44

    [5]

    Van Battum EY,Brignani S,Pasterkamp RJ 2015Lancet. Neurol 14 532

    [6]

    MacLeod D,Dowman J,Hammond R,Leete T,Inoue K,Abeliovich A 2006Neuron 52 587

    [7]

    Tang F R,Yu P P,Wang L,Guo S,Yang Q 2017Acta. Anatomica. Sinica 48 1

    [8]

    Yu S X,Qu W H,Sui H J,Jin Y X,Jin X N,Jin Y 2013Chinese Pharmacological Bulletin 29 126

    [9]

    Zorkina Y,Abramova O,Ushakova V,Morozova A,Zubkov E,Valikhov M,Melnikov P,Majouga A,Chekhonin V 2020Molecules 25 5294

    [10]

    Cullen CL,Young KM 2016Front. Neural. Circuits 10 26

    [11]

    Zhang N, Xing M, Wang Y, Tao H, Cheng Y 2015Neuroscience 311 284

    [12]

    Bashir S,Uzair M,Abualait T,Arshad M,Khallaf RA,Niaz A,Thani Z,Yoo WK,Túnez I,Demirtas-Tatlidede A,Meo SA 2022Mol. Med. Rep 25 109

    [13]

    Hu Y,Zhong W,Wan JM,Yu AC 2013Ultrasound. Med. Biol 39 915

    [14]

    Peng X Y,Zhou H 2021Acta Phys. Sin 70 240701

    [15]

    Tan S Z,Tan P C,Luo L Q,Chi Y L,Yang Z L,Zhao X L,Zhao L,Dong J,Zhang J,Yao B W,Xu X P,Tian G,Chen J K,Wang H,Peng R Y 2019Biomed. Environ. Sci 32 739

    [16]

    Andrey S,Sergey V P 2013Bioelectromagnetics 34 133

    [17]

    Yu.S.Ol.S,A.S.Kolov,A.K.Petrov,T.A.Zapara,A.S.Ratushnyak 2010Vestnik Novosibirsk State University. Series:Physics 5 177

    [18]

    J.S.Olshevskaya A.S.Kozlov A.K.Petrov T.A.Zapara A.S.Ratushnyak 2009ЖУРНАЛ ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ 59 353

    [19]

    Guo ZY,Li CZ,Li XJ,Wang YL,Mattson MP,Lu, CB 201324492

    [20]

    Wang JG,Wang YL,Xu F,Zhao JX,Zhou SY,Yu Y,Chazot PL,Wang XF,Lu CB 2016Acta Pharmacologica Sinica 37 303

    [21]

    Tiziana M,Rosanna M,Augusto M,Massimo P,Stefano L,Annalisa D 2022Radiation 2 100

    [22]

    He Y F,Chen J Y,Knab,Zheng W J,Markelz A G 2010Terahertz Science and Technology 3 149

    [23]

    Sun L,Zhao L,Peng RY 2021Mil. Med. Res 8 28

    [24]

    Cherkasova O P,Fedorov V I,Nemova E F,Pogodin A S 2009Optics.Spectroscopy 107 534

    [25]

    Kummer E,Ban N 2021 Nat. Rev. Mol. Cell. Biol 22307

    [26]

    Masayoshi T 2007nature photonics 1 97

    [27]

    Zhao X,Zhang M,Liu Y,Liu H,Ren K,Xue Q,Zhang H,Zhi N,Wang W,Wu S 2021iScience 24 103485

    [28]

    Stuart C C,Leah K,Mark F 2006 Curr. Opin. Neurobiol 16288

    [29]

    Jonas P,Racca C,Sakmann B,Seeburg PH,Monyer H 1994Neuron 121281

    [30]

    Kater SB,Mills LR 1991 J. Neurosci 14 891

    [31]

    Greger IH, Watson JF, Cull-Candy SG 2017Neuron 94 713

    [32]

    Wang JG,Wang YL,Xu F,Zhao JX,Zhou SY,Yu Y,Chazot PL,Wang XF,Lu CB 2016Acta. Pharmacol. Sin 37 303

    [33]

    Sun S,Igor T,Jeffrey V,Michael C 2012 J. Radiat. Res 53159

    [34]

    Titushkin I A,Rao V S,Pickard W F,Moros G Shafirstein G,Cho M R 2009Radiation. Research 172 725

    [35]

    Zhang X X,He M X,Zhao J W,Chen X Y,Liu L Y,Lu X Y,Tian T,Chen M Q,Wang P 2020Chinese Journal of Lasers 47 0202023-1

    [36]

    Kao HT,Ryoo K,Lin A,Janoschka SR,Augustine GJ,Porton B 2017Eur J Neurosci 451085

    [37]

    Fornasiero EF,Bonanomi D,Benfenati F,Valtorta F 2010Cell. Mol. Life. Sci 67 1383

    [38]

    Bottauscio O,Chiampi M,Zilberti L 2015IEEE Transactions on Magnetics 51 7400504-1

    [39]

    Andrey S,Sergey V P 2013Bioelectromagnetics 34 133

    [40]

    Anush D,Armenuhi H,Anna N,Erna D,Sinerik A 2012Electromagnetic Biology and Medicine 31132

    [41]

    Sulatsky M I,Duka M V,Smolyanskaya O A 2014Physics of Wave Phenomena 22 197

    [42]

    Cha C H 2016 CRMP2 and CRMP4 regulate the axonal development of hippocampal neurons Ph.D. Dissertation (Guangzhou:Jinan University)(in Chinese)

    [43]

    Melinda K K,Christopher G L,Vincent L,Hersh Lakdawala,Bonnie L F 2010Journal of Visualized Experiments 45e2354

  • [1] Feng Long-Cheng, Du Chen, Yang Sheng-Xin, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Research on terahertz real-time near-field spectral imaging. Acta Physica Sinica, doi: 10.7498/aps.71.20220131
    [2] Liu Zi-Yu, Qi Li-Mei, Dao Ri-Na, Dai Lin-Lin, Wu Li-Qin. Beam steerable terahertz antenna based on VO2. Acta Physica Sinica, doi: 10.7498/aps.71.20220817
    [3] Yan Zhi-Jin, Shi Wei. Radiation characteristics of terahertz GaAs photoconductive antenna arrays. Acta Physica Sinica, doi: 10.7498/aps.70.20211210
    [4] Wang Yan-Hong, Wang Lei, Wu Jing-Zhi. Nanoscale electromagnetic field interaction generated by microtubule vibration in neurons. Acta Physica Sinica, doi: 10.7498/aps.70.20210421
    [5] Zhang Xiu-Fang, Ma Jun, Xu Ying, Ren Guo-Dong. Synchronization between FitzHugh-Nagumo neurons coupled with phototube. Acta Physica Sinica, doi: 10.7498/aps.70.20201953
    [6] Li Ze-Yu, Jiang Qu-Han, Ma Teng-Zhou, Yuan Ying-Hao, Chen Lin. Multi-parameter tunable phase transition based terahertz graphene plasmons and its application. Acta Physica Sinica, doi: 10.7498/aps.70.20210445
    [7] Guo Liang-Hao, Wang Shao-Meng, Yang Li-Xia, Wang Kai-Cheng, Ma Jia-Lu, Zhou Jun, Gong Yu-Bin. Weak resonance effects of THz wave transimission in nerve cell. Acta Physica Sinica, doi: 10.7498/aps.70.20211677
    [8] Wang Xiao-Lei, Zhao Jie-Hui, Li Miao, Jiang Guang-Ke, Hu Xiao-Xue, Zhang Nan, Zhai Hong-Chen, Liu Wei-Wei. Tight focus and field enhancement of terahertz waves using a probe based on spoof surface plasmons. Acta Physica Sinica, doi: 10.7498/aps.69.20191531
    [9] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, doi: 10.7498/aps.68.20191055
    [10] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng. Ultrafast terahertz detectors. Acta Physica Sinica, doi: 10.7498/aps.67.20180226
    [11] Yu Wen-Ting, Zhang Juan, Tang Jun. Effects of dynamic synapses, neuronal coupling, and time delay on firing of neuron. Acta Physica Sinica, doi: 10.7498/aps.66.200201
    [12] Zhang Jing-Shui, Kong Ling-Qin, Dong Li-Quan, Liu Ming, Zuo Jian, Zhang Cun-Lin, Zhao Yue-Jin. Diffusion part in terahertz complementary metal oxide semiconductor transistor detector model. Acta Physica Sinica, doi: 10.7498/aps.66.127302
    [13] Zhang Xue-Jin, Lu Yan-Qing, Chen Yan-Feng, Zhu Yong-Yuan, Zhu Shi-Ning. Terahertz surface polaritons. Acta Physica Sinica, doi: 10.7498/aps.66.148705
    [14] Xiu Chun-Bo, Liu Chang, Guo Fu-Hui, Cheng Yi, Luo Jing. Control strategy and application of hysteretic chaotic neuron and neural network. Acta Physica Sinica, doi: 10.7498/aps.64.060504
    [15] Wang Xing-Yuan, Ren Xiao-Li, Zhang Yong-Lei. Full-order and reduced-order optimal synchronization of neurons model with unknown parameters. Acta Physica Sinica, doi: 10.7498/aps.61.060508
    [16] Li Chun-Guang, Chen Jun. Circuit design of tabu learning neuron models and their dynamic behavior. Acta Physica Sinica, doi: 10.7498/aps.60.020502
    [17] Wang Hui-Qiao, Yu Lian-Chun, Chen Yong. Effects of channel noise on metabolic energy cost of action potentials. Acta Physica Sinica, doi: 10.7498/aps.58.5070
    [18] Chang Jun, Li Hua, Han Ying-Jun, Tan Zhi-Yong, Cao Jun-Cheng. Material growth and characterization of terahertz quantum-cascade lasers. Acta Physica Sinica, doi: 10.7498/aps.58.7083
    [19] Qiao Xiao-Yan, Li Gang, Dong You-Er, He Bing-Jun. Neuron excitability changes induced by low-power laser irradiation. Acta Physica Sinica, doi: 10.7498/aps.57.1259
    [20] Qiao Xiao-Yan, Li Gang, Lin Ling, He Bing-Jun. Research on characteristics of neuron potassium channel under low level laser irradiation. Acta Physica Sinica, doi: 10.7498/aps.56.2448
Metrics
  • Abstract views:  632
  • PDF Downloads:  29
  • Cited By: 0
Publishing process

Low Intensity of Broadband Terahertz Radiation Promotes Neuronal Growth and Development

Abstract: Terahertz waves are located in the energy level range of hydrogen bonding and van der Waals forces, and can directly couple with proteins to excite the nonlinear resonance effect of proteins. Therefore, terahertz can affect the conformation of proteins, the structure and function of neurons. Primary cerebral cortex neurons of SD rats were cultured in vitro. Neurons were radiated 3 days by THz with frequency of 0.3-3THz and a power of 100μW; record the growth and development indicators of neurons (Cell body area, total length of process). At the end of a radiation programme, Western blotting was used to detect the protein expressions of GluA1, GluN1, postsynaptic density protein-95(PSD-95) and synaptophysin 38(SYP-38). After the first day of terahertz radiation, the increase in cell area increased by 144.9% (P<0.05); On the second and third days of terahertz radiation, the growth value of the total length of neuronal neurites increased by 65.1% (P<0.05) and 109.4% (P<0.05), respectively; Three days after terahertz irradiation, the protein expressions of GluA1 and SY-38 were increased by 38.1% (P<0.05) and 19.2% (P<0.05), respectively. The results show that (1)The use of Low intensity of broadband terahertz in this study will not cause the death of cortical neurons, and will not affect their growth regularity;(2)Low intensity of broadband terahertz radiation. can promote the growth of cortical neuron cell bodies and processes, but the effects on cortical neuron cell bodies and processes are different. This may be related to the developmental cycle of cultured cortical neurons in vitro, and there is a cumulative effect on the promotion of neuronal processes by low intensity of broadband terahertz;(3) The promotion of neuronal growth and development by low intensity of broadband terahertz radiation may be related to the proportion of AMPA receptor subtypes and the expression of presynaptic specific protein SY-38. These results herald specific frequencies and energies of terahertz radiation as a novel neuromodulation technology for the treatment or intervention of diseases such as neurodevelopmental disorders.

Reference (43)

Catalog

    /

    返回文章
    返回