Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Conversion method between port field and internal field of electromagnetic device based on time-reversal technique

Chen Chuan-Sheng Wang Bing-Zhong Wang Ren

Citation:

Conversion method between port field and internal field of electromagnetic device based on time-reversal technique

Chen Chuan-Sheng, Wang Bing-Zhong, Wang Ren
PDF
HTML
Get Citation
  • With the integration of electromagnetic devices, the modules that make up into the devices and the functions that the devices needed to achieve are becoming more and more diverse. The coupling between the modules is difficult to ignore, the difficulty in designing increases sharply, and the traditional design methods gradually become incompetent. It is urgent to find a new comprehensive electromagnetic design method. This paper is to use the spatiotemporally synchronous focusing characteristics of time-reversed electromagnetic waves to explore the possibility of applying time-reversal technique to device design. First, based on the general device inverse design process, using the time-reversal technique, dyadic Green's function and basic principle of electromagnetics, a method of converting the port field distribution into the internal field distribution of the device is proposed. It is also proved that the continuous equivalent source obtained by the time-reversed field at a certain position in space can produce a field distribution close to the desired field at the port. In the single frequency inverse design process, only the tangential component of the electric field or magnetic field of the port is needed to be known. Then, with the help of the reciprocity of Green's function, the above theory is transformed to facilitate the numerical simulation. This numerical simulation realizes the reconstruction of the amplitude distribution source and the phase distribution source. It should be noted that the amplitude distribution source and phase distribution source are both randomly constructed. The numerical simulation verification is completed in two different cases and a variety of different initial conditions. All the simulation results are consistent with the theoretical results, which proves that it is feasible to apply time-reversal technique to the inverse design of electromagnetic devices.
      Corresponding author: Wang Bing-Zhong, bzwang@uestc.edu.cn ; Wang Ren, rwang@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61901086), the Postdoctoral Innovation Talents Support Program, China (Grant No. BX20180057), the China Postdoctoral Science Foundation (Grant No. 2018M640907), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. ZYGX2019J101, ZYGX2019Z016)
    [1]

    Molesky S, Lin Z, Piggott A Y, Jin W, Vucković J, Rodriguez A W 2018 Nat. Photonics 12 659Google Scholar

    [2]

    Zhu Y, Ju Y, Zhang C 2019 P. I. Mech. Eng. A-J. Pow. 233 431

    [3]

    Brown T, Narendra C, Vahabzadeh Y, Caloz C, Mojabi P 2020 IEEE Trans. Antennas Propag. 68 1812Google Scholar

    [4]

    Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M, Vučković J 2015 Nat. Photonics 9 374Google Scholar

    [5]

    Wang M Y, Wang X, Guo D 2003 Comput. Methods Appl. Mech. Eng. 192 227Google Scholar

    [6]

    Lee H, Itoh T 1997 IEEE Trans. Microw. Theory Tech. 45 803Google Scholar

    [7]

    Su L, Piggott A Y, Sapra N V, Petykiewicz J A, Vuckovic J 2018 ACS Photonics 5 301Google Scholar

    [8]

    Su L, Vercruysse D, Skarda J, Sapra N V, Petykiewicz J A, Vučković J 2020 Appl. Phys. Rev. 7 011407Google Scholar

    [9]

    Callewaert F, Aydin K 2016 Novel Optical Systems Design and Optimization XIX. (San Diego: International Society for Optics and Photonics) p9948

    [10]

    Wang J, Yang X S, Wang B Z 2017 IET Microw. Antennas P. 12 385

    [11]

    Wang J, Yang X S, Ding X, Wang B Z 2018 IEEE Trans. Antennas Propag. 66 2254Google Scholar

    [12]

    Wang L, Wang G, Sidén J 2015 IEEE Trans. Microw. Theory Tech. 63 3962Google Scholar

    [13]

    Pehlivanoglu Y V 2014 Appl. Soft Comput. 24 781Google Scholar

    [14]

    Chen C T, Gu G X 2020 Adv. Sci. 7 1902607Google Scholar

    [15]

    Salucci M, Gelmini A, Oliveri G, Anselmi N, Massa A 2018 IEEE Trans. Antennas Propag. 66 5805Google Scholar

    [16]

    Wigner E P 1959 Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (New York: Academic Press)

    [17]

    王秉中, 王任 2019 时间反演电磁学 (北京: 科学出版社)

    Wang B Z, Wang R 2019 Time-Reversed Electromagnetics (Beijing: Science Press) (in Chinese)

    [18]

    Oestges C, Kim A D, Papanicolaou G, Paulraj A J 2005 IEEE Trans. Antennas Propag. 53 283Google Scholar

    [19]

    Qiu R C 2006 IEEE Trans. Wirel. Commun. 5 2685Google Scholar

    [20]

    Gong Z S, Wang B Z, Yang Y, Zhou H C, Ding S, Wang X H 2017 IEEE Photonics J. 9 6900108

    [21]

    Davy M, de R J, Joly J C, Fink M 2010 Phys. Rev. C 11 37

    [22]

    Bacot V, Labousse M, Eddi A, Fink M, Fort E 2016 Nat. Phys. 12 972Google Scholar

    [23]

    Vahabzadeh Y, Achouri K, Caloz C 2016 IEEE Trans. Antennas Propag. 64 4753Google Scholar

    [24]

    龚志双, 王秉中, 王任 2018 物理学报 67 084101Google Scholar

    Gong Z S Wang B Z, Wang R 2018 Acta Phys. Sin. 67 084101Google Scholar

    [25]

    Harrington R F 2001 Time-Harmonic Electromagnetic Fields (New York: Wiley-IEEE Press) pp106−110

  • 图 1  空间拓扑关系

    Figure 1.  Topological relation of space.

    图 2  用于数值验证的问题转化示意图 (a)数理模型对应的数值验证模型; (b)利用互易原理转换后的数值验证模型

    Figure 2.  A problem transformation diagram for numerical validation: (a) Numerical verification model corresponding to mathematical model; (b) numerical verification model converted by reciprocity principle.

    图 3  数值仿真实验示意图 (a)自由空间验证示意图; (b)四周为理想电导体边界的验证示意图

    Figure 3.  Schematic diagram of numerical simulation experiment: (a) Schematic diagram of free space verification; (b) schematic diagram of verification of PEC boundaries around.

    图 4  重建源代价函数计算结果

    Figure 4.  The calculation results of the cost function of the rebuild source.

    图 5  初始源幅相分布图 (a) $ {Ex} $相位分布为特定函数; (b) $ {Ex} $幅度分布为特定函数

    Figure 5.  The amplitude-phase distribution of the original source: (a) The phase distribution is a special function; (b) the amplitude distribution is a special function.

    图 6  自由空间条件下重建源的幅相分布 (a)序号为5的重建$ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Phase}}^{a}\left(x, y\right) $的幅相分布; (b) 序号为8的重建$ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Phase}}^{a}\left(x, y\right) $的幅相分布; (c)序号为2的重建$ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Amplitude}}^{a}\left(x, y\right) $的幅相分布; (d)序号为8的重建$ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Amplitude}}^{a}\left(x, y\right) $的幅相分布

    Figure 6.  The amplitude-phase distribution of the reconstructed source in free space: (a) The amplitude-phase distribution of the reconstructed $ {{{\mathit{\boldsymbol{f}}}}}_{{Ex{\rm{Phase}}}}^{a}\left(x, y\right) $ with experimental number 5; (b) the amplitude-phase distribution of the reconstructed $ {{{\mathit{\boldsymbol{f}}}}}_{{Ex{\rm{Phase}}}}^{a}\left(x, y\right) $ with experimental number 8; (c) the amplitude-phase distribution of the reconstructed $ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Amplitude}}^{a}\left(x, y\right) $ with experimental number 2; (d) the amplitude-phase distribution of the reconstructed $ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Amplitude}}^{a}\left(x, y\right) $ with experimental number 8.

    图 7  四周为理想电导体条件下重建源的幅相分布 (a)序号为4的重建$ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Phase}}^{a}\left(x, y\right) $的幅相分布; (b) 序号为7的重建$ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Phase}}^{a}\left(x, y\right) $的幅相分布; (c)序号为3的重建$ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Amplitude}}^{a}\left(x, y\right) $的幅相分布; (d)序号为9的重建$ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Amplitude}}^{a}\left(x, y\right) $的幅相分布

    Figure 7.  The amplitude-phase distribution of the reconstructed source in PEC space: (a) The amplitude-phase distribution of the reconstructed $ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Phase}}^{a}\left(x, y\right) $ with experimental number 4; (b) the amplitude-phase distribution of the reconstructed $ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Phase}}^{a}\left(x, y\right) $ with experimental number 7; (c) the amplitude-phase distribution of the reconstructed $ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Amplitude}}^{a}\left(x, y\right) $ with experimental number 3; (d) the amplitude-phase distribution of the reconstructed $ {{{\mathit{\boldsymbol{f}}}}}_{{Ex}\text{Amplitude}}^{a}\left(x, y\right) $ with experimental number 9.

    表 1  数值仿真结果表

    Table 1.  Table of numerical simulation results.

    序号使用的反演源Field域FPCFFACFPPCFPACF
    1${ { {\cal{F} } }_{{field} }^{ \xi \text{, up} } }^{*}$${field}=\{ {Ex}, {Ey}, {Ez}, {Hx}, {Hy}, {Hz}\}$0.00770.06470.01890.0712
    2${field}=\{ {Ex}, {Ey}, {Ez}\}$0.00860.07840.00850.0735
    3${field}=\{ {Ex}, {Ey}\}$0.00820.07500.00850.0735
    4${ { {\cal{F} } }_{{field} }^{ \xi \text{, down} } }^{*}$${field}=\{ {Ex, }{Ey}, {Ez}, {Hx}, {Hy}, {Hz}\}$0.00810.06240.01910.0735
    5${field}=\{ {Ex}, {Ey}, Ez\}$0.00920.07030.00980.0707
    6${field}=\{ {Ex}, {Ey}\}$0.00880.06680.00980.0707
    7${ { {\cal{F} } }_{{field} }^{ \xi \text{, up} } }^{*}$, ${ { {\cal{F} } }_{{field} }^{ \xi \text{, down} } }^{*}$${field}=\{ {Ex}, {Ey}, {Ez}, {Hx}, {Hy}, {Hz}\}$0.00780.06350.01890.0713
    8${field}=\{ {Ex}, {Ey}, {Ez}\}$0.00870.07470.00900.0718
    9${field}=\{ {Ex}, {Ey}\}$0.00830.07120.00900.0718
    DownLoad: CSV
  • [1]

    Molesky S, Lin Z, Piggott A Y, Jin W, Vucković J, Rodriguez A W 2018 Nat. Photonics 12 659Google Scholar

    [2]

    Zhu Y, Ju Y, Zhang C 2019 P. I. Mech. Eng. A-J. Pow. 233 431

    [3]

    Brown T, Narendra C, Vahabzadeh Y, Caloz C, Mojabi P 2020 IEEE Trans. Antennas Propag. 68 1812Google Scholar

    [4]

    Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M, Vučković J 2015 Nat. Photonics 9 374Google Scholar

    [5]

    Wang M Y, Wang X, Guo D 2003 Comput. Methods Appl. Mech. Eng. 192 227Google Scholar

    [6]

    Lee H, Itoh T 1997 IEEE Trans. Microw. Theory Tech. 45 803Google Scholar

    [7]

    Su L, Piggott A Y, Sapra N V, Petykiewicz J A, Vuckovic J 2018 ACS Photonics 5 301Google Scholar

    [8]

    Su L, Vercruysse D, Skarda J, Sapra N V, Petykiewicz J A, Vučković J 2020 Appl. Phys. Rev. 7 011407Google Scholar

    [9]

    Callewaert F, Aydin K 2016 Novel Optical Systems Design and Optimization XIX. (San Diego: International Society for Optics and Photonics) p9948

    [10]

    Wang J, Yang X S, Wang B Z 2017 IET Microw. Antennas P. 12 385

    [11]

    Wang J, Yang X S, Ding X, Wang B Z 2018 IEEE Trans. Antennas Propag. 66 2254Google Scholar

    [12]

    Wang L, Wang G, Sidén J 2015 IEEE Trans. Microw. Theory Tech. 63 3962Google Scholar

    [13]

    Pehlivanoglu Y V 2014 Appl. Soft Comput. 24 781Google Scholar

    [14]

    Chen C T, Gu G X 2020 Adv. Sci. 7 1902607Google Scholar

    [15]

    Salucci M, Gelmini A, Oliveri G, Anselmi N, Massa A 2018 IEEE Trans. Antennas Propag. 66 5805Google Scholar

    [16]

    Wigner E P 1959 Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (New York: Academic Press)

    [17]

    王秉中, 王任 2019 时间反演电磁学 (北京: 科学出版社)

    Wang B Z, Wang R 2019 Time-Reversed Electromagnetics (Beijing: Science Press) (in Chinese)

    [18]

    Oestges C, Kim A D, Papanicolaou G, Paulraj A J 2005 IEEE Trans. Antennas Propag. 53 283Google Scholar

    [19]

    Qiu R C 2006 IEEE Trans. Wirel. Commun. 5 2685Google Scholar

    [20]

    Gong Z S, Wang B Z, Yang Y, Zhou H C, Ding S, Wang X H 2017 IEEE Photonics J. 9 6900108

    [21]

    Davy M, de R J, Joly J C, Fink M 2010 Phys. Rev. C 11 37

    [22]

    Bacot V, Labousse M, Eddi A, Fink M, Fort E 2016 Nat. Phys. 12 972Google Scholar

    [23]

    Vahabzadeh Y, Achouri K, Caloz C 2016 IEEE Trans. Antennas Propag. 64 4753Google Scholar

    [24]

    龚志双, 王秉中, 王任 2018 物理学报 67 084101Google Scholar

    Gong Z S Wang B Z, Wang R 2018 Acta Phys. Sin. 67 084101Google Scholar

    [25]

    Harrington R F 2001 Time-Harmonic Electromagnetic Fields (New York: Wiley-IEEE Press) pp106−110

  • [1] Yan Yi-Zhu, Ding Shuai, Han Xu, Wang Bing-Zhong. Channel processing-based time-reversal method for multi-target tunable focusing. Acta Physica Sinica, 2023, 72(16): 164101. doi: 10.7498/aps.72.20230547
    [2] An Teng-Yuan, Ding Xiao. A method of generating arbitrary uniform fields based on angular spectrum domain and time inversion. Acta Physica Sinica, 2023, 72(18): 180201. doi: 10.7498/aps.72.20230418
    [3] An Teng-Yuan, Ding Xiao, Wang Bing-Zhong. Time-inversion technique based correction of complex radome radiation beam distortion. Acta Physica Sinica, 2023, 72(3): 030401. doi: 10.7498/aps.72.20221767
    [4] Liu Jin-Pin, Wang Bing-Zhong, Chen Chuan-Sheng, Wang Ren. Inverse design of microwave waveguide devices based on deep physics-informed neural networks. Acta Physica Sinica, 2023, 72(8): 080201. doi: 10.7498/aps.72.20230031
    [5] Yuan Lin, Yang Xue-Song, Wang Bing-Zhong. Prediction of time reversal channel with neural network optimized by empirical knowledge based genetic algorithm. Acta Physica Sinica, 2019, 68(17): 170503. doi: 10.7498/aps.68.20190327
    [6] Zhang Hong-Bo, Zhang Xi-Ren. Coherence of digital phase conjugation for implementing time reversal in scattering media. Acta Physica Sinica, 2018, 67(5): 054201. doi: 10.7498/aps.67.20172308
    [7] Zhu Jiang, Wang Yan, Yang Tian. Secure transmission mechanism based on time reversal over wireless multipath channels. Acta Physica Sinica, 2018, 67(5): 050201. doi: 10.7498/aps.67.20172134
    [8] Gong Zhi-Shuang, Wang Bing-Zhong, Wang Ren, Zang Rui, Wang Xiao-Hua. Far-field time reversal subwavelength imaging of sources based on grating structure. Acta Physica Sinica, 2017, 66(4): 044101. doi: 10.7498/aps.66.044101
    [9] Chen Qiu-Ju, Jiang Qiu-Xi, Zeng Fang-Ling, Song Chang-Bao. Single frequency spatial power combining using sparse array based on time reversal of electromagnetic wave. Acta Physica Sinica, 2015, 64(20): 204101. doi: 10.7498/aps.64.204101
    [10] Feng Ju, Liao Cheng, Zhang Qing-Hong, Sheng Nan, Zhou Hai-Jing. A time reversal parabolic equation based localization method in evaporation duct. Acta Physica Sinica, 2014, 63(13): 134101. doi: 10.7498/aps.63.134101
    [11] Zhou Hong-Cheng, Wang Bing-Zhong, Ding Shuai, Ou Hai-Yan. Super-resolution focusing of time reversal electromagnetic waves in metal wire array medium. Acta Physica Sinica, 2013, 62(11): 114101. doi: 10.7498/aps.62.114101
    [12] Liang Mu-Sheng, Wang Bing-Zhong, Zhang Zhi-Min, Ding Shuai, Zang Rui. Subwavelength antenna array based on far-field time reversal. Acta Physica Sinica, 2013, 62(5): 058401. doi: 10.7498/aps.62.058401
    [13] Zhao De-Shuang, Yue Wen-Jun, Yu Min, Zhang Sheng-Xue. Propagation characteristics of time reversal pulsed electromagnetic waves in double negative materials. Acta Physica Sinica, 2012, 61(7): 074102. doi: 10.7498/aps.61.074102
    [14] Chen Ying-Ming, Wang Bing-Zhong, Ge Guang-Ding. Mechanism of spatial super-resolution of time-reversed microwave system. Acta Physica Sinica, 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [15] Zhang Zhi-Min, Wang Bing-Zhong, Ge Guang-Ding, Liang Mu-Sheng, Ding Shuai. Research on the focusing mechanism of one dimensional time reversal EM wave in sub-wavelength metal wire array. Acta Physica Sinica, 2012, 61(9): 098401. doi: 10.7498/aps.61.098401
    [16] Ding Shuai, Wang Bing-Zhong, Ge Guang-Ding, Wang Duo, Zhao De-Shuang. Realization of microwave wave signal time reversal based on time lens theory. Acta Physica Sinica, 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
    [17] Zhang Zhi-Min, Wang Bing-Zhong, Ge Guang-Ding. A subwavelength antenna array design for time reversal communication. Acta Physica Sinica, 2012, 61(5): 058402. doi: 10.7498/aps.61.058402
    [18] Zhang Mi, Chen Yuan-Ping, Zhang Zai-Lan, Ouyang Tao, Zhong Jian-Xin. The effect of stacked graphene flakes on the electronic transport of zigzag-edged graphene nanoribbons. Acta Physica Sinica, 2011, 60(12): 127204. doi: 10.7498/aps.60.127204
    [19] Dai Zhen-Hong, Ni Jun. Electron transport in multi-terminal quantum chain systems based on the Green’s functions. Acta Physica Sinica, 2005, 54(7): 3342-3345. doi: 10.7498/aps.54.3342
    [20] Guo Ru-Hai, Shi Hong-Yan, Sun Xiu-Dong. The calculation of strain distribution in quantum dots with Green method. Acta Physica Sinica, 2004, 53(10): 3487-3492. doi: 10.7498/aps.53.3487
Metrics
  • Abstract views:  5368
  • PDF Downloads:  93
  • Cited By: 0
Publishing process
  • Received Date:  12 October 2020
  • Accepted Date:  11 November 2020
  • Available Online:  30 March 2021
  • Published Online:  05 April 2021

/

返回文章
返回