Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principle study of tuning metal-insulator transition and magnetic properties of (SrVO3)5/(SrTiO3)1 (111) heterostructures

Fang Xiao-Nan Du Yan-Ling Wu Chen-Yu Liu Jing

Citation:

First principle study of tuning metal-insulator transition and magnetic properties of (SrVO3)5/(SrTiO3)1 (111) heterostructures

Fang Xiao-Nan, Du Yan-Ling, Wu Chen-Yu, Liu Jing
PDF
HTML
Get Citation
  • Perovskite heterostructure has a honeycomb lattice when a bilayer along the [111] direction is considered. The material usually presents a wealth of unique properties. Recently, (111)-oriented perovskite heterojunctions have received more and more attention. In this work, the first-principle calculations are employed to investigate the electronic and magnetic properties of (SrVO3)5/(SrTiO3)1 (111) heterostructure. The calculations show that the ground state of (SrVO3)5/(SrTiO3)1 (111) heterostructure is a half-metallic ferromagnet. Further study reveals the existence of different correlated-electron ground states in (SrVO3)5/(SrTiO3)1 (111) heterostructure, and they can be tuned by changing in-plane strain and interfacial cation intermixing. This system can keep half-metallic properties under difffferent in-plane strains from –4% to 2%. The half-metallic properties mainly come from V 3d electrons. The ground state of the system can evolve from a half-metal to a antiferromagnetic insulator if the in-plane compressive (tensile) strain is added up to 8% (4%). The interfacial Ti-V intermixing can destroy the original half-metallic properties, and the system exhibits a ferromagnetic insulator phase. These results demonstrate that the system has potential applications in the field of spintronics, and provide a theoretical reference for the use of (SrVO3)5/(SrTiO3)1 (111) heterostructures to explore quantum phase transitions.
      Corresponding author: Du Yan-Ling, duyanling@sdutcm.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 82174528), the Start-up Fund for Doctoral Research of Shandong Management University, China (Grant No. SDMUD201901), and the Scientific Research Start-up Project of Shandong Management University, China (Grant No. QH2020Z05).
    [1]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [2]

    Zhang X J, Chen P, Liu B G 2017 J. Mater. Chem. C 5 9898Google Scholar

    [3]

    Davis S, Huang Z, Han K, Ariando, Venkatesan T, Chandrasekhar V 2018 Phys. Rev. B 98 024504

    [4]

    Kim D H, Kim D W, Kang B S, Noh T W, Lee D R, Lee K B, Lee S J 2000 Solid State Commun. 114 473Google Scholar

    [5]

    Dai Q, Lüders U, Frésard R, Eckern U, Schwingenschlögl U 2018 Adv. Mater. Interfaces 5 1701169Google Scholar

    [6]

    Pardo V, Pickett W E 2010 Phys. Rev. B 81 245117Google Scholar

    [7]

    James A D N, Aichhorn M, Laverock J 2021 Phys. Rev. Res. 3 023149Google Scholar

    [8]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337Google Scholar

    [9]

    Xu R, Ji Y, Bouchilaoun R, Qian F, Li M, Zhang X, Tang R, Zhao R, Misra S, Wang H, Li W, Kan C, Shi D, Fan J, Yang H 2019 Ceram. Int. 45 11304Google Scholar

    [10]

    Roth J, Kuznetsova T, Miao L X, Pogrebnyakov1 A, Alem1 N, Engel-Herbert R 2021 APL Mater. 9 021114Google Scholar

    [11]

    Mitsuhashi T, Minohara M, Yukawa R, Kitamura M, Horiba K, Kobayashi M, Kumigashira H 2016 Phys. Rev. B 94 125148Google Scholar

    [12]

    Jacobs R, Booske J, Morgan D 2016 Adv. Funct. Mater. 26 5471Google Scholar

    [13]

    袁烺, 肖嘉慧, 谢颖 2017 中国科技论文 12 2826Google Scholar

    Yuan L, Xiao J H, Xie Y 2017 Chin. Sci. Paper 12 2826Google Scholar

    [14]

    Shen M L, Weng Y K, Yi Y W, Geng Q F, Yan W, Wang H Y, Yang J P, Li X 2019 J. Appl. Phys. 126 085307Google Scholar

    [15]

    Weng Y K, Zhang J J, Gao B, Dong S 2017 Phys. Rev. B 95 155117Google Scholar

    [16]

    Xiao D, Zhu W, Ran Y, Nagaosa N, Okamoto S 2011 Nat. Commun. 2 1Google Scholar

    [17]

    Okamoto S, Zhu W, Nomura Y, Arita R, Xiao D, Nagaosa N 2014 Phys. Rev. B 89 195121Google Scholar

    [18]

    Chen R, Lee S B, Balents L 2013 Phys. Rev. B 87 161119

    [19]

    Doennig D, Pickett W E, Pentcheva R 2014 Phys. Rev. B 89 121110

    [20]

    Du Y L, Wang C L, Li J C, Zhang X Z, Wang F N, Zhu Y H, Yin N, Mei L M 2015 Comput. Mater. Sci. 99 57Google Scholar

    [21]

    李永宁, 谢逸群, 王音 2021 物理学报 70 227701Google Scholar

    Li Y N, Xie Y Q, Wang Y 2021 Acta Phys. Sin. 70 227701Google Scholar

    [22]

    胡海洋, 陈吉堃, 邵飞, 吴勇, 孟康康, 李志鹏, 苗君, 徐晓光, 王嘉鸥, 姜勇 2019 物理学报 68 026701Google Scholar

    Hu H Y, Chen J K, Shao F, Wu Y, Meng K K, Li Z P, Miao J, Xu X G, Wang J O, Jiang Y 2019 Acta Phys. Sin. 68 026701Google Scholar

    [23]

    Kalabukhov A S, Boikov Y A, Serenkov I T, Sakharov V I, Popok V N, Gunnarsson R, Borjesson J, Ljustina N, Olsson E, Winkler D, Claeson T 2009 Phys. Rev. Lett. 103 146101Google Scholar

    [24]

    Qiao L, LDroubay T C, Shutthanandan V, Zhu Z, Sushko P V, Chambers S A 2010 J. Phys. Condens. Matter 22 312201Google Scholar

    [25]

    Li J, Yin D, Li Q, Sun R 2017 Phys. Chem. Chem. Phys. 19 6945Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [29]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [30]

    Du Y L, Wang C L, Li J C, Xu P P, Zhang X H, Liu J, Su W B, Mei L M 2014 Chin. Phys. B 23 087302Google Scholar

    [31]

    Park S Y, Kumar A, Rabe K M 2017 Phys. Rev. Lett. 118 087602Google Scholar

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [33]

    Shein I R, Kozhevnikov V L, Ivanovskii A L 2008 Solid State Sci. 10 217Google Scholar

    [34]

    Chandra H K, Guo G Y 2017 Phys. Rev. B 95 134448

    [35]

    Shein I R, Ivanovskii A L 2007 Phys. Lett. A 371 155Google Scholar

    [36]

    Musa Saad H E M 2021 Bull. Mater. Sci. 44 1Google Scholar

    [37]

    Beltrán J I, Muñoz M C 2017 Phys. Rev. B 95 245120Google Scholar

    [38]

    Du Y L, Bu H X, Ji C J, Zhang X M, Li C L, Fang X N 2019 Phys. Chem. Chem. Phys. 21 18170Google Scholar

    [39]

    De Luca G M, Di Capua R, Di Gennaro E, Sambri A, Miletto Granozio F, Ghiringhelli G, Betto D, Piamonteze C, Brookes N B, Salluzzo M 2018 Phys. Rev. B 98 115143Google Scholar

    [40]

    Ye H S, Zhu Y J, Bai D M, Zhang J T, Wu X S, Wang J L 2021 Phys. Rev. B 103 035423Google Scholar

    [41]

    Yoshida T, Kobayashi M, Yoshimatsu K, Kumigashira H, Fujimori A 2016 J. Electron. Spectrosc. 208 11Google Scholar

    [42]

    Ma H J H, Zhou J, Yang M, Liu Y, Zeng S W, Zhou W X, Zhang L C, Venkatesan T, FengY P, Ariando A 2017 Phys. Rev. B 95 155314Google Scholar

    [43]

    Liu Z T Y, Podraza N J, Khare S V, Sarin P 2018 Comput. Mater. Sci. 144 139Google Scholar

    [44]

    Oshima M 2014 Appl. Sci. Converg. Technol. 23 317Google Scholar

    [45]

    Wang J, Gauquelin N, Huijben M, Verbeeck J, Rijnders G, Koster G 2020 Appl. Phys. Lett. 117 133105Google Scholar

  • 图 1  (a), (b) (SVO)5/(STO)1 (111)异质结的(a)俯视图和(b)侧视图; (c) 沿c轴方向, 相邻原子层之间的距离; (d) SrO3原子层中锶离子相对于氧离子在c轴方向的位移, ΔZ = Z(Sri) – Z(Oi), 其中Z(Sri)是第i层SrO3中锶离子的纵坐标值, Z(Oi)是第i层SrO3中氧离子的纵坐标平均值

    Figure 1.  (a) Top view of the (SVO)5/(STO)1(111) heterostructure with in-plane 1 × 1 unit cells; (b) side view of (SVO)5/(STO)1(111) heterostructure; (c) the interplanar distance between consecutive planes; (d) the displacement of Sr cation relative to O ions in each SrO3 layers, ΔZ = Z(Sri) – Z(Oi), where Z(Sri) is the value of the Sr cation and Z(Oi) is the average value of the O atoms in a given SrO3 layer i along the c axis.

    图 2  (a) (SVO)5/(STO)1(111)异质结费米面附近的能带结构, 高对称点如图中第一布里渊区所示; (b) 费米面附近的总态密度图, 费米能位于0 eV处(用黑色虚线表示); (c) (SVO)5/(STO)1(111)各原子层在费米面附近的态密度图, 图中自旋向上的电子态密度由浅灰色区域表示, 自旋向下的电子态密度由深灰色区域表示, 黑色虚线表示费米能级; (d) 费米面附近([EF –1.5 eV, EF])的电荷密度图, 图中三维电荷密度的isosurface值取0.015 e/bohr3

    Figure 2.  (a) Band structures of (SVO)5/(STO)1(111) along with the special points in the Brillouin zone. The inset shows the Brillouin zone and the special points. (b) Total density of states (TDOS) near the Fermi level. The Fermi level is located at 0 eV (dotted black line). (c) Layer-resolved partial density of states (PDOS) of (SVO)5/(STO)1(111). (d) Projections of the carrier density (yellow contour) of (SVO)5/(STO)1(111) heterostructure. The isosurface values are chosen as 0.015 e/bohr3. The carrier densities are calculated from contributions within an energy window of [EF –1.5 eV, EF].

    图 3  (a) V, Ti, Sr, O原子的态密度图; (b) V原子3 d轨道的分波态密度图, 其中, V1, V2, V3与图1(b)中标注一致; (c) O原子2p轨道的分波态密度图; (d) Ti原子3d轨道的分波态密度图

    Figure 3.  (a) Densities of states near the Fermi level of V, Ti, Sr and O. (b) Partial densities of states (PDOS) of V 3d orbitals. V1, V2, V3 are the same as those in Fig. 1(b). (c) PDOS of the O 2p orbitals. (d) PDOS of the Ti 3d orbitals.

    图 4  (a) 面内压缩应变为8%和面内拉伸应变为4%时能量最低的反铁磁序. 红色小球代表自旋向上的V原子, 绿色小球代表自旋向下的V原子, 蓝色小球代表Ti原子. (b) 在不同的面内应变条件下, 沿c轴方向各原子层之间的距离

    Figure 4.  (a) The most stable AFM structure of (SVO)5/(STO)1(111) under the in-plane compressive (tensile) strain of 8% (4%). The red and green balls represent the spin-up and spin-down V atoms, respectively. Blue balls represent Ti atoms. (b) The interplanar distance along the c axis between consecutive planes under different in-plane strains.

    图 5  (SVO)5/(STO)1(111)异质结在不同面内应变下费米面附近的能带结构和总态密度图 (a) η = –8%; (b) η = –7%; (c) η = –4%; (d) η = –2%; (e) η = 2%; (f) η = 4%. 高对称点如图2(a)中第一布里渊区所示, 对应面内应变下的总态密度图显示在能带图的下面. 黑色实线和红色实线分别代表自旋向上和自旋向下, 费米能级用虚线表示

    Figure 5.  Band structures and total density of states near the Fermi level of (SVO)5/(STO)1(111) under different in-plane strains: (a) η = –8%; (b) η = –7%; (c) η = –4%; (d) η = –2%; (e) η = 2%; (f) η = 4%. The Brillouin zone is the same as that in Fig. 2(a). Black and red lines are spin-up and spin-down states, respectively. The Fermi level is located at 0 eV (dotted black line).

    图 6  不同面内应变下(SVO)5/(STO)1(111)异质结中各原子的态密度图 (a) η = –8%; (b) η = –7%; (c) η = –4%; (d) η = –2%; (e) η = 2%; (f) η = 4%. 不同颜色的实线代表不同原子的态密度图. 态密度图中上部为上自旋态密度, 下部为下自旋态密度, 费米能级用黑色虚线表示

    Figure 6.  DOS near the Fermi level of the atoms in (SVO)5/(STO)1(111) under different in-plane strains: (a) η = –8%; (b) η = –7%; (c) η = –4%; (d) η = –2%; (e) η = 2%; (f) η = 4%. Different orbitals are marked by different colored lines. The Fermi level is indicated by the dashed line.

    图 7  不同面内应变下铁磁半金属(SVO)5/(STO)1(111)异质结中费米面附近([EF –1.5 eV, EF])的电荷密度图和各V原子的磁矩 (a) η = –4%; (b) η = –2%; (c) η = 0%; (d) η = 2%. 图中三维电荷密度的isosurface值取 0.015 e/bohr3

    Figure 7.  Projections of the carrier density (yellow contour) and magnetic moments of V atoms of (SVO)5/(STO)1(111) heterostructure under different in-plane strains: (a) η = –4%; (b) η = –2%; (c) η = 0%; (d) η = 2%. The atoms are not shown. The isosurface values are chosen as 0.015 e/bohr3. The carrier densities are calculated from contributions within an energy window of [EF –1.5 eV, EF]

    图 8  不同面内应变下(SVO)5/(STO)1(111)异质结中V 3d轨道的态密度图 (a) η = –8%; (b) η = –7%; (c) η = –4%; (d) η = –2%; (e) η = 2%; (f) η = 4%. 不同颜色的实线代表不同轨道; 态密度图中上部为上自旋态密度, 下部为下自旋态密度, 费米能级用虚线表示

    Figure 8.  Projected density of states of V 3d near the Fermi level of (SVO)5/(STO)1(111) under different in-plane strains: (a) η = –8%; (b) η = –7%; (c) η = –4%; (d) η = –2%; (e) η = 2%; (f) η = 4%. Different orbitals are marked by different colored lines. The Fermi level is indicated by the dashed line.

    图 9  (a) 界面Ti-V扩散掺杂模型Ⅰ的(SVO)5/(STO)1(111)侧视图(图中只显示Ti和V原子); (b) 模型Ⅰ费米面附近的总态密度, 费米能位于0 eV处(用黑色虚线表示); (c) 模型Ⅰ各原子的态密度图; (d) 界面Ti-V扩散掺杂模型Ⅱ的(SVO)5/(STO)1 (111)侧视图(图中只显示Ti和V原子); (e) 模型Ⅱ费米面附近的总态密度, 费米能位于0 eV处(用黑色虚线表示); (f) 模型Ⅱ各原子的态密度图, 不同颜色的实线代表不同原子的态密度图. 态密度图中上部为上自旋态密度, 下部为下自旋态密度, 费米能级用虚线表示

    Figure 9.  (a) Side view of (SVO)5/(STO)1(111) heterostructure Ⅰ with interfacial Ti-V intermixing; (b) total density of states of heterostructure Ⅰ near the Fermi level; (c) DOS of atoms in heterostructure Ⅰ near the Fermi level; (d) side view of (SVO)5/(STO)1 (111) heterostructure Ⅱ with interfacial Ti-V intermixing; (e) total density of states of heterostructure Ⅱ near the Fermi level; (f) DOS of atoms in heterostructure Ⅱ near the Fermi level. Different orbitals are marked by different colored lines. The Fermi level is indicated by the dashed line.

  • [1]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [2]

    Zhang X J, Chen P, Liu B G 2017 J. Mater. Chem. C 5 9898Google Scholar

    [3]

    Davis S, Huang Z, Han K, Ariando, Venkatesan T, Chandrasekhar V 2018 Phys. Rev. B 98 024504

    [4]

    Kim D H, Kim D W, Kang B S, Noh T W, Lee D R, Lee K B, Lee S J 2000 Solid State Commun. 114 473Google Scholar

    [5]

    Dai Q, Lüders U, Frésard R, Eckern U, Schwingenschlögl U 2018 Adv. Mater. Interfaces 5 1701169Google Scholar

    [6]

    Pardo V, Pickett W E 2010 Phys. Rev. B 81 245117Google Scholar

    [7]

    James A D N, Aichhorn M, Laverock J 2021 Phys. Rev. Res. 3 023149Google Scholar

    [8]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337Google Scholar

    [9]

    Xu R, Ji Y, Bouchilaoun R, Qian F, Li M, Zhang X, Tang R, Zhao R, Misra S, Wang H, Li W, Kan C, Shi D, Fan J, Yang H 2019 Ceram. Int. 45 11304Google Scholar

    [10]

    Roth J, Kuznetsova T, Miao L X, Pogrebnyakov1 A, Alem1 N, Engel-Herbert R 2021 APL Mater. 9 021114Google Scholar

    [11]

    Mitsuhashi T, Minohara M, Yukawa R, Kitamura M, Horiba K, Kobayashi M, Kumigashira H 2016 Phys. Rev. B 94 125148Google Scholar

    [12]

    Jacobs R, Booske J, Morgan D 2016 Adv. Funct. Mater. 26 5471Google Scholar

    [13]

    袁烺, 肖嘉慧, 谢颖 2017 中国科技论文 12 2826Google Scholar

    Yuan L, Xiao J H, Xie Y 2017 Chin. Sci. Paper 12 2826Google Scholar

    [14]

    Shen M L, Weng Y K, Yi Y W, Geng Q F, Yan W, Wang H Y, Yang J P, Li X 2019 J. Appl. Phys. 126 085307Google Scholar

    [15]

    Weng Y K, Zhang J J, Gao B, Dong S 2017 Phys. Rev. B 95 155117Google Scholar

    [16]

    Xiao D, Zhu W, Ran Y, Nagaosa N, Okamoto S 2011 Nat. Commun. 2 1Google Scholar

    [17]

    Okamoto S, Zhu W, Nomura Y, Arita R, Xiao D, Nagaosa N 2014 Phys. Rev. B 89 195121Google Scholar

    [18]

    Chen R, Lee S B, Balents L 2013 Phys. Rev. B 87 161119

    [19]

    Doennig D, Pickett W E, Pentcheva R 2014 Phys. Rev. B 89 121110

    [20]

    Du Y L, Wang C L, Li J C, Zhang X Z, Wang F N, Zhu Y H, Yin N, Mei L M 2015 Comput. Mater. Sci. 99 57Google Scholar

    [21]

    李永宁, 谢逸群, 王音 2021 物理学报 70 227701Google Scholar

    Li Y N, Xie Y Q, Wang Y 2021 Acta Phys. Sin. 70 227701Google Scholar

    [22]

    胡海洋, 陈吉堃, 邵飞, 吴勇, 孟康康, 李志鹏, 苗君, 徐晓光, 王嘉鸥, 姜勇 2019 物理学报 68 026701Google Scholar

    Hu H Y, Chen J K, Shao F, Wu Y, Meng K K, Li Z P, Miao J, Xu X G, Wang J O, Jiang Y 2019 Acta Phys. Sin. 68 026701Google Scholar

    [23]

    Kalabukhov A S, Boikov Y A, Serenkov I T, Sakharov V I, Popok V N, Gunnarsson R, Borjesson J, Ljustina N, Olsson E, Winkler D, Claeson T 2009 Phys. Rev. Lett. 103 146101Google Scholar

    [24]

    Qiao L, LDroubay T C, Shutthanandan V, Zhu Z, Sushko P V, Chambers S A 2010 J. Phys. Condens. Matter 22 312201Google Scholar

    [25]

    Li J, Yin D, Li Q, Sun R 2017 Phys. Chem. Chem. Phys. 19 6945Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [29]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [30]

    Du Y L, Wang C L, Li J C, Xu P P, Zhang X H, Liu J, Su W B, Mei L M 2014 Chin. Phys. B 23 087302Google Scholar

    [31]

    Park S Y, Kumar A, Rabe K M 2017 Phys. Rev. Lett. 118 087602Google Scholar

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [33]

    Shein I R, Kozhevnikov V L, Ivanovskii A L 2008 Solid State Sci. 10 217Google Scholar

    [34]

    Chandra H K, Guo G Y 2017 Phys. Rev. B 95 134448

    [35]

    Shein I R, Ivanovskii A L 2007 Phys. Lett. A 371 155Google Scholar

    [36]

    Musa Saad H E M 2021 Bull. Mater. Sci. 44 1Google Scholar

    [37]

    Beltrán J I, Muñoz M C 2017 Phys. Rev. B 95 245120Google Scholar

    [38]

    Du Y L, Bu H X, Ji C J, Zhang X M, Li C L, Fang X N 2019 Phys. Chem. Chem. Phys. 21 18170Google Scholar

    [39]

    De Luca G M, Di Capua R, Di Gennaro E, Sambri A, Miletto Granozio F, Ghiringhelli G, Betto D, Piamonteze C, Brookes N B, Salluzzo M 2018 Phys. Rev. B 98 115143Google Scholar

    [40]

    Ye H S, Zhu Y J, Bai D M, Zhang J T, Wu X S, Wang J L 2021 Phys. Rev. B 103 035423Google Scholar

    [41]

    Yoshida T, Kobayashi M, Yoshimatsu K, Kumigashira H, Fujimori A 2016 J. Electron. Spectrosc. 208 11Google Scholar

    [42]

    Ma H J H, Zhou J, Yang M, Liu Y, Zeng S W, Zhou W X, Zhang L C, Venkatesan T, FengY P, Ariando A 2017 Phys. Rev. B 95 155314Google Scholar

    [43]

    Liu Z T Y, Podraza N J, Khare S V, Sarin P 2018 Comput. Mater. Sci. 144 139Google Scholar

    [44]

    Oshima M 2014 Appl. Sci. Converg. Technol. 23 317Google Scholar

    [45]

    Wang J, Gauquelin N, Huijben M, Verbeeck J, Rijnders G, Koster G 2020 Appl. Phys. Lett. 117 133105Google Scholar

  • [1] Jiang Zhou, Jiang Xue, Zhao Ji-Jun. Electronic properties of two-dimensional kagome lattice based on transition metal phthalocyanine heterojunctions. Acta Physica Sinica, 2023, 72(24): 247502. doi: 10.7498/aps.72.20230921
    [2] Ding Jun, Wen Li-Wei, Li Rui-Xue, Zhang Ying. Control of electric properties of silicene heterostructure by reversal of ferroelectric polarization. Acta Physica Sinica, 2022, 71(17): 177303. doi: 10.7498/aps.71.20220815
    [3] Deng Lin-Mei, Si Jun-Shan, Wu Xu-Cai, Zhang Wei-Bing. Study of transition metal dichalcogenides/chromium trihalides van der Waals heterostructure by band unfolding method. Acta Physica Sinica, 2022, 71(14): 147101. doi: 10.7498/aps.71.20220326
    [4] Fang Xiao-Nan, Wei Qin, Sui Na-Na, Kong Zhi-Yong, Liu Jing, Du Yan-Ling. Spacer-layer-tunable ferromagnetic half-metal-ferromagnetic insulator transition in SrVO3/SrTiO3 superlattice. Acta Physica Sinica, 2022, 71(23): 237301. doi: 10.7498/aps.71.20221765
    [5] Li Yun, Lu Wen-Jian. Tuning metal-insulator transition in δ-doped La:SrTiO3 superlattice by varying doping dimensionality and concentration. Acta Physica Sinica, 2021, 70(22): 227102. doi: 10.7498/aps.70.20210830
    [6] Long Hui, Hu Jian-Wei, Wu Fu-Gen, Dong Hua-Feng. Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber. Acta Physica Sinica, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [7] Ma Hao-Hao, Zhang Xian-Bin, Wei Xu-Yan, Cao Jia-Meng. Theoretical study on Schottky regulation of WSe2/graphene heterostructure doped with nonmetallic elements. Acta Physica Sinica, 2020, 69(11): 117101. doi: 10.7498/aps.69.20200080
    [8] Jiao Yuan-Yuan, Sun Jian-Ping, Prashant Shahi, Liu Zhe-Hong, Wang Bo-Sen, Long You-Wen, Cheng Jin-Guang. Effect of Pb doping on metallic state of cubic pyrochlore Cd2Ru2O7. Acta Physica Sinica, 2018, 67(12): 127402. doi: 10.7498/aps.67.20180343
    [9] Wang Ze-Lin, Zhang Zhen-Hua, Zhao Zhe, Shao Rui-Wen, Sui Man-Ling. Mechanism of electrically driven metal-insulator phase transition in vanadium dioxide nanowires. Acta Physica Sinica, 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [10] Wen Jia-Le, Xu Zhi-Cheng, Gu Yu, Zheng Dong-Qin, Zhong Wei-Rong. Thermal rectification of heterojunction nanotubes. Acta Physica Sinica, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [11] Kang Hai-Yan, Hu Hui-Yong, Wang Bin, Xuan Rong-Xi, Song Jian-Jun, Zhao Chen-Dong, Xu Xiao-Cang. Analytic models for solid state plasma of Si/Ge/Si heterogeneous and lateral SPiN diode. Acta Physica Sinica, 2015, 64(23): 238501. doi: 10.7498/aps.64.238501
    [12] Zhang Wei-Ying, Wu Xiao-Peng, Sun Li-Jie, Lin Bi-Xia, Fu Zhu-Xi. Study on the photovoltaic conversion of ZnO/Si heterojunction. Acta Physica Sinica, 2008, 57(7): 4471-4475. doi: 10.7498/aps.57.4471
    [13] Wu Kai-Shun, Long Xing-Teng, Dong Jian-Wen, Chen Di-Hu, Wang He-Zhou. Phase properties of photonic crystal heterostructure and its applications. Acta Physica Sinica, 2008, 57(10): 6381-6385. doi: 10.7498/aps.57.6381
    [14] Guan Chun-Ying, Yuan Li-Bo. Analysis of band gap in honeycomb photonic crystal heterostructure. Acta Physica Sinica, 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [15] Wang Kun, Yao Shu-De, Hou Li-Na, Ding Zhi-Bo, Yuan Hong-Tao, Du Xiao-Long, Xue Qi-Kun. Depth-dependent elastic strain in ZnO/Zn0.9Mg0.1O/ZnO heterostructure studied by Rutherford backscattering/channeling. Acta Physica Sinica, 2006, 55(6): 2892-2896. doi: 10.7498/aps.55.2892
    [16] Liu Jiang-Tao, Zhou Yun-Song, Wang Fu-He, Gu Ben-Yuan. Guide modes at interface of photonic crystal heterostructures composed of different lattices. Acta Physica Sinica, 2004, 53(6): 1845-1849. doi: 10.7498/aps.53.1845
    [17] Liu Hong, Chen Jiang-Wei. The structure and electronic properties of carbon nanotube heterojunction. Acta Physica Sinica, 2003, 52(3): 664-667. doi: 10.7498/aps.52.664
    [18] FENG WEI, CAO MENG, WEI WEI, WU HONG-CAI, WAN MEI-XIANG, KATSUMI YOSHINO. PROPERTIES OF CONDUCTING POLYMER DONOR-ACCEPTOR COMPOSITE FILMS AND PHOTOVOLTAIC CHARACTERISTICS OF JUNCTION DEVICES. Acta Physica Sinica, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
    [19] LI GUO-HUI, ZHOU SHI-PING, XU DE-MING. RESEARCH ON THE DYNAMICAL BEHAVIORS OF GaAs/AlGaAs HETEROSTRUCTURES. Acta Physica Sinica, 2001, 50(8): 1567-1573. doi: 10.7498/aps.50.1567
    [20] LI SHU-PING, WANG REN-ZHI, ZHENG YONG-MEI, CAI SHU-HUI, HE GUO-MIN. APPLLICATIONS OF AVERAGE-BOND-ENERGY METHOD IN STRAINED-LAYER HETEROJUNCTION BAND OFFSET. Acta Physica Sinica, 2000, 49(8): 1441-1446. doi: 10.7498/aps.49.1441
Metrics
  • Abstract views:  4463
  • PDF Downloads:  79
  • Cited By: 0
Publishing process
  • Received Date:  06 April 2022
  • Accepted Date:  10 May 2022
  • Available Online:  13 September 2022
  • Published Online:  20 September 2022

/

返回文章
返回