-
In recent years, the parameter extraction methods of solar cell have attracted a lot of research attention. The reason is that the matching solar cell parameters can effectively reduce the influences of internal and external factors on photovoltaic efficiencies. In this paper, the five-parameter extraction methods of solar cell single-diode model are discussed in detail. The five parameters are the photocurrent, the reverse diode saturation current, the ideality factor of diode, the series resistance, and the shunt resistance. In fact, the existing research methods are classified as four categories, namely, analytically extracting parameter methods, extracting parameter methods with the help of Lambert W function, constructing or using special functions to extract parameter methods, and using intelligent algorithm to extract parameter methods. In this article, we not only elaborate their main theories and approaches, but also discuss their advantages and disadvantages. The main conclusion is that the analytical method for the extraction of solar cell model parameters requires some assumptions. Therefore, this method is fast but less accurate due to various approximations. In addition, the parameter extraction using the analytical method needs a thorough calculation, and deducing the actual values of (dI/dV)|V=Voc and (dI/dV)|I=Isc and peak power point is also challenging. When the five parameters of solar cell are calculated using the Lambert W-function method, the results show that the extraction process is easier when using the consecrated software such as MATLAB, but the larger computational time is needed. Generally, the Lambert-W function provides the exact explicit expression for parameter extraction. As a result, the accuracy of approximate solution using Lambert-W function is much higher than that of the above method. It is obvious that the accuracy of using special functions to extract cell parameters is limited by those function characteristics. Of course, those special functions, such as Green's function, seem to be complex approaches. The accuracy of the extracting cell parameters by using intelligent algorithm strongly depends on the type of fitting algorithm, the fitting criterion, objective function and the starting values of the parameters. Finally, based on the conducted review, the future research trend of parameter extraction is also predicted
-
Keywords:
- solar cell /
- parameters extraction methods /
- review
[1] Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H 1999 Science 258 692
[2] Goetzberger A, Luther J, Willeke G 2002 Sol. Energ. Mater. Sol. Cells 74 1
[3] Nelson J 2003 The Physics of Solar Cells (London:Imperial College Press) pp1-39
[4] Wenham S R, Green M A, Watt M E, Corkish R, Sproul A 2011 Applied Photovaltaics (3rd Ed.) (New York:Earthscan) pp69-84
[5] Askarzadeh A, Rezazadeh A 2013 Appl. Energ. 102 943
[6] Kim W, Choi W 2010 Sol. Energy 84 1008
[7] Caracciolo F, Dallago E, Finarelli D, Liberale A, Merhej P 2012 IEEE J. Photovolt. 2 173
[8] Jordehi A 2016 Renew. Sust. Energ. Rev. 61 354
[9] Li H I L, Ye Z, Ye J, Yang D, Du H 2015 Renew. Energ. 76 135
[10] Gow J A, Manning C D 1996 6th International Conference on Power Electronics and Variable Speed Drives Nottingham, United Kingdom, September 23-25, 1996 p69
[11] Nishioka K, Sakitani N, Uraoka Y, Fuyuki T 2007 Sol. Energ. Mater. Sol. Cells 91 1222
[12] Bana S, Saini R 2016 Energy Reports 2 171
[13] Khanna V, Das B, Bisht D, Singh P 2015 Renew. Energ. 78 105
[14] Shockley W 1949 Bell Labs Tech. J. 28 435
[15] Kammer D, Ludington M 1977 Am. J. Phys. 45 602
[16] Pan B, Weng J, Chen S, Huang Y, Dai S 2014 J. Phys. D:Appl. Phys. 47 475503
[17] Soto W, Klein S, Beckman W 2006 Sol. Energy 80 78
[18] Ortiz-Conde A, Garcia Sanchez F J, Muci J 2006 Sol. Energ. Mater. Sol. Cells 90 352
[19] Amit J, Sharma S, Kapoor A 2006 Sol. Energ. Mater. Sol. Cells 90 25
[20] Villalva M, Gazoli J, Filho E 2009 IEEE Trans. Power Electr. 94 1198
[21] Gottschalg R, Rommel M, Infield D G, Kearney M J 1999 Meas. Sci. Technol. 10 796
[22] Chegaar M, Ouennoughi Z, Guechi F 2004 Vacuum 75 367
[23] Haouari-Merbah M, Belhamel M, Tobias I, Ruiz J M 2005 Sol. Energ. Mater. Sol. Cells 87 225
[24] Askarzadeh A, Rezazadeh A 2013 Sol. Energy 90 123
[25] Siddiqui M, Abido M 2013 Appl. Soft Comput. 13 4608
[26] Ishaque K, Salam Z 2011 Sol. Energy 85 2349
[27] Dkhichi F, Oukarfi B, Fakkar A, Belbounaguia N 2014 Sol. Energy 110 781
[28] Chan D, Phillips J, Phang J 1986 Solid State Electron. 29 329
[29] Ishibashi K, Kimura Y, Niwano M 2008 J. Appl. Phys. 103 455
[30] Batzelis E, Papathanassiou A 2016 IEEE Trans. Sustain. Energ. 7 504
[31] Chenni R, Makhlouf M, Kerbache T, Bouzid A 2007 Energy 32 1724
[32] Lun S, Du C, Yang G, Wang S, Guo T 2013 Sol. Energy 92 147
[33] Ouennoughi Z, Chegaar M 1999 Solid State Electron. 43 1985
[34] Sze S M, Kwok K N 2007 Physics of Semiconductor Devices (3rd Ed.) (Hoboken:John Wiley Sons) pp663-743
[35] Easwarakhanthan T, Bottin J, Bouhouch I, Boutrit C 1986 Int. J. Solar Energy 4 1
[36] Chegaar M, Ouennoughi Z, Hoffmann A 2001 Solid State Electron. 45 293
[37] Rasool F, Drieberg M, Badruddin N, Singh B S M 2017 Sol. Energy 153 519
[38] Chouder A, Silvestre S, Sadaoui N, Rahmani L 2012 Simul. Model. Pract. Th. 20 46
[39] Rahman S, Varma R, Vanderheide T 2014 IET Renew. Power Gen. 8 217
[40] Dolara, A, Leva S, Manzolini G 2015 Sol. Energy 119 83
[41] Jain A, Kapoor A 2004 Sol. Energ. Mater. Sol. Cells 81 269
[42] Zhang C, Zhang J, Hao Y, Lin Z, Zhu C 2011 J. Appl. Phys. 110 199
[43] Khan F, Singh S, Husain M 2010 Sol. Energ. Mat. Sol. C. 94 1473
[44] Ghani F, Rosengarten G, Duke M, Carson J 2014 Renew. Energ. 72 105
[45] Carrero C, Rodriguez J, Ramirez D, Platero C 2010 Renew. Energ. 35 1103
[46] Xiao W B, Liu M M, Yan C 2017 J. Nanoelectron. Optoelec. 12 189
[47] Chen Y, Wang X, Li D, Hong R, Shen H 2011 Appl. Energ. 88 2239
[48] Peng L L, Sun Y Z, Meng Z, Wang Y L, Xu Y 2013 J. Power Sources 227 131
[49] Saleem H, Karmalkar S 2009 IEEE Electr. Device Lett. 30 349
[50] Karmalkar S, Saleem H 2011 Sol. Energ. Mater. Sol. Cells 95 1076
[51] Singh N, Jain A, Kapoor A 2009 Sol. Energ. Mater. Sol. Cells 93 1423
[52] Perovich S M, Simic S K, Tosic D V, Bauk S I 2007 Appl. Math. Lett. 20 493
[53] Charles J P, Abdelkrim M, Muoy Y H, Mialhe P 1981 Solar Cells 4 169
[54] Jain A, Kapoor A 2005 Sol. Energ. Mater. Sol. Cells 85 391
[55] Dash D P, Roshan R, Mahata S, Mallik S, Mahato S S 2015 J, Renew. Sustain. Ener. 7 950
[56] Mallick S P, Dash D P, Mallik S, Roshan R, Mahata S 2017 Sol. Energy 153 360
[57] Akbaba M, Aiattawi M 1995 Sol. Energ. Mater. Sol. Cells 37 123
[58] Cavassilas N, Michelini F, Bescond M 2014 J. Renew. Sustain. Ener. 6 65
[59] Ma T, Yang H, Lu L 2014 Sol. Energy 100 31
[60] Bellia H, Youcef R, Fatima M 2014 NRIAG J. A. G. 3 53
[61] Bonkoungou D, Koalaga Z, Njomo D, Zougmore F 2015 Int. J. Current Engineer. Technol. 5 3735
[62] Jervase J, Bourdoucen H, Al-Lawati A 2001 Meas. Sci. Technol. 12 1922
[63] Sellai A, Ouennoughi Z 2005 Int. J. Mod. Phys. C 16 1043
[64] Patel Sanjaykumar J, Panchal Ashish K, Kheraj V 2013 J. Nano-Electro. Phys. 5 02008
[65] Sellami A, Zagrouba M, Bouacha M, Bessas B 2007 Meas. Sci. Technol. 18 1472
[66] Zagrouba M, Sellami A, Bouacha M, Ksouri M 2010 Sol. Energy 84 860
[67] Gaing Z L 2003 IEEE Trans. Power Syst. 18 1187
[68] Macabebe E, Sheppard C, Dyk E 2011 Sol. Energy 85 12
[69] Munji M K, Okullo W, Dyk E, Vorster F 2010 Sol. Energ. Mater. Sol. Cells 94 2129
[70] Ye M, Wang X, Xu Y 2009 J. Appl. Phys. 105 1948
[71] Alhajri M, El-Naggar K, Al-Rashidi M, Al-Othman A 2012 Renew. Energ. 44 238
[72] Rao R V, Savsani V J, Vakharia D P 2011 Comput. Aided Design 43 303
[73] Patel S, Panchal A, Kheraj V 2014 Appl. Energ. 119 384
[74] Singh K, Kho K, Rita S 2014 Int. J. Computat. Sci. Appl. 4 101
[75] Laudani A, Lozito G, Fulginei F, Salvini A 2015 Int. J. Photoenergy 205 1
[76] Laudani A, Fulginei F, Salvini A, Lozito G, Coco S 2014 Int. J. Photoenergy 204 1
[77] Rajasekar N, Kumar N, Venugopalan R 2013 Sol. Energy 97 255
[78] Guo L, Meng Z, Sun Y, Wang L 2016 Energ. Convers. Manage. 108 520
[79] Ma J, Bi Z, Ting T, Hao S, Hao W 2016 Sol. Energy 132 606
[80] Humada A, Hojabri M, Mekhilef S, Hamada H 2016 Renew. Sust. Energ. Rev. 56 494
[81] Boutana N, Mellit A, Lughi V, Pavan A 2017 Energy 122 128
[82] Bana S, Saini R 2017 Renew. Energ. 101 1299
-
[1] Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H 1999 Science 258 692
[2] Goetzberger A, Luther J, Willeke G 2002 Sol. Energ. Mater. Sol. Cells 74 1
[3] Nelson J 2003 The Physics of Solar Cells (London:Imperial College Press) pp1-39
[4] Wenham S R, Green M A, Watt M E, Corkish R, Sproul A 2011 Applied Photovaltaics (3rd Ed.) (New York:Earthscan) pp69-84
[5] Askarzadeh A, Rezazadeh A 2013 Appl. Energ. 102 943
[6] Kim W, Choi W 2010 Sol. Energy 84 1008
[7] Caracciolo F, Dallago E, Finarelli D, Liberale A, Merhej P 2012 IEEE J. Photovolt. 2 173
[8] Jordehi A 2016 Renew. Sust. Energ. Rev. 61 354
[9] Li H I L, Ye Z, Ye J, Yang D, Du H 2015 Renew. Energ. 76 135
[10] Gow J A, Manning C D 1996 6th International Conference on Power Electronics and Variable Speed Drives Nottingham, United Kingdom, September 23-25, 1996 p69
[11] Nishioka K, Sakitani N, Uraoka Y, Fuyuki T 2007 Sol. Energ. Mater. Sol. Cells 91 1222
[12] Bana S, Saini R 2016 Energy Reports 2 171
[13] Khanna V, Das B, Bisht D, Singh P 2015 Renew. Energ. 78 105
[14] Shockley W 1949 Bell Labs Tech. J. 28 435
[15] Kammer D, Ludington M 1977 Am. J. Phys. 45 602
[16] Pan B, Weng J, Chen S, Huang Y, Dai S 2014 J. Phys. D:Appl. Phys. 47 475503
[17] Soto W, Klein S, Beckman W 2006 Sol. Energy 80 78
[18] Ortiz-Conde A, Garcia Sanchez F J, Muci J 2006 Sol. Energ. Mater. Sol. Cells 90 352
[19] Amit J, Sharma S, Kapoor A 2006 Sol. Energ. Mater. Sol. Cells 90 25
[20] Villalva M, Gazoli J, Filho E 2009 IEEE Trans. Power Electr. 94 1198
[21] Gottschalg R, Rommel M, Infield D G, Kearney M J 1999 Meas. Sci. Technol. 10 796
[22] Chegaar M, Ouennoughi Z, Guechi F 2004 Vacuum 75 367
[23] Haouari-Merbah M, Belhamel M, Tobias I, Ruiz J M 2005 Sol. Energ. Mater. Sol. Cells 87 225
[24] Askarzadeh A, Rezazadeh A 2013 Sol. Energy 90 123
[25] Siddiqui M, Abido M 2013 Appl. Soft Comput. 13 4608
[26] Ishaque K, Salam Z 2011 Sol. Energy 85 2349
[27] Dkhichi F, Oukarfi B, Fakkar A, Belbounaguia N 2014 Sol. Energy 110 781
[28] Chan D, Phillips J, Phang J 1986 Solid State Electron. 29 329
[29] Ishibashi K, Kimura Y, Niwano M 2008 J. Appl. Phys. 103 455
[30] Batzelis E, Papathanassiou A 2016 IEEE Trans. Sustain. Energ. 7 504
[31] Chenni R, Makhlouf M, Kerbache T, Bouzid A 2007 Energy 32 1724
[32] Lun S, Du C, Yang G, Wang S, Guo T 2013 Sol. Energy 92 147
[33] Ouennoughi Z, Chegaar M 1999 Solid State Electron. 43 1985
[34] Sze S M, Kwok K N 2007 Physics of Semiconductor Devices (3rd Ed.) (Hoboken:John Wiley Sons) pp663-743
[35] Easwarakhanthan T, Bottin J, Bouhouch I, Boutrit C 1986 Int. J. Solar Energy 4 1
[36] Chegaar M, Ouennoughi Z, Hoffmann A 2001 Solid State Electron. 45 293
[37] Rasool F, Drieberg M, Badruddin N, Singh B S M 2017 Sol. Energy 153 519
[38] Chouder A, Silvestre S, Sadaoui N, Rahmani L 2012 Simul. Model. Pract. Th. 20 46
[39] Rahman S, Varma R, Vanderheide T 2014 IET Renew. Power Gen. 8 217
[40] Dolara, A, Leva S, Manzolini G 2015 Sol. Energy 119 83
[41] Jain A, Kapoor A 2004 Sol. Energ. Mater. Sol. Cells 81 269
[42] Zhang C, Zhang J, Hao Y, Lin Z, Zhu C 2011 J. Appl. Phys. 110 199
[43] Khan F, Singh S, Husain M 2010 Sol. Energ. Mat. Sol. C. 94 1473
[44] Ghani F, Rosengarten G, Duke M, Carson J 2014 Renew. Energ. 72 105
[45] Carrero C, Rodriguez J, Ramirez D, Platero C 2010 Renew. Energ. 35 1103
[46] Xiao W B, Liu M M, Yan C 2017 J. Nanoelectron. Optoelec. 12 189
[47] Chen Y, Wang X, Li D, Hong R, Shen H 2011 Appl. Energ. 88 2239
[48] Peng L L, Sun Y Z, Meng Z, Wang Y L, Xu Y 2013 J. Power Sources 227 131
[49] Saleem H, Karmalkar S 2009 IEEE Electr. Device Lett. 30 349
[50] Karmalkar S, Saleem H 2011 Sol. Energ. Mater. Sol. Cells 95 1076
[51] Singh N, Jain A, Kapoor A 2009 Sol. Energ. Mater. Sol. Cells 93 1423
[52] Perovich S M, Simic S K, Tosic D V, Bauk S I 2007 Appl. Math. Lett. 20 493
[53] Charles J P, Abdelkrim M, Muoy Y H, Mialhe P 1981 Solar Cells 4 169
[54] Jain A, Kapoor A 2005 Sol. Energ. Mater. Sol. Cells 85 391
[55] Dash D P, Roshan R, Mahata S, Mallik S, Mahato S S 2015 J, Renew. Sustain. Ener. 7 950
[56] Mallick S P, Dash D P, Mallik S, Roshan R, Mahata S 2017 Sol. Energy 153 360
[57] Akbaba M, Aiattawi M 1995 Sol. Energ. Mater. Sol. Cells 37 123
[58] Cavassilas N, Michelini F, Bescond M 2014 J. Renew. Sustain. Ener. 6 65
[59] Ma T, Yang H, Lu L 2014 Sol. Energy 100 31
[60] Bellia H, Youcef R, Fatima M 2014 NRIAG J. A. G. 3 53
[61] Bonkoungou D, Koalaga Z, Njomo D, Zougmore F 2015 Int. J. Current Engineer. Technol. 5 3735
[62] Jervase J, Bourdoucen H, Al-Lawati A 2001 Meas. Sci. Technol. 12 1922
[63] Sellai A, Ouennoughi Z 2005 Int. J. Mod. Phys. C 16 1043
[64] Patel Sanjaykumar J, Panchal Ashish K, Kheraj V 2013 J. Nano-Electro. Phys. 5 02008
[65] Sellami A, Zagrouba M, Bouacha M, Bessas B 2007 Meas. Sci. Technol. 18 1472
[66] Zagrouba M, Sellami A, Bouacha M, Ksouri M 2010 Sol. Energy 84 860
[67] Gaing Z L 2003 IEEE Trans. Power Syst. 18 1187
[68] Macabebe E, Sheppard C, Dyk E 2011 Sol. Energy 85 12
[69] Munji M K, Okullo W, Dyk E, Vorster F 2010 Sol. Energ. Mater. Sol. Cells 94 2129
[70] Ye M, Wang X, Xu Y 2009 J. Appl. Phys. 105 1948
[71] Alhajri M, El-Naggar K, Al-Rashidi M, Al-Othman A 2012 Renew. Energ. 44 238
[72] Rao R V, Savsani V J, Vakharia D P 2011 Comput. Aided Design 43 303
[73] Patel S, Panchal A, Kheraj V 2014 Appl. Energ. 119 384
[74] Singh K, Kho K, Rita S 2014 Int. J. Computat. Sci. Appl. 4 101
[75] Laudani A, Lozito G, Fulginei F, Salvini A 2015 Int. J. Photoenergy 205 1
[76] Laudani A, Fulginei F, Salvini A, Lozito G, Coco S 2014 Int. J. Photoenergy 204 1
[77] Rajasekar N, Kumar N, Venugopalan R 2013 Sol. Energy 97 255
[78] Guo L, Meng Z, Sun Y, Wang L 2016 Energ. Convers. Manage. 108 520
[79] Ma J, Bi Z, Ting T, Hao S, Hao W 2016 Sol. Energy 132 606
[80] Humada A, Hojabri M, Mekhilef S, Hamada H 2016 Renew. Sust. Energ. Rev. 56 494
[81] Boutana N, Mellit A, Lughi V, Pavan A 2017 Energy 122 128
[82] Bana S, Saini R 2017 Renew. Energ. 101 1299
Catalog
Metrics
- Abstract views: 8000
- PDF Downloads: 352
- Cited By: 0