-
The fishnet metastructure has plane, near-optical lossless characteristic, and can excite surface plasmons in a specific light field. It has great potential in enhancing the response efficiency of photonic devices. Based on the finite difference time domain method and rigorous coupled wave analysis, in this paper, we systematically study the plasmon resonance mode of the fishnet metastructure and its light wave regulation performance on the crystalline silicon thin film solar cells. The research results show that the characteristics of absorption, scattering and extinction for the fishnet structure strongly depend on the thickness, line width, period and other characteristic parameters of the metal layer. Through optimizing the design, the resonant peak is red-shifted to 770 nm, and the relative extinction cross-section reaches 1.69, and the scattered light occupies a dominant position in the extinction spectrum. The crystalline silicon thin film solar cell with a response layer thickness of 2 μm constructed in this way has a significantly enhanced absorption efficiency in the wavelength band greater than 800 nm, and the final energy conversion efficiency of the device increases from 6.67% to 8.25%. The light intensity distribution shows that the enhanced backscattering caused by resonance and the large-angle deflection of the photon propagation direction are important reasons for the response gain of the solar cell.
-
Keywords:
- fishnet metastructure /
- plasmon /
- optical control /
- energy efficiency
[1] Sobhani F, Heidarzadeh H, Bahador H 2020 Chin. Phys. B 29 068401
[2] Deceglie M G, Ferry V E, Alivisatos A P 2012 Nano Lett. 12 2894Google Scholar
[3] Shen X Q, Wang Q K, Wangyang P H 2016 IEEE Photonics Technol. Lett. 28 1477Google Scholar
[4] Pylypova O, Havryliuk O, Antonin S, Evtukh A, Skryshevsky V, Ivanov I, Shmahlii S 2021 Appl. Nanosci. DOI: 10.1007/s13204-021-01699-6
[5] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄 2015 物理学报 64 248801Google Scholar
Ding D, Yang S E, Chen Y S, Gao X Y, Gu J H, Lu J X 2015 Acta Phys. Sin. 64 248801Google Scholar
[6] 宫步青, 陈小雨, 王伟鹏, 王治业, 周华, 沈向前 2020 物理学报 69 188801Google Scholar
Gong B Q, Chen X Y, Wang W P, Wang Z Y, Zhou H, Shen X Q 2020 Acta Phys. Sin. 69 188801Google Scholar
[7] 彭新村, 王智栋, 邓文娟, 朱志甫, 邹继军, 张益军 2020 物理学报 69 068501Google Scholar
Peng X S, Wang Z D, Deng W J, Zhu Z F, Zhou J J, Zhang Y J 2020 Acta Phys. Sin. 69 068501Google Scholar
[8] 刘亮, 韩德专, 石磊 2020 物理学报 69 157301Google Scholar
Liu L, Han D Z, Shi L 2020 Acta Phys. Sin. 69 157301Google Scholar
[9] Saive R, Atwater H A 2018 Opt. Express 26 A275Google Scholar
[10] Jang Y H, Jang Y J, Kim S, Quan L N, Chung K, Kim D H 2016 Chem. Rev. 116 14982Google Scholar
[11] Lee J Y, Peumans P 2010 Opt. Express 18 10078Google Scholar
[12] Spinelli P, Polman A 2012 Opt. Express 20 A641Google Scholar
[13] Mandal P, Sharma S 2016 Renewable Sustainable Energy Rev. 65 537Google Scholar
[14] Ueno K, Oshikiri T, Sun Q, Shi X, Misawa H 2018 Chem. Rev. 118 2955Google Scholar
[15] 吴丰, 郭志伟, 吴家驹, 江海涛, 杜桂强 2020 物理学报 69 154205Google Scholar
Wu F, Guo Z W, Wu, J J, Jiang H T, Du G Q 2020 Acta Phys. Sin. 69 154205Google Scholar
[16] Dai Z G, Hu G W, Ou Q D, Zhang L, Xia F N, Garcia V F J, Qiu C W, Bao Q L 2020 Chem. Rev. 120 592
[17] 吴晗, 吴竞宇, 陈卓 2020 物理学报 69 010201Google Scholar
Wu H, Wu J Y, Chen Z 2020 Acta Phys. Sin. 69 010201Google Scholar
[18] Yang J, Sauvan C, Liu H T, Lalann P 2011 Phys. Rev. Lett. 107 043903Google Scholar
[19] Hamm J M, Wuestner S, Tsakmakidis K L, Hess O 2011 Phys. Rev. Lett. 107 167405Google Scholar
[20] Ji L, Varadan V V 2011 J. Appl. Phys. 110 043114Google Scholar
[21] Seal S, Budhraja V, Ji L, Varadan V V 2015 Int. J. Photoenergy 46 910619Google Scholar
[22] Zhou H, Xie J, Mai M F, Wang J, Shen X Q, Wang S Y, Zhang L H, Kisslinger K, Wang H Q, Zhang J X, Ke S M, Zeng X R 2018 ACS Appl. Mater. Interfaces 10 16160Google Scholar
[23] Feng N N, Jurgen M, Zeng L R, Liu J F, Hong C Y, Lionel C K, Duan X M, 2007 IEEE Trans. Electron Devices 54 1926Google Scholar
-
图 1 渔网超结构及相应陷光电池的仿真模型 (a)渔网结构电池示意图; (b)渔网结构及相应参数示意图; (c)模拟周期
Figure 1. Schematic diagram of fishnet metastructure and the simulation model of solar cell with fishnet metastructure: (a) Schematic diagram of solar cell with fishnet metastructure; (b) the detail and design parameters of the fishnet metastructure; (c) top view of the schematic of the unit cell for the simulation.
图 2 渔网超结构的吸收(a1), (b1), (c1), 散射(a2), (b2), (c2)及消光(a3), (b3), (c3)光谱随特征参数的变化关系 (a1)−(a3) 厚度; (b1)−(b3) 周期; (c1)−(c3) 宽度
Figure 2. Dependence of absorption (a1), (b1), (c1), scattering (a2), (b2), (c2) and extinction (a3), (b3), (c3) spectra of fishnet metastructure on its characteristic parameters: (a1)−(a3) Thickness; (b1)−(b3) period; (c1)−(c3) width.
图 3 渔网超结构薄晶硅电池的光电响应特性 (a)优化后渔网超结构的消光、散射及吸收光谱; (b)不同结构薄晶硅电池及渔网超结构的反射和吸收光谱; (c)不同结构薄晶硅电池的伏安特性曲线; (d)渔网超结构薄晶硅电池的剖面光强分布
Figure 3. Photoelectric response characteristics of thin film silicon solar cell with fishnet metastructure: (a) Extinction, scattering and absorption spectra of fishnet metastructure with optimal parameter; (b) the reflection and absorption spectrum of silicon thin film solar cells and fishnet metastructure with different structures; (c) the current voltage characteristic curves of silicon thin film solar cells with different structures; (d) light intensity distribution of vertical section of silicon thin film solar cell with fishnet metastructure.
-
[1] Sobhani F, Heidarzadeh H, Bahador H 2020 Chin. Phys. B 29 068401
[2] Deceglie M G, Ferry V E, Alivisatos A P 2012 Nano Lett. 12 2894Google Scholar
[3] Shen X Q, Wang Q K, Wangyang P H 2016 IEEE Photonics Technol. Lett. 28 1477Google Scholar
[4] Pylypova O, Havryliuk O, Antonin S, Evtukh A, Skryshevsky V, Ivanov I, Shmahlii S 2021 Appl. Nanosci. DOI: 10.1007/s13204-021-01699-6
[5] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄 2015 物理学报 64 248801Google Scholar
Ding D, Yang S E, Chen Y S, Gao X Y, Gu J H, Lu J X 2015 Acta Phys. Sin. 64 248801Google Scholar
[6] 宫步青, 陈小雨, 王伟鹏, 王治业, 周华, 沈向前 2020 物理学报 69 188801Google Scholar
Gong B Q, Chen X Y, Wang W P, Wang Z Y, Zhou H, Shen X Q 2020 Acta Phys. Sin. 69 188801Google Scholar
[7] 彭新村, 王智栋, 邓文娟, 朱志甫, 邹继军, 张益军 2020 物理学报 69 068501Google Scholar
Peng X S, Wang Z D, Deng W J, Zhu Z F, Zhou J J, Zhang Y J 2020 Acta Phys. Sin. 69 068501Google Scholar
[8] 刘亮, 韩德专, 石磊 2020 物理学报 69 157301Google Scholar
Liu L, Han D Z, Shi L 2020 Acta Phys. Sin. 69 157301Google Scholar
[9] Saive R, Atwater H A 2018 Opt. Express 26 A275Google Scholar
[10] Jang Y H, Jang Y J, Kim S, Quan L N, Chung K, Kim D H 2016 Chem. Rev. 116 14982Google Scholar
[11] Lee J Y, Peumans P 2010 Opt. Express 18 10078Google Scholar
[12] Spinelli P, Polman A 2012 Opt. Express 20 A641Google Scholar
[13] Mandal P, Sharma S 2016 Renewable Sustainable Energy Rev. 65 537Google Scholar
[14] Ueno K, Oshikiri T, Sun Q, Shi X, Misawa H 2018 Chem. Rev. 118 2955Google Scholar
[15] 吴丰, 郭志伟, 吴家驹, 江海涛, 杜桂强 2020 物理学报 69 154205Google Scholar
Wu F, Guo Z W, Wu, J J, Jiang H T, Du G Q 2020 Acta Phys. Sin. 69 154205Google Scholar
[16] Dai Z G, Hu G W, Ou Q D, Zhang L, Xia F N, Garcia V F J, Qiu C W, Bao Q L 2020 Chem. Rev. 120 592
[17] 吴晗, 吴竞宇, 陈卓 2020 物理学报 69 010201Google Scholar
Wu H, Wu J Y, Chen Z 2020 Acta Phys. Sin. 69 010201Google Scholar
[18] Yang J, Sauvan C, Liu H T, Lalann P 2011 Phys. Rev. Lett. 107 043903Google Scholar
[19] Hamm J M, Wuestner S, Tsakmakidis K L, Hess O 2011 Phys. Rev. Lett. 107 167405Google Scholar
[20] Ji L, Varadan V V 2011 J. Appl. Phys. 110 043114Google Scholar
[21] Seal S, Budhraja V, Ji L, Varadan V V 2015 Int. J. Photoenergy 46 910619Google Scholar
[22] Zhou H, Xie J, Mai M F, Wang J, Shen X Q, Wang S Y, Zhang L H, Kisslinger K, Wang H Q, Zhang J X, Ke S M, Zeng X R 2018 ACS Appl. Mater. Interfaces 10 16160Google Scholar
[23] Feng N N, Jurgen M, Zeng L R, Liu J F, Hong C Y, Lionel C K, Duan X M, 2007 IEEE Trans. Electron Devices 54 1926Google Scholar
Catalog
Metrics
- Abstract views: 4415
- PDF Downloads: 66
- Cited By: 0