Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spacer-layer-tunable ferromagnetic half-metal-ferromagnetic insulator transition in SrVO3/SrTiO3 superlattice

Fang Xiao-Nan Wei Qin Sui Na-Na Kong Zhi-Yong Liu Jing Du Yan-Ling

Citation:

Spacer-layer-tunable ferromagnetic half-metal-ferromagnetic insulator transition in SrVO3/SrTiO3 superlattice

Fang Xiao-Nan, Wei Qin, Sui Na-Na, Kong Zhi-Yong, Liu Jing, Du Yan-Ling
PDF
HTML
Get Citation
  • In this work, the first-principle calculations based on density functional theory (DFT) are employed to investigate the electronic and magnetic properties of SrVO3/SrTiO3(111) superlattices. The studies show that the transition from ferromagnetic half-metal to ferromagnetic insulator can be achieved by adjusting the thickness of the spacer-layer SrTiO3. The interlayer coupling between the SrVO3 sublayers can occur across two unit-cell (uc) distance of SrTiO3, and the superlattice is ferromagnetic half-metal. When the SrTiO3 sublayers are 3uc, a small band gap (about 0.28 eV) appears in the superlattice. When the SrTiO3 sublayers are more than 3uc, the superlattice has a large band gap and exhibits ferromagnetic insulating state. Further studies show that the Ti-V mixed defects play an important role in realizing the transition of metal-insulator. Compared with the ideal interface, the Ti-V mixed interface can inhibit the interlayer coupling and induce the transition of ferromagnetic half-metal to ferromagnetic insulator. These results provide a theoretical basis for the transition of ferromagnetic half-metal to ferromagnetic insulator by adjusting the number of SrTiO3 layers in SrVO3/SrTiO3(111) superlattices.
      Corresponding author: Du Yan-Ling, duyanling@sdutcm.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 82174528), the Start-up Fund for Doctoral Research of Shandong Management University, China (Grant No. SDMUD201901), and the Scientific Research Start-up Project of Shandong Management University, China (Grant No. QH2020Z05).
    [1]

    Moyer J A, Eaton C, Engel-Herbert R 2013 Adv. Mater. 25 3578Google Scholar

    [2]

    Zhang L, Zhou Y, Guo L, Zhao W, Barnes A, Zhang H-T, Eaton C, Zheng Y, Brahlek M, Haneef H F, Podraza N J, Chan M H W, Gopalan V, Rabe K M, Engel-Herbert R 2016 Nat. Mater. 15 204Google Scholar

    [3]

    Kim D H, Kim D W, Kang B S, Noh T W, Lee D R, Lee K B, Lee S J 2000 Solid State Commun. 114 473Google Scholar

    [4]

    Wang J, Gauquelin N, Huijben M, Verbeeck J, Rijnders G, Koster G 2020 Appl. Phys. Lett. 117 133105Google Scholar

    [5]

    Wang G, Wang Z, Meng M, Saghayezhian M, Chen L, Chen C, Guo H, Zhu Y, Plummer W, Zhang J 2019 Phys. Rev. B 100 155114Google Scholar

    [6]

    Pardo V, Pickett W E 2010 Phys. Rev. B 81 245117Google Scholar

    [7]

    Sohn C, Skoropata E, Choi Y, Gao X, Rastogi A, Huon A, McGuire M A, Nuckols L, Zhang Y, Freeland J W, Haskel D, Lee H N 2019 Adv. Mater. 31 1805389Google Scholar

    [8]

    Meng D, Guo H, Cui Z, Ma C, Zhao J, Lu J, Xu H, Wang Z, Hu X, Fu Z, Peng R, Guo J, Zhai X, Brown G J, Knize R, Lu Y 2018 PNAS 115 2873Google Scholar

    [9]

    Okamoto S, Zhu W, Nomura Y, Arita R, Xiao D, Nagaosa N 2014 Phys. Rev. B 89 195121Google Scholar

    [10]

    Beltrán J I, Muñoz M C 2017 Phys. Rev. B 95 245120Google Scholar

    [11]

    Verissimo-Alves M, Garcia-Fernandez P, Bilc D L, Ghosez P, Junquera J 2012 Phys. Rev. Lett. 108 107003Google Scholar

    [12]

    Cossu F, Jilili J, Schwingenschlögl U 2014 Adv. Mater. Interfaces 1 1400057Google Scholar

    [13]

    Song G, Zhang W 2014 Sci. Rep. UK 4 4564Google Scholar

    [14]

    Cossu F, Kim H S, Sanyal B, Di Marco I 2022 NPJ Comp. Mater. 8 1Google Scholar

    [15]

    Yao X, Yi H T, Jain D, Han M G, Oh S 2021 Nano Lett. 21 5914Google Scholar

    [16]

    Cen C, Thiel S, Hammerl G, Schneider C W, Andersen K E, Hellberg C S, Mannhart J, Levy J 2008 Nat. Mater. 7 298Google Scholar

    [17]

    李云, 鲁文建 2021 物理学报 70 218503Google Scholar

    Li Y, Lu W J 2021 Acta Phys. Sin. 70 218503Google Scholar

    [18]

    Li J, Yin D, Li Q, Sun R, Huang S, Meng F 2017 Phys. Chem. Chem. Phys. 19 6945Google Scholar

    [19]

    Kalabukhov A S, Boikov Y A, Serenkov I T, Sakharov V I, Popok V N, Gunnarsson R, Borjesson J, Ljustina N, Olsson E, Winkler D, Claeson T 2009 Phys. Rev. Lett. 103 146101Google Scholar

    [20]

    Kramer B, MacKinnon A, 1993 Rep. Prog. Phys. 56 1469Google Scholar

    [21]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [22]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [25]

    Du Y L, Wang C L, Li J C, Xu P P, Zhang X H, Liu J, Su W B, Mei L M 2014 Chin. Phys. B 23 087302Google Scholar

    [26]

    Park S Y, Kumar A, Rabe K M 2017 Phys. Rev. Lett. 118 087602Google Scholar

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [28]

    Kuganathan N, Baiutti F, Morata A, Tarancon A, Chroneos A 2021 AIP Adv. 11 075029Google Scholar

    [29]

    Musa Saad HE M 2021 B. Mater. Sci. 44 1Google Scholar

    [30]

    Du Y L, Bu H X, Ji C J, Zhang X M, Li C L, Fang X N 2019 Phys. Chem. Chem. Phys. 21 18170Google Scholar

    [31]

    Xiong L, Yi L, Gao G Y 2014 J. Magn. Magn. Mater. 349 69Google Scholar

    [32]

    贾倩, 杜颖妍, 杜成旭, 陈婷, 刘焦, 于越, 张恒源, 刘明, 毋志民 2019 功能材料 50 12183Google Scholar

    Jia Q, Du Y Y, Du C X, Chen T, Liu J, Yu Y, Zhang H Y, Liu M, Wu Z M 2019 J. Funct. Mater. 50 12183Google Scholar

    [33]

    Ohtomo A, Muller D A, Grazul J L, Hwang H Y 2002 Nature 419 378Google Scholar

    [34]

    Biscaras J, Bergeal N, Kushwaha A, Wolf T, Rastogi A, Budhani R C, Lesueur J 2010 Nat. Commun. 1 1Google Scholar

    [35]

    Xu Q F, Wu D, Li A D 2013 Phys. Lett. A 377 577Google Scholar

    [36]

    范潆方 2019 硕士学位论文 (南京: 南京邮电大学)

    Fan Y F 2019 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese)

    [37]

    Liu Z T Y, Podraza N J, Khare S V, Sarin P 2018 Comput. Mater. Sci. 144 139Google Scholar

  • 图 1  (a) 超晶格(SVO)m/(STO)n(111) (4 ≤ m ≤ 6; 1 ≤ n ≤ 6)的模型之一(SVO)4/(STO)5 (111) 超晶格的顶视图; (b) 超晶格(SVO)4/(STO)5(111) 的侧视图; (c) A-AFM示意图; (d) C-AFM示意图; (e) G-AFM示意图; (f) FM示意图; (g) 各模型基态能量的对比图, 其中铁磁态能量设为零; 图(c)—(f)中, 只显示了Ti和V原子, 其中蓝色小球代表Ti原子, 紫色小球代表自旋向上的V原子, 绿色小球代表自旋向下的V原子

    Figure 1.  (a) Top view of the (SVO)4/(STO)5(111) superlattice, which is one of the (SVO)m/(STO)n (111) (4 ≤ m ≤ 6; 1 ≤ n ≤ 6) superlattices; (b) side view of (SVO)4/(STO)5(111) superlattice; (c) schematic diagram of A-AFM; (d) schematic diagram of C-AFM; (e) schematic diagram of G-AFM; (f) schematic diagram of FM; (g) energy differences between different magnetic orders of different superlattices. In the figure, the energy of FM states are set to zero. In figures (c)–(f) , only the Ti and V atoms are shown, the blue balls represent the Ti atoms, the purple balls represent the spin-up V atoms, and the green balls represent the spin-down V atoms.

    图 2  沿c轴方向, 各超晶格相邻原子层间距离对比图 (a) (SVO)4/(STO)2 和(SVO)4/(STO)5; (b) (SVO)5/(STO)1和 (SVO)5/(STO)4; (c) (SVO)6/(STO)3和 (SVO)6/(STO)6

    Figure 2.  The interplanar distance between consecutive planes of different superlattices along the c axis: (a) (SVO)4/(STO)2 and (SVO)4/(STO)5; (b) (SVO)5/(STO)1 and (SVO)5/(STO)4; (c) (SVO)6/(STO)3 and (SVO)6/(STO)6.

    图 3  超晶格在费米能级附近的能带结构和总态密度的对比图 (a) (SVO)5/(STO)1 (111); (b) (SVO)4/(STO)2 (111); (c) (SVO)6/(STO)3 (111); (d) (SVO)5/(STO)4 (111); (e) (SVO)4/(STO)5 (111); (f) (SVO)6/(STO)6 (111). 高对称点如图中第一布里渊区所示; 对应的总态密度图显示在能带图下侧, 黑色实线和红色实线分别代表自旋向上和自旋向下, 费米能级用虚线表示

    Figure 3.  Comparison of band structures and total state densities near the Fermi level of different superlattices: (a) (SVO)5/(STO)1 (111); (b) (SVO)4/(STO)2 (111); (c) (SVO)6/(STO)3 (111); (d) (SVO)5/(STO)4 (111); (e) (SVO)4/(STO)5 (111); (f) (SVO)6/(STO)6 (111). The inset shows the Brillouin zone and the special points. Black and red lines are spin-up and spin-down states,respectively; the Fermi level is located at 0 eV (dotted black line).

    图 4  (a), (b) (SVO)5/(STO)1 (111)和(SVO)4/(STO)2 (111)超晶格各原子层在费米能级附近的态密度图. 图中自旋向上的电子态密度由浅灰色区域表示, 自旋向下的电子态密度由深灰色区域表示; 黑色虚线表示费米能级

    Figure 4.  (a), (b) Layer-resolved partial DOS of (SVO)5/(STO)1(111) and (SVO)4/(STO)2 (111) superlattices. Light gray and dark gray areas are spin-up and spin-down states, respectively. The Fermi level is located at 0 eV (dotted black line).

    图 5  (SVO)5/(STO)1 (111) (a)和 (SVO)4/(STO)2 (111) (b)超晶格中 Ti, Sr, O 原子的态密度图; (SVO)5/(STO)1 (111) (c)和 (SVO)4/(STO)2 (111) (d)超晶格中V 原子 3d 轨道的分波态密度图, 黑色虚线表示费米能级

    Figure 5.  Densities of states near the Fermi level of Ti, Sr and O in (SVO)5/(STO)1 (111) (a) and (SVO)4/(STO)2 (111) (b) superlattices; the partial density of states of V 3d orbitals of (SVO)5/(STO)1 (111) (c) and (SVO)4/(STO)2 (111) (d) superlattices. The Fermi level is located at 0 eV (dotted black line).

    图 6  各超晶格V 原子 3d 轨道的分波态密度图 (a) (SVO)5/(STO)1 (111); (b) (SVO)4/(STO)2 (111); (c) (SVO)6/(STO)3 (111); (d) (SVO)5/(STO)4 (111); (e) (SVO)4/(STO)5 (111); (f) (SVO)6/(STO)6 (111). 其中, 图(b)中V原子的位置与图1(b)中V原子位置一致, 其余模型中V原子的排列与图1(b)中V原子排列相似, 从下往上V原子序号递增. 图中黑色虚线表示费米能级

    Figure 6.  The partial density of states of V 3d orbitals of different superlattices: (a) (SVO)5/(STO)1 (111); (b) (SVO)4/(STO)2 (111); (c) (SVO)6/(STO)3 (111); (d) (SVO)5/(STO)4 (111); (e) (SVO)4/(STO)5 (111); (f) (SVO)6/(STO)6 (111). Among them, the position of the V atoms in figure (b) are consistent with the position of the V atoms in Fig. 1(b). The arrangement of V atoms in the rest of the models is similar to the arrangement of V atoms in Fig. 1(b). The atomic numbers get bigger and bigger from the bottom up. The Fermi level is located at 0 eV (dotted black line).

    图 7  (a) 含有Ti-V混合缺陷界面的(SVO)m/(ST0.5V0.5O)1/(STO)n-1(111) (4 ≤ m ≤ 6; 1 ≤ n ≤ 6)超晶格之一 (SVO)5/(ST0.5V0.5O)1/(STO)3(111) 的俯视图; (b) (SVO)5/(ST0.5V0.5O)1/(STO)3(111) 超晶格的侧视图; (c)—(h) 各含有Ti-V混合缺陷界面的超晶格在费米能级附近的总态密度的对比图, 其中, (c) (SVO)5/(ST0.5V0.5O)1(111); (d) (SVO)4/(ST0.5V0.5O)1/(STO)1(111); (e) (SVO)6/(ST0.5V0.5O)1/(STO)2(111); (f) (SVO)5/(ST0.5V0.5O)1/(STO)3(111); (g) (SVO)4/(ST0.5V0.5O)1/(STO)4(111); (h) (SVO)6/(ST0.5V0.5O)1/(STO)5(111). 黑色实线和红色实线分别代表自旋向上和自旋向下, 费米能级用虚线表示

    Figure 7.  (a) Top view of (SVO)5/(ST0.5V0.5O)1/(STO)3(111) superlattice containing the defect interface; (b) side view of (SVO)5/(ST0.5V0.5O)1/(STO)3(111) superlattice; (c)–(h) comparison of total state densities near the Fermi level for the different superlattices, (c) (SVO)5/(ST0.5V0.5O)1(111); (d) (SVO)4/(ST0.5V0.5O)1/(STO)1(111); (e) (SVO)6/(ST0.5V0.5O)1/(STO)2(111); (f) (SVO)5/(ST0.5V0.5O)1/(STO)3(111); (g) (SVO)4/(ST0.5V0.5O)1/(STO)4(111); (h) (SVO)6/(ST0.5V0.5O)1/(STO)5(111). Black and red lines are spin-up and spin-down states, respectively. The Fermi level is located at 0 eV (dotted black line).

    表 1  不同(SVO)m/(STO)n(111)超晶格模型的面内晶格常数

    Table 1.  In-plane lattice constants of the different (SVO)m/(STO)n(111) superlattices.

    m/n4/24/55/15/46/36/6
    面内晶格常数/Å5.505.575.485.575.565.57
    DownLoad: CSV

    表 2  (SVO)m/(STO)n (111)各超晶格V和O的磁矩及体系总磁矩, 各模型中 V 原子的排列与图 1(b)中 V 原子排列相似, 从下往上V 原子的序号递增

    Table 2.  Magnetic moments of V and O atoms and the total magnetic moments of (SVO)m/(STO)n (111) superlattices. The arrangement of V atoms in the models is similar to the arrangement of V atoms in Fig. 1(b). The atomic numbers get bigger and bigger from the bottom up.

    m/n5/14/26/35/44/56/6
    M_v1/μB1.131.011.001.001.001.01
    M_v2/μB1.181.201.021.021.011.00
    M_v3/μB1.041.201.001.021.011.02
    M_v4/μB1.041.011.021.001.001.01
    M_v5/μB1.181.001.001.01
    M_v6/μB1.001.01
    M_Vtotal/μB5.574.426.045.044.026.06
    M_O/μB–0.93–0.74–0.32–0.28–0.23–0.34
    M_Total/μB5.04.06.05.04.06.0
    DownLoad: CSV

    表 3  (SVO)m/(STO)n(111)各理想界面与Ti-V混合缺陷界面超晶格自旋向上态密度带隙值

    Table 3.  Band gaps of spin-up states of (SVO)m/(STO)n(111) superlattices with ideal or defect interfaces.

    Band gap of spin-up states/eV
    m/n5/14/26/35/44/56/6
    Ideal interfaces000.280.511.000.48
    Defect interfaces00.690.560.741.030.77
    DownLoad: CSV
  • [1]

    Moyer J A, Eaton C, Engel-Herbert R 2013 Adv. Mater. 25 3578Google Scholar

    [2]

    Zhang L, Zhou Y, Guo L, Zhao W, Barnes A, Zhang H-T, Eaton C, Zheng Y, Brahlek M, Haneef H F, Podraza N J, Chan M H W, Gopalan V, Rabe K M, Engel-Herbert R 2016 Nat. Mater. 15 204Google Scholar

    [3]

    Kim D H, Kim D W, Kang B S, Noh T W, Lee D R, Lee K B, Lee S J 2000 Solid State Commun. 114 473Google Scholar

    [4]

    Wang J, Gauquelin N, Huijben M, Verbeeck J, Rijnders G, Koster G 2020 Appl. Phys. Lett. 117 133105Google Scholar

    [5]

    Wang G, Wang Z, Meng M, Saghayezhian M, Chen L, Chen C, Guo H, Zhu Y, Plummer W, Zhang J 2019 Phys. Rev. B 100 155114Google Scholar

    [6]

    Pardo V, Pickett W E 2010 Phys. Rev. B 81 245117Google Scholar

    [7]

    Sohn C, Skoropata E, Choi Y, Gao X, Rastogi A, Huon A, McGuire M A, Nuckols L, Zhang Y, Freeland J W, Haskel D, Lee H N 2019 Adv. Mater. 31 1805389Google Scholar

    [8]

    Meng D, Guo H, Cui Z, Ma C, Zhao J, Lu J, Xu H, Wang Z, Hu X, Fu Z, Peng R, Guo J, Zhai X, Brown G J, Knize R, Lu Y 2018 PNAS 115 2873Google Scholar

    [9]

    Okamoto S, Zhu W, Nomura Y, Arita R, Xiao D, Nagaosa N 2014 Phys. Rev. B 89 195121Google Scholar

    [10]

    Beltrán J I, Muñoz M C 2017 Phys. Rev. B 95 245120Google Scholar

    [11]

    Verissimo-Alves M, Garcia-Fernandez P, Bilc D L, Ghosez P, Junquera J 2012 Phys. Rev. Lett. 108 107003Google Scholar

    [12]

    Cossu F, Jilili J, Schwingenschlögl U 2014 Adv. Mater. Interfaces 1 1400057Google Scholar

    [13]

    Song G, Zhang W 2014 Sci. Rep. UK 4 4564Google Scholar

    [14]

    Cossu F, Kim H S, Sanyal B, Di Marco I 2022 NPJ Comp. Mater. 8 1Google Scholar

    [15]

    Yao X, Yi H T, Jain D, Han M G, Oh S 2021 Nano Lett. 21 5914Google Scholar

    [16]

    Cen C, Thiel S, Hammerl G, Schneider C W, Andersen K E, Hellberg C S, Mannhart J, Levy J 2008 Nat. Mater. 7 298Google Scholar

    [17]

    李云, 鲁文建 2021 物理学报 70 218503Google Scholar

    Li Y, Lu W J 2021 Acta Phys. Sin. 70 218503Google Scholar

    [18]

    Li J, Yin D, Li Q, Sun R, Huang S, Meng F 2017 Phys. Chem. Chem. Phys. 19 6945Google Scholar

    [19]

    Kalabukhov A S, Boikov Y A, Serenkov I T, Sakharov V I, Popok V N, Gunnarsson R, Borjesson J, Ljustina N, Olsson E, Winkler D, Claeson T 2009 Phys. Rev. Lett. 103 146101Google Scholar

    [20]

    Kramer B, MacKinnon A, 1993 Rep. Prog. Phys. 56 1469Google Scholar

    [21]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [22]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [25]

    Du Y L, Wang C L, Li J C, Xu P P, Zhang X H, Liu J, Su W B, Mei L M 2014 Chin. Phys. B 23 087302Google Scholar

    [26]

    Park S Y, Kumar A, Rabe K M 2017 Phys. Rev. Lett. 118 087602Google Scholar

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [28]

    Kuganathan N, Baiutti F, Morata A, Tarancon A, Chroneos A 2021 AIP Adv. 11 075029Google Scholar

    [29]

    Musa Saad HE M 2021 B. Mater. Sci. 44 1Google Scholar

    [30]

    Du Y L, Bu H X, Ji C J, Zhang X M, Li C L, Fang X N 2019 Phys. Chem. Chem. Phys. 21 18170Google Scholar

    [31]

    Xiong L, Yi L, Gao G Y 2014 J. Magn. Magn. Mater. 349 69Google Scholar

    [32]

    贾倩, 杜颖妍, 杜成旭, 陈婷, 刘焦, 于越, 张恒源, 刘明, 毋志民 2019 功能材料 50 12183Google Scholar

    Jia Q, Du Y Y, Du C X, Chen T, Liu J, Yu Y, Zhang H Y, Liu M, Wu Z M 2019 J. Funct. Mater. 50 12183Google Scholar

    [33]

    Ohtomo A, Muller D A, Grazul J L, Hwang H Y 2002 Nature 419 378Google Scholar

    [34]

    Biscaras J, Bergeal N, Kushwaha A, Wolf T, Rastogi A, Budhani R C, Lesueur J 2010 Nat. Commun. 1 1Google Scholar

    [35]

    Xu Q F, Wu D, Li A D 2013 Phys. Lett. A 377 577Google Scholar

    [36]

    范潆方 2019 硕士学位论文 (南京: 南京邮电大学)

    Fan Y F 2019 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese)

    [37]

    Liu Z T Y, Podraza N J, Khare S V, Sarin P 2018 Comput. Mater. Sci. 144 139Google Scholar

  • [1] Cao Wen-Yu, Zhang Ya-Ting, Wei Yan-Feng, Zhu Li-Juan, Xu Ke, Yan Jia-Sheng, Zhou Shu-Xing, Hu Xiao-Dong. Strain modulation effect of superlattice interlayer on InGaN/GaN multiple quantum well. Acta Physica Sinica, 2024, 73(7): 077201. doi: 10.7498/aps.73.20231677
    [2] Wang Ji-Guang, Li Long-Ling, Qiu Jia-Tu, Chen Xu-Min, Cao Dong-Xing. Tuning two-dimensional electron gas at LaAlO3/KNbO3 interface by strain gradient. Acta Physica Sinica, 2023, 72(17): 176801. doi: 10.7498/aps.72.20230573
    [3] Wei Hao-Ming, Zhang Ying, Zhang Zhou, Wu Yang-Qing, Cao Bing-Qiang. Influence of polarity compensation on exchange bias field in LaMnO3/LaNiO3 superlattices. Acta Physica Sinica, 2022, 71(15): 156801. doi: 10.7498/aps.71.20220365
    [4] Fang Xiao-Nan, Du Yan-Ling, Wu Chen-Yu, Liu Jing. First principle study of tuning metal-insulator transition and magnetic properties of (SrVO3)5/(SrTiO3)1 (111) heterostructures. Acta Physica Sinica, 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [5] Liu Ying-Guang, Ren Guo-Liang, Hao Jiang-Shuai, Zhang Jing-Wen, Xue Xin-Qiang. Thermal conductivity of Si/Ge superlattices containing tilted interface. Acta Physica Sinica, 2021, 70(11): 113101. doi: 10.7498/aps.70.20201807
    [6] Liu Ying-Guang, Hao Jiang-Shuai, Ren Guo-Liang, Zhang Jing-Wen. Thermal conductivities of different period Si/Ge superlattices. Acta Physica Sinica, 2021, 70(7): 073101. doi: 10.7498/aps.70.20201789
    [7] Li Yun, Lu Wen-Jian. Tuning metal-insulator transition in δ-doped La:SrTiO3 superlattice by varying doping dimensionality and concentration. Acta Physica Sinica, 2021, 70(22): 227102. doi: 10.7498/aps.70.20210830
    [8] Zhao Guo-Dong, Yang Ya-Li, Ren Wei. Recent progress of improper ferroelectricity in perovskite oxides. Acta Physica Sinica, 2018, 67(15): 157504. doi: 10.7498/aps.67.20180936
    [9] Jiao Yuan-Yuan, Sun Jian-Ping, Prashant Shahi, Liu Zhe-Hong, Wang Bo-Sen, Long You-Wen, Cheng Jin-Guang. Effect of Pb doping on metallic state of cubic pyrochlore Cd2Ru2O7. Acta Physica Sinica, 2018, 67(12): 127402. doi: 10.7498/aps.67.20180343
    [10] Wang Ze-Lin, Zhang Zhen-Hua, Zhao Zhe, Shao Rui-Wen, Sui Man-Ling. Mechanism of electrically driven metal-insulator phase transition in vanadium dioxide nanowires. Acta Physica Sinica, 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [11] Li Zhu-Song, Steven Zhu. Continuum modeling of thermal transport in superlattices and layered materials for new energy matierlas. Acta Physica Sinica, 2016, 65(11): 116802. doi: 10.7498/aps.65.116802
    [12] Luo Xiao-Hua, He Wei, Wu Mu-Ying, Luo Shi-Yu. Quasi-periodic excitation and dynamic stability for strained superlattice. Acta Physica Sinica, 2013, 62(24): 247301. doi: 10.7498/aps.62.247301
    [13] Feng Xian-Yang, Lu Yao, Jiang Lei, Zhang Guo-Lian, Zhang Chang-Wen, Wang Pei-Ji. Study of the optical properties of superlattices ZnO doped with indium. Acta Physica Sinica, 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
    [14] Shang Jie, Zhang Hui, Cao Ming-Gang, Zhang Peng-Xiang. Influence of oxygen pressure on the lattice constants of Ba0.6Sr0.4TiO3 thin films and preparation of BaTiO3/Ba0.6Sr0.4TiO3 superlattices. Acta Physica Sinica, 2011, 60(1): 016802. doi: 10.7498/aps.60.016802
    [15] Jiang Lei, Wang Pei-Ji, Zhang Chang-Wen, Feng Xian-Yang, Lu Yao, Zhang Guo-Lian. Electronic structure and optical properties of Cr doped SnO2 superlattice. Acta Physica Sinica, 2011, 60(9): 093101. doi: 10.7498/aps.60.093101
    [16] Li Zhi-Hua, Wang Wen-Xin, Liu Lin-Sheng, Jiang Zhong-Wei, Gao Han-Chao, Zhou Jun-Ming. As-soak dependence of interface roughness of AlSb/InAs superlattice. Acta Physica Sinica, 2007, 56(3): 1785-1789. doi: 10.7498/aps.56.1785
    [17] Deng Cheng-Liang, Shao Ming-Zhu, Luo Shi-Yu. Interaction between charged particle and strained superlattice and chaotic behaviours of the system. Acta Physica Sinica, 2006, 55(5): 2422-2426. doi: 10.7498/aps.55.2422
    [18] Gu Pei-Fu, Chen Hai-Xing, Qin Xiao-Yun, Liu Xu. Design of polarization band-pass filters based on the theory of thin-film photonic crystal superlattice. Acta Physica Sinica, 2005, 54(2): 773-776. doi: 10.7498/aps.54.773
    [19] Zhang Qi-Yi, Tian Qiang. . Acta Physica Sinica, 2002, 51(8): 1804-1807. doi: 10.7498/aps.51.1804
    [20] WEI JIAN-HUA, XIE SHI-JIE, MEI LIANG-MO. SUPERLATTICE AND MULTI-QUANTUM-WELL PROPERTIES OF MX COMPOUNDS. Acta Physica Sinica, 2000, 49(11): 2254-2260. doi: 10.7498/aps.49.2254
Metrics
  • Abstract views:  3663
  • PDF Downloads:  80
  • Cited By: 0
Publishing process
  • Received Date:  09 September 2022
  • Accepted Date:  08 October 2022
  • Available Online:  19 October 2022
  • Published Online:  05 December 2022

/

返回文章
返回