-
GaN plays an important role in compound semiconductor, which exhibits excellent electrical properties such as wide band gap (3.4 eV), high breakdown field strength (3.3 MV/cm), and high electron mobility (600 cm2/(Vs)). AlGaN/GaN heterojunction produces two-dimensional electron gas (2DEG) with high density (11013 cm-2) and high electron mobility (2000 cm2/(Vs)) which are caused by strong piezoelectric and spontaneous polarization. The Si-based AlGaN/GaN devices emerge as a promising candidate for the nextgeneration switching application in power system due to 2DEG of AlGaN/GaN heterojunction. Turn-on and breakdown voltage are key parameters for diodes and they have a tradeoff between each other. These two parameters affect diode loss and power handling capability. For better properties, we propose a novel p-GaN hybrid anode AlGaN/GaN diode with high-resistance-cap-layer (HRCL) to optimize turn-on voltage and breakdown characteristics. Based on the p-GaN/AlGaN/GaN material structure, an HRCL is fabricated in the channel region by self-aligned hydrogen plasma treatment to improve the breakdown voltage. Hydrogen plasma is adopted to compensate for holes in the p-GaN to release electrons from the 2DEG channel, forming a high-resistivity area. The transmission line method tests the material after passivation, showing that its sheet resistance is 570 /□ and a contact resistance is 0.7 mm. In the HRCL p-GaN diode, negative charges can appear at the interface of HR-GaN/AlGaN due to polarization effect, which increases the vertical electric field in AlGaN and reduces the lateral electric field near the cathode in the p-GaN, compared with in the p-GaN diode without HRCL. The p-GaN in the anode region is reserved to regulate the turn-on voltage by depleting the underlying 2DEG. The p-GaN structure raises conduction band beyond the Fermi level, ensuring the reduction of 2DEG. The fabricated HRCL p-GaN diode exhibits a high breakdown voltage over 1000 V at Ileakage=110-4 A/mm with a cathode-anode distance Lac of 10 m and a turn-on voltage of +1.2 V when forward current is 1 mA/mm. These results indicate that the introduction of p-GaN hybrid anode and HRCL can enhance the electrical properties of AlGaN/GaN diode effectively. However, little attention has been paid to doping concentration in p-GaN. Study of the regulation of Mg2+ doping concentration on the turn-on voltage in p-GaN will be investigated in future to achieve a low forward turn-on voltage of the p-GaN HRCL diode.
[1] Amano H, Sawaki N, Akasaki I 1986 Appl. Phys. Lett. 48 255
[2] Chen K J, Hberlen O, Lidow A 2017 IEEE. Trans. Electron Dev. 64 779
[3] Li W Y, Zhang Z L, Fu K 2017 J. Semi-cond. 38 074001
[4] Dora Y, Chakraborty A, McCarthy L 2006 IEEE Electron Dev. Lett. 27 713
[5] Kim J, Kim C 2013 IEEE Trans. Power Electron. 28 3827
[6] Ma F, Luo A, Xu X, Xiao H 2013 IEEE Trans. Ind. Electron. 60 728
[7] Ishida H, Shibata D, Yanagihara M 2008 IEEE Electron Dev. Lett. 29 1567
[8] Ma L, Wang Y, Yu Z P 2004 Chin. J. Semi-cond. 25 1285 (in Chinese) [祃龙, 王燕, 余志平 2004 半导体学报 25 1285]
[9] Lee J G, Park B R 2013 IEEE Trans. Power Electron. 34 214
[10] Hu J, Stoffels S, Lenci S 2016 IEEE Trans. Electron Dev. 63 997
[11] Bai Z Y, Du J F 2017 Superlattices Microstruct. 111 1000
[12] Ma J, Zanuz D C 2017 IEEE Electron Dev. Lett. 39 260
[13] Lei J C, Jin W, Tang G F 2018 Electron. Lett. 51 1889
[14] Wu Y F, Guo W L, Cheng Y F 2017 Chin. J. Lumin. 38 477 (in Chinese) [吴月芳, 郭伟玲, 陈艳芳 2017 发光学报 38 477]
[15] Hao R H, Fu K, Yu G H 2016 Appl. Phys. Lett. 109 152106
[16] Hao R H, Li W Y, Fu K, Yu G H 2017 IEEE Electron Dev. Lett. 38 1087
[17] Ha M W, Lee J H, Han M K 2013 Solid-State Electron. 73 1
[18] O Seok, Han M K, Byun Y C 2015 Solid-State Electron. 103 49
[19] Gao J N, Jin Y F, Xie B 2018 IEEE Electron Dev. Lett. 38 859
[20] Cooke M 2015 Semicond. Today 10 98
[21] Kizilyalli I C, Edwards A P, Nie H 2014 IEEE Electron Dev. Lett. 35 247
[22] Kizilyalli I C, Prunty T, Aktas O 2015 IEEE Electron Dev. Lett. 36 1073
-
[1] Amano H, Sawaki N, Akasaki I 1986 Appl. Phys. Lett. 48 255
[2] Chen K J, Hberlen O, Lidow A 2017 IEEE. Trans. Electron Dev. 64 779
[3] Li W Y, Zhang Z L, Fu K 2017 J. Semi-cond. 38 074001
[4] Dora Y, Chakraborty A, McCarthy L 2006 IEEE Electron Dev. Lett. 27 713
[5] Kim J, Kim C 2013 IEEE Trans. Power Electron. 28 3827
[6] Ma F, Luo A, Xu X, Xiao H 2013 IEEE Trans. Ind. Electron. 60 728
[7] Ishida H, Shibata D, Yanagihara M 2008 IEEE Electron Dev. Lett. 29 1567
[8] Ma L, Wang Y, Yu Z P 2004 Chin. J. Semi-cond. 25 1285 (in Chinese) [祃龙, 王燕, 余志平 2004 半导体学报 25 1285]
[9] Lee J G, Park B R 2013 IEEE Trans. Power Electron. 34 214
[10] Hu J, Stoffels S, Lenci S 2016 IEEE Trans. Electron Dev. 63 997
[11] Bai Z Y, Du J F 2017 Superlattices Microstruct. 111 1000
[12] Ma J, Zanuz D C 2017 IEEE Electron Dev. Lett. 39 260
[13] Lei J C, Jin W, Tang G F 2018 Electron. Lett. 51 1889
[14] Wu Y F, Guo W L, Cheng Y F 2017 Chin. J. Lumin. 38 477 (in Chinese) [吴月芳, 郭伟玲, 陈艳芳 2017 发光学报 38 477]
[15] Hao R H, Fu K, Yu G H 2016 Appl. Phys. Lett. 109 152106
[16] Hao R H, Li W Y, Fu K, Yu G H 2017 IEEE Electron Dev. Lett. 38 1087
[17] Ha M W, Lee J H, Han M K 2013 Solid-State Electron. 73 1
[18] O Seok, Han M K, Byun Y C 2015 Solid-State Electron. 103 49
[19] Gao J N, Jin Y F, Xie B 2018 IEEE Electron Dev. Lett. 38 859
[20] Cooke M 2015 Semicond. Today 10 98
[21] Kizilyalli I C, Edwards A P, Nie H 2014 IEEE Electron Dev. Lett. 35 247
[22] Kizilyalli I C, Prunty T, Aktas O 2015 IEEE Electron Dev. Lett. 36 1073
Catalog
Metrics
- Abstract views: 8035
- PDF Downloads: 188
- Cited By: 0