Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GaN-based lateral diode with nanocrystalline diamond passivation layer

REN Zeyang SONG Songyuan ZHANG Tao CHEN Heyuan LI Yao ZHANG Jinfeng LI Junpeng CHEN Junfei ZHU Weidong HAO Yue ZHANG Jincheng

Citation:

GaN-based lateral diode with nanocrystalline diamond passivation layer

REN Zeyang, SONG Songyuan, ZHANG Tao, CHEN Heyuan, LI Yao, ZHANG Jinfeng, LI Junpeng, CHEN Junfei, ZHU Weidong, HAO Yue, ZHANG Jincheng
cstr: 32037.14.aps.74.20250523
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Thermal accumulation under high output power density is one of the key bottlenecks faced by GaN-based power devices. The nanocrystalline diamond (NCD) passivation layer strategy plays a crucial role in improving heat dissipation in high-power GaN devices, while the existing studies focus on GaN-based HEMT. In this study, nanocrystalline diamond films with a thickness of 380–450 nm are grown on Si-based AlGaN/GaN heterostructure materials using a microwave plasma chemical vapor deposition (MPCVD) system. Consequently, lateral Schottky barrier diode devices with NCD passivation are fabricated, and their electrical and thermal properties are investigated. The results show that the DC forward characteristics of the NCD passivated diodes are essentially the same as those of devices without NCD passivation. Moreover, dynamic voltage tests indicate that the NCD passivation layer significantly mitigates current collapse in GaN devices at high frequencies. Under a –20 V DC bias and a pulse voltage of 2.5 V, the current density degradation of NCD passivated devices is only 2.6%, whereas devices without diamond passivation almost completely degrade. Thermal imaging microscopy under varying DC power levels shows that thermal failure occurs at an output power density of approximately 4 W/mm for conventional devices, while NCD passivated devices can reach around 7.5 W/mm. The electrical degradation behaviour of NCD passivated device is also tested under long-time reverse bias. This work demonstrates for the first time the application of nanocrystalline diamond passivation to thermal management of GaN-based power diodes, and clearly demonstrates the potential of this strategy in non-HEMT power device applications.
      Corresponding author: ZHANG Tao, zhangtao@xidian.edu.cn ; ZHANG Jincheng, jchzhang@xidian.edu.cn
    • Funds: Project supported by the Key Research and Development Program of Shandong Province, China (Grant No. 2022CXGC020306), the National Natural Science Foundation of China (Grant Nos. 62127812, 62374122, 62134006, 62204193, 62421005), the China Postdoctoral Science Foundation (Grant No. 2021TQ0256), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. XJSJ24054, YJSJ24020), the Key Research and Development Program of Anhui Province, China (Grant No. 2023a05020006), and the Hefei Comprehensive National Science Center, China.
    [1]

    Bader S J, Lee H, Chaudhuri R, Huang S M, Hickman A, Molnar A, Xing H L G, Jena D, Then H W, Chowdhury N, Palacios T 2020 IEEE Trans. Electron Devices 67 4010Google Scholar

    [2]

    Qin Y, Albano B, Spencer J, Lundh J S, Wang B, Buttay C, Tadjer M, DiMarino C, Zhang Y H 2023 J. Phys. D: Appl. Phys 56 093001Google Scholar

    [3]

    Minoura Y, Ohki T, Okamoto N, Sato M, Ozaki S, Yamada A, Kotani J 2022 Appl. Phys. Express 15 036501Google Scholar

    [4]

    Ding Y J, Li J Y, Hao Z L, Wang Q, Zhang H J, Peng Y, Chen M X 2024 IEEE Photonics Technol. Lett. 36 1005Google Scholar

    [5]

    Gerrer T, Pomeroy J, Yang F Y, Francis D, Carroll J, Loran B, Witkowski L, Yarborough M, Uren M J, Kuball M 2021 IEEE Trans. Electron Devices 68 1530Google Scholar

    [6]

    Malakoutian M, Kasperovich A, Rich D, Woo K, Perez C, Soman R, Saraswat D, Kim J K, Noshin M, Chen M, Vaziri S, Bao X Y, Shih C C, Woon W Y, Asheghi M, Goodson K E, Liao S S, Mitra S, Chowdhury S 2023 Cell Rep. Phys. Sci. 4 101686Google Scholar

    [7]

    Wang Y N, Hu X F, Ge L, Liu Z H, Xu M S, Peng Y, Li B, Yang Y Q, Li S Q, Xie X J, Wang X W, Xu X G, Hu X B 2023 Crystals 13 500Google Scholar

    [8]

    Rossi S, Alomari M, Zhang Y, Bychikhin S, Pogany D, Weaver J M R, Kohn E 2013 Diamond Relat. Mater. 40 69Google Scholar

    [9]

    Matsumae T, Kurashima Y, Takagi H, Shirayanagi Y, Hiza S, Nishimura K, Higurashi E 2022 Scr. Mater. 215 114725Google Scholar

    [10]

    Gao R H, Wang X H, Mu F W, Li X J, Wei C, Zhou W, Shi J A, Tian Y, Xing X J, Li H Y, Huang S, Jiang Q M, Wei K, Liu X Y 2024 J. Alloys Compd. 985 174075Google Scholar

    [11]

    Tadjer M J, Anderson T J, Ancona M G, Raad P E, Komarov P, Bai T, Gallagher J C, Koehler A D, Goorsky M S, Francis D A, Hobart K D, Kub F J 2019 IEEE Electron Device Lett. 40 881Google Scholar

    [12]

    白玲, 宁静, 张进成, 王东, 王博宇, 武海迪, 赵江林, 陶然, 李忠辉 2023 人工晶体学报 52 901Google Scholar

    Bai L, Ning J, Zhang J C, Wang D, Wang B Y, Wu H D, Zhao J L, Tao R, Li Z H 2023 J. Synth. Cryst. 52 901Google Scholar

    [13]

    Gu Y, Zhang Y, Hua B, Ni X, Fan Q, Gu X 2021 J. Electron. Mater. 50 4239Google Scholar

    [14]

    兰飞飞, 刘莎莎, 房诗舒, 王英民, 程红娟 2024 人工晶体学报 53 913Google Scholar

    Lan F F, Liu S S, Fang S S, Wang Y M, Cheng H J 2024 J. Synth. Cryst. 53 913Google Scholar

    [15]

    Zheng Y T, Li C M, Liu J L, Wei J J, Ye H T 2021 Funct. Diamond 1 63Google Scholar

    [16]

    Yang H, Ma Y, Dai Y 2021 Funct. Diamond 1 150Google Scholar

    [17]

    Anderson T J, Hobart K D, Tadjer M J, Koehler A D, Imhoff E A, Hite J K, Feygelson T I, Pate B B, Eddy C R, Kub F J 2016 ECS J. Solid State Sci. Technol. 6 Q3036Google Scholar

    [18]

    Guo H, Li Y, Yu X, Zhou J, Kong Y 2022 Micromachines (Basel) 13 1486Google Scholar

    [19]

    Zhou X Y, Malakoutian M, Soman R, Bian Z L, Martinez R P, Chowdhury S 2022 IEEE Trans. Electron Devices 69 6650Google Scholar

    [20]

    刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红 2023 物理学报 72 098104Google Scholar

    Liu Q B, Yu C, Guo J C, Ma M Y, He Z Z, Zhou C J, Gao X D, Yu H, Feng Z H 2023 Acta Phys. Sin. 72 098104Google Scholar

    [21]

    Ryou J H, Choi S 2022 Nat. Electron. 5 834Google Scholar

    [22]

    Tadjer M J, Anderson T J, Hobart K D, Feygelson T I, Caldwell J D, Eddy C R, Kub F J, Butler J E, Pate B, Melngailis J 2012 IEEE Electron. Device Lett. 33 23Google Scholar

    [23]

    Meyer D J, Koehler A D, Hobart K D, Eddy C R, Feygelson T I, Anderson T J, Roussos J A, Tadjer M J, Downey B P, Katzer D S, Pate B B, Ancona M G 2014 IEEE Electron. Device Lett. 35 1013Google Scholar

    [24]

    Johnstone D, Doğan S, Leach J, Moon Y T, Fu Y, Hu Y, Morkoç H 2004 Appl. Phys. Lett. 85 4058Google Scholar

  • 图 1  Si基AlGaN/GaN异质结外延片结构

    Figure 1.  Si-based AlGaN/GaN heterojunction epitaxial structure.

    图 2  纳米晶金刚石钝化GaN基SBD主要工艺流程示意图 (a) 材料清洗与台面隔离; (b) 与欧姆阴极制作; (c) SiNx隔离层淀积; (d) 纳米晶金刚石薄膜生长; (e) 多步刻蚀暴露阳极区域; (f) 肖特基阳极制作与阴极开孔

    Figure 2.  Main fabrication process flow diagram of nano crystalline diamond-passivated GaN-based SBD: (a) Sample cleaning and mesa isolation; (b) ohmic cathode formation; (c) deposition of SiNx isolation layer; (d) growth of nano crystalline diamond film; (e) multi-step etching to expose the anode region; (f) fabrication of Schottky anode and cathode opening.

    图 3  纳米晶金刚石钝化AlGaN/GaN肖特基二极管(器件A) SEM显微图像

    Figure 3.  SEM micrograph of AlGaN/GaN SBD with nano crystalline diamond passivation layer (device A).

    图 4  纳米晶金刚石薄膜SEM显微图像 (a) 截面; (b) 表面形貌

    Figure 4.  SEM micrograph of nano crystalline diamond film: (a) Cross-section; (b) surface morphology.

    图 5  器件A和器件B静态正向特性对比 (a) 电流-电压特性; (b) 导通电阻特性

    Figure 5.  Comparison of static forward characteristics between device A and device B: (a) I-V characteristics; (b) on-resistance characteristics.

    图 6  (a) NCD钝化SBD与常规器件反向特性对比; (b) 刻蚀完成后阳极区域SEM显微图像; (c) 刻蚀完成后阳极区域AFM显微图像

    Figure 6.  (a) Comparison of reverse characteristics between NCD-passivated SBD and conventional device; (b) SEM micrograph of the anode region after etching; (c) AFM micrograph of the anode region after etching.

    图 7  器件A和器件B的动态正向特性对比 (a) 器件A脉冲电流-电压特性; (b) 器件B脉冲电流-电压特性; (c) 器件A动态导通电阻特性; (d) 器件B动态导通电阻特性

    Figure 7.  Comparison of dynamic forward characteristics between device A and B: (a) Pulsed I-V characteristics of device A; (b) pulsed I-V characteristics of device B; (c) dynamic on-resistance characteristics of device A; (d) dynamic on-resistance characteristics of device B.

    图 8  器件A, B的变功率最高结温对比

    Figure 8.  Comparison of junction temperature under varying power conditions between devices A and B.

    图 9  器件A, B的定功率热成像温度分布

    Figure 9.  Thermal imaging temperature distribution of devices A and B under certain output power density.

    图 10  器件A, B传热仿真模拟结果

    Figure 10.  Simulation results of heat transfer of devices A and B.

    图 11  器件A反向应力微光显微镜测试结果

    Figure 11.  EMMI microscopy test results of device A after reverse stress applied.

  • [1]

    Bader S J, Lee H, Chaudhuri R, Huang S M, Hickman A, Molnar A, Xing H L G, Jena D, Then H W, Chowdhury N, Palacios T 2020 IEEE Trans. Electron Devices 67 4010Google Scholar

    [2]

    Qin Y, Albano B, Spencer J, Lundh J S, Wang B, Buttay C, Tadjer M, DiMarino C, Zhang Y H 2023 J. Phys. D: Appl. Phys 56 093001Google Scholar

    [3]

    Minoura Y, Ohki T, Okamoto N, Sato M, Ozaki S, Yamada A, Kotani J 2022 Appl. Phys. Express 15 036501Google Scholar

    [4]

    Ding Y J, Li J Y, Hao Z L, Wang Q, Zhang H J, Peng Y, Chen M X 2024 IEEE Photonics Technol. Lett. 36 1005Google Scholar

    [5]

    Gerrer T, Pomeroy J, Yang F Y, Francis D, Carroll J, Loran B, Witkowski L, Yarborough M, Uren M J, Kuball M 2021 IEEE Trans. Electron Devices 68 1530Google Scholar

    [6]

    Malakoutian M, Kasperovich A, Rich D, Woo K, Perez C, Soman R, Saraswat D, Kim J K, Noshin M, Chen M, Vaziri S, Bao X Y, Shih C C, Woon W Y, Asheghi M, Goodson K E, Liao S S, Mitra S, Chowdhury S 2023 Cell Rep. Phys. Sci. 4 101686Google Scholar

    [7]

    Wang Y N, Hu X F, Ge L, Liu Z H, Xu M S, Peng Y, Li B, Yang Y Q, Li S Q, Xie X J, Wang X W, Xu X G, Hu X B 2023 Crystals 13 500Google Scholar

    [8]

    Rossi S, Alomari M, Zhang Y, Bychikhin S, Pogany D, Weaver J M R, Kohn E 2013 Diamond Relat. Mater. 40 69Google Scholar

    [9]

    Matsumae T, Kurashima Y, Takagi H, Shirayanagi Y, Hiza S, Nishimura K, Higurashi E 2022 Scr. Mater. 215 114725Google Scholar

    [10]

    Gao R H, Wang X H, Mu F W, Li X J, Wei C, Zhou W, Shi J A, Tian Y, Xing X J, Li H Y, Huang S, Jiang Q M, Wei K, Liu X Y 2024 J. Alloys Compd. 985 174075Google Scholar

    [11]

    Tadjer M J, Anderson T J, Ancona M G, Raad P E, Komarov P, Bai T, Gallagher J C, Koehler A D, Goorsky M S, Francis D A, Hobart K D, Kub F J 2019 IEEE Electron Device Lett. 40 881Google Scholar

    [12]

    白玲, 宁静, 张进成, 王东, 王博宇, 武海迪, 赵江林, 陶然, 李忠辉 2023 人工晶体学报 52 901Google Scholar

    Bai L, Ning J, Zhang J C, Wang D, Wang B Y, Wu H D, Zhao J L, Tao R, Li Z H 2023 J. Synth. Cryst. 52 901Google Scholar

    [13]

    Gu Y, Zhang Y, Hua B, Ni X, Fan Q, Gu X 2021 J. Electron. Mater. 50 4239Google Scholar

    [14]

    兰飞飞, 刘莎莎, 房诗舒, 王英民, 程红娟 2024 人工晶体学报 53 913Google Scholar

    Lan F F, Liu S S, Fang S S, Wang Y M, Cheng H J 2024 J. Synth. Cryst. 53 913Google Scholar

    [15]

    Zheng Y T, Li C M, Liu J L, Wei J J, Ye H T 2021 Funct. Diamond 1 63Google Scholar

    [16]

    Yang H, Ma Y, Dai Y 2021 Funct. Diamond 1 150Google Scholar

    [17]

    Anderson T J, Hobart K D, Tadjer M J, Koehler A D, Imhoff E A, Hite J K, Feygelson T I, Pate B B, Eddy C R, Kub F J 2016 ECS J. Solid State Sci. Technol. 6 Q3036Google Scholar

    [18]

    Guo H, Li Y, Yu X, Zhou J, Kong Y 2022 Micromachines (Basel) 13 1486Google Scholar

    [19]

    Zhou X Y, Malakoutian M, Soman R, Bian Z L, Martinez R P, Chowdhury S 2022 IEEE Trans. Electron Devices 69 6650Google Scholar

    [20]

    刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红 2023 物理学报 72 098104Google Scholar

    Liu Q B, Yu C, Guo J C, Ma M Y, He Z Z, Zhou C J, Gao X D, Yu H, Feng Z H 2023 Acta Phys. Sin. 72 098104Google Scholar

    [21]

    Ryou J H, Choi S 2022 Nat. Electron. 5 834Google Scholar

    [22]

    Tadjer M J, Anderson T J, Hobart K D, Feygelson T I, Caldwell J D, Eddy C R, Kub F J, Butler J E, Pate B, Melngailis J 2012 IEEE Electron. Device Lett. 33 23Google Scholar

    [23]

    Meyer D J, Koehler A D, Hobart K D, Eddy C R, Feygelson T I, Anderson T J, Roussos J A, Tadjer M J, Downey B P, Katzer D S, Pate B B, Ancona M G 2014 IEEE Electron. Device Lett. 35 1013Google Scholar

    [24]

    Johnstone D, Doğan S, Leach J, Moon Y T, Fu Y, Hu Y, Morkoç H 2004 Appl. Phys. Lett. 85 4058Google Scholar

  • [1] Liu Xu-Yang, Zhang He-Qiu, Li Bing-Bing, Liu Jun, Xue Dong-Yang, Wang Heng-Shan, Liang Hong-Wei, Xia Xiao-Chuan. Characteristics of AlGaN/GaN high electron mobility transistor temperature sensor. Acta Physica Sinica, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [2] Tang Wen-Xin, Hao Rong-Hui, Chen Fu, Yu Guo-Hao, Zhang Bao-Shun. p-GaN hybrid anode AlGaN/GaN diode with 1000 V operation. Acta Physica Sinica, 2018, 67(19): 198501. doi: 10.7498/aps.67.20181208
    [3] Liu Yang, Chai Chang-Chun, Yu Xin-Hai, Fan Qing-Yang, Yang Yin-Tang, Xi Xiao-Wen, Liu Sheng-Bei. Damage effects and mechanism of the GaN high electron mobility transistor caused by high electromagnetic pulse. Acta Physica Sinica, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [4] Wang Tian-Shu, Zhang Rui-De, Guan Zhe, Ba Ke, Zu Yun-Xiao. Properties of memristor in RLC circuit and diode circuit. Acta Physica Sinica, 2014, 63(17): 178101. doi: 10.7498/aps.63.178101
    [5] Zhang Ming-Lan, Yang Rui-Xia, Li Zhuo-Xin, Cao Xing-Zhong, Wang Bao-Yi, Wang Xiao-Hui. Study on proton irradiation induced defects in GaN thick film. Acta Physica Sinica, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [6] Chen Cheng-Cheng, Liu Li-Ying, Wang Ru-Zhi, Song Xue-Mei, Wang Bo, Yan Hui. Preparation of nanostructured GaN films and their field emission enhancement for different substrates. Acta Physica Sinica, 2013, 62(17): 177701. doi: 10.7498/aps.62.177701
    [7] Chen Hao-Ran, Yang Lin-An, Zhu Zhang-Ming, Lin Zhi-Yu, Zhang Jin-Cheng. Theoretical study on degradation phenomenon on AlGaN/GaN resonant tunneling diode. Acta Physica Sinica, 2013, 62(21): 217301. doi: 10.7498/aps.62.217301
    [8] Chen Jun, Fan Guang-Han, Zhang Yun-Yan. The investigation of performance improvement of GaN-based dual-wavelength light-emitting diodes with various thickness of quantum barriers. Acta Physica Sinica, 2012, 61(17): 178504. doi: 10.7498/aps.61.178504
    [9] Qiao Jian-Liang, Chang Ben-Kang, Qian Yun-Sheng, Wang Xiao-Hui, Li Biao, Xu Yuan. Photoemission mechanism of GaN vacuum surface electron source. Acta Physica Sinica, 2011, 60(12): 127901. doi: 10.7498/aps.60.127901
    [10] Zhang Yun-Yan, Fan Guang-Han, Zhang Yong, Zheng Shu-Wen. Effect of spectrum-control in dual-wavelength light-emitting diode by doped GaN interval layer. Acta Physica Sinica, 2011, 60(2): 028503. doi: 10.7498/aps.60.028503
    [11] Wang Xiu-Mei, He Ji-Zhou, He Xian, Xiao Yu-Ling. Performance characteristics of an irreversible engine consisting of nonlinear diodes system. Acta Physica Sinica, 2010, 59(7): 4460-4465. doi: 10.7498/aps.59.4460
    [12] Jin Yu-Zhe, Hu Yi-Pei, Zeng Xiang-Hua, Yang Yi-Jun. Gamma radiation effect on GaN-based blue light-emitting diodes with multi-quantum well. Acta Physica Sinica, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [13] Xue Zheng-Qun, Huang Sheng-Rong, Zhang Bao-Ping, Chen Chao. Analyses of laser-induced p-type doping of GaN in the improvement of light-emitting diodes. Acta Physica Sinica, 2010, 59(2): 1268-1274. doi: 10.7498/aps.59.1268
    [14] Xue Zheng-Qun, Huang Sheng-Rong, Zhang Bao-Ping, Chen Chao. Analysis of failure mechanism of GaN-based white light-emitting diode. Acta Physica Sinica, 2010, 59(7): 5002-5009. doi: 10.7498/aps.59.5002
    [15] Zhou Mei, Zhao De-Gang. Effect of p-GaN layer thickness on the performance of p-i-n structure GaN ultraviolet photodetectors. Acta Physica Sinica, 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [16] Zhang Jian-Ming, Zou De-Shu, Xu Chen, Gu Xiao-Ling, Shen Guang-Di. Effects of optimized contact scheme on the performance of high-power GaN-based light-emitting diodes. Acta Physica Sinica, 2007, 56(10): 6003-6007. doi: 10.7498/aps.56.6003
    [17] Meng Kang, Jiang Sen-Lin, Hou Li-Na, Li Chan, Wang Kun, Ding Zhi-Bo, Yao Shu-De. Study of radiation damage in Mg+-implanted GaN. Acta Physica Sinica, 2006, 55(5): 2476-2481. doi: 10.7498/aps.55.2476
    [18] Song Shu-Fang, Chen Wei-De, Xu Zhen-Jia, Xu Xu-Rong. Deep level transient spectroscopy studies of Er and Pr implanted GaN films. Acta Physica Sinica, 2006, 55(3): 1407-1412. doi: 10.7498/aps.55.1407
    [19] Liu Shi-Feng, Qin Guo-Gang, You Li-Ping, Zhang Ji-Cai, Fu Zhu-Xi, Dai Lun. Synthesis of GaN nanowires and nano-pyramids in a two-hot-boat chemical vapor deposition system via an In-doping technique. Acta Physica Sinica, 2005, 54(9): 4329-4333. doi: 10.7498/aps.54.4329
    [20] Luo Yi, Guo Wen-Ping, Shao Jia-Ping, Hu Hui, Han Yan-Jun, Xue Song, Wang Lai, Sun Chang-Zheng, Hao Zhi-Biao. A study on wavelength stability of GaN-based blue light emitting diodes. Acta Physica Sinica, 2004, 53(8): 2720-2723. doi: 10.7498/aps.53.2720
Metrics
  • Abstract views:  461
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  22 April 2025
  • Accepted Date:  30 June 2025
  • Available Online:  25 August 2025
  • Published Online:  05 October 2025
  • /

    返回文章
    返回