Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermal conductivities of different period Si/Ge superlattices

Liu Ying-Guang Hao Jiang-Shuai Ren Guo-Liang Zhang Jing-Wen

Citation:

Thermal conductivities of different period Si/Ge superlattices

Liu Ying-Guang, Hao Jiang-Shuai, Ren Guo-Liang, Zhang Jing-Wen
PDF
HTML
Get Citation
  • Thermoelectric materials, which can convert wasted heat into electricity, have attracted considerable attention because they provide a solution to energy problems. The Si/Ge superlattices have shown tremendous promise as effective thermoelectric materials. The period lengths of the Si/Ge superlattices can effectively tailor the phonon's transport behaviors and control their thermal conductivities. In this paper, three kinds of Si/Ge superlattices with different period length distributions (uniform, gradient, random) are constructed. The non-equilibrium molecular dynamics (NEMD) method is used to calculate the thermal conductivities of Si/Ge superlattices under the different period length distributions. The effect of the sample’s total length and temperature on the superlattice's thermal conductivity are studied. The simulation result shows that the thermal conductivity of gradient and random periodical Si/Ge superlattices are significantly reduced at room temperature compared with that of the uniform period Si/Ge superlattices. Phonons are transported by wave or particle properties in the different periodical superlattices. The thermal conductivity of uniform period superlattices has an obvious size effect with the increasing of the sample total length. In contrast, the thermal conductivity of gradient, random periodical Si/Ge superlattices are weakly dependent on the sample’s total length. At the same time, temperature is an important factor affecting the heat transport properties. We find that the temperature affects the thermal conductivities of the three kinds of superlattices in different ways. With the increase of the temperature, (i) the thermal conductivity of uniform periodical superlattices shows an obvious temperature effect; (ii) the thermal conductivity of the gradient and random periodical Si/Ge superlattices are nearly unchanged due to the competition between phonon localization weakness and phonon-phonon scattering enhancement. In addition, the phonon densities of states of superlattices with three different periodical length distributions are calculated. We find that in the picture of uniform periodical Si/Ge superlattices, the number of pronounced peaks quickly decreases as the period length increases, particularly at higher frequencies. This indicates that as the period length increases, fewer coherent phonons will be formed over the superlattices. Moreover, the scattering mechanisms of phonons for gradient and random periodical Si/Ge superlattices are basically the same at 100 K and 500 K. These findings provide a developmental way to further reduce the thermal conductivity of superlattices.
      Corresponding author: Liu Ying-Guang, liuyingguang@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52076080), the Natural Science Foundation of Hebei Province, China(Grant No. E2020502011), and the Fundamental Research Fund for the Central Universities, China (Grant No. 2020MS105)
    [1]

    Martín-González M, Caballero-Calero O, Díaz-Chao P 2013 Renew. Sust. Energ. Rev. 24 288Google Scholar

    [2]

    Feng T L, Ruan X L, Ye Z, Cao B 2015 Phys. Rev. B 91 224301Google Scholar

    [3]

    Chen Z Y, Wang R F, Wang G Y, Zhou X Y, Wang Z S, Yin C, Hu Q, Zhou B Q, Tang J, Anag R 2018 Chin. Phys. B 27 047202Google Scholar

    [4]

    Wang K X, Wang J, Li Y, Zou T, Wang X H, Li J B, Cao Z, Shi W J, Xinba Y E 2018 Chin. Phys. B 27 048401Google Scholar

    [5]

    郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程 2020 物理学报 69 146801Google Scholar

    Guo J Y, Chen S P, Fan W H, Wang Y N, Wu Y C 2020 Acta. Phys. Sin. 69 146801Google Scholar

    [6]

    张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军 2016 物理学报 65 107201Google Scholar

    Zhang Y, Wu L H, Zengli J K, Liu Y F, Zhang J Y, Xing J J, Luo J 2016 Acta. Phys. Sin 65 107201Google Scholar

    [7]

    Lin K H, Strachan A 2013 Phys. Rev. B 87 115302Google Scholar

    [8]

    Chen Y F, Li D Y, Lukes J R, Ni Z H, Chen M H 2005 Phys. Rev. B 72 174302Google Scholar

    [9]

    Giri A, Hopkins P E, Wessel J G, Duda J C 2015 J. Appl. Phys. 118 165303Google Scholar

    [10]

    Zhou K K, Xu N, Xie G F 2018 Chin. Phys. B 27 026501Google Scholar

    [11]

    Xiong R, Yang C, Wang Q, Zhang Y, Li X 2019 Int. J. Thermophys. 40 86Google Scholar

    [12]

    Zhang C W, Zhou H, Zeng Y, Zheng L, Zhan Y L, Bi K D 2019 Int. J. Heat Mass Transf. 132 681Google Scholar

    [13]

    Samaraweera N, Larkin J M, Chan K L, Mithraratne K 2018 J. Appl. Phys. 123 244303Google Scholar

    [14]

    Juntunen T, Vanska O, Tittonen I 2019 Phys. Rev. Lett. 122 105901Google Scholar

    [15]

    Wang Y, Huang H X, Ruan X L 2014 Phys. Rev. B 90 165406Google Scholar

    [16]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [17]

    Dickey J M, Paskin A 1969 Phys. Rev. 188 1407Google Scholar

    [18]

    Xie G F, Ding D, Zhang G 2018 Adv. Phys.-X 3 1480417Google Scholar

    [19]

    Ravichandran J, Yadav A K, Cheaito R, Rossen P B, Soukiassian A, Suresha S J, Duda J C, Foley B M, Lee C-H, Zhu Y, Lichtenberger A W, Moore J E, Muller D A, Schlom D G, Hopkins P E, Majumdar A, Ramesh R, Zurbuchen M A 2014 Nat. Mater. 13 168Google Scholar

    [20]

    Simkin M V, Mahan G D 2000 Phys. Rev. Lett. 84 927Google Scholar

    [21]

    Maldovan M 2015 Nat. Mater. 14 667Google Scholar

    [22]

    Chernatynskiy A, Grimes R W, Zurbuchen M A, Clarke D R, Phillpot S R 2009 Appl. Phys. Lett. 95 161906Google Scholar

    [23]

    Chen X K, Xie Z X, Zhou W X, Tang L M, Chen K Q 2016 Appl. Phys. Lett. 109 023101Google Scholar

    [24]

    Luckyanova M N, Mendoza J, Lu H, Song B, Huang S, Zhou J, Li M, Dong Y, Zhou H, Garlow J, Wu L, Kirby B J, Grutter A J, Puretzky A A, Zhu Y, Dresselhaus M S, Gossard A, Chen G 2018 Sci. Adv. 338 936Google Scholar

    [25]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306Google Scholar

    [26]

    刘英光, 边永庆, 韩中合 2020 物理学报 69 033101Google Scholar

    Liu Y G, Bian Y Q, Han Z H 2020 Acta. Phys. Sin. 69 033101Google Scholar

    [27]

    Chen J, Zhang G, Li B W 2010 Nano Lett. 10 3978Google Scholar

    [28]

    Liang T, Zhou M, Zhang P, Yuan P, Yang D G 2020 Int. J. Heat Mass Transf. 151 119395Google Scholar

    [29]

    Zhang Z W, Chen Y P, Xie Y, Zhang S B 2016 Appl. Therm. Eng. 102 1075Google Scholar

    [30]

    Wang Y, Vallabhaneni A, Hu J, Qiu B, Chen Y P, Ruan X L 2014 Nano Lett. 14 592Google Scholar

    [31]

    Bodapati A, Schelling P K, Phillpot S R, Keblinski P 2006 Phys. Rev. B 74 245207Google Scholar

  • 图 1  不同周期长度分布的超晶格 (a)均匀周期; (b)梯度周期; (c)随机周期

    Figure 1.  The different period length distribution of superlattices: (a) Uniform period; (c) gradient period; (c) random period.

    图 2  NEMD模拟计算热性质的示意图

    Figure 2.  Schematic diagram of the NEMD model for calculating the thermal properties.

    图 3  热导率与周期长度的关系

    Figure 3.  Thermal conductivity of superlattice as a function of period length.

    图 4  不同平均周期长度的均匀超晶格的声子态密度.

    Figure 4.  The phonon density of states of uniform superlattices with different average period lengths.

    图 5  热导率与样品总长度的关系

    Figure 5.  Thermal conductivity of superlattice as a function of sample total length.

    图 6  超晶格热导率随温度的变化

    Figure 6.  Thermal conductivity of superlattice as a function of temperature.

    图 7  超晶格的声子参与率

    Figure 7.  The participation ratio of superlattices.

    图 8  超晶格不同温度条件下的声子态密度: (a) 梯度周期超晶格; (b) 随机周期超晶格

    Figure 8.  The phonon density of states with different temperatures of superlattice: (a) Gradient period superlattice; (b) random.

  • [1]

    Martín-González M, Caballero-Calero O, Díaz-Chao P 2013 Renew. Sust. Energ. Rev. 24 288Google Scholar

    [2]

    Feng T L, Ruan X L, Ye Z, Cao B 2015 Phys. Rev. B 91 224301Google Scholar

    [3]

    Chen Z Y, Wang R F, Wang G Y, Zhou X Y, Wang Z S, Yin C, Hu Q, Zhou B Q, Tang J, Anag R 2018 Chin. Phys. B 27 047202Google Scholar

    [4]

    Wang K X, Wang J, Li Y, Zou T, Wang X H, Li J B, Cao Z, Shi W J, Xinba Y E 2018 Chin. Phys. B 27 048401Google Scholar

    [5]

    郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程 2020 物理学报 69 146801Google Scholar

    Guo J Y, Chen S P, Fan W H, Wang Y N, Wu Y C 2020 Acta. Phys. Sin. 69 146801Google Scholar

    [6]

    张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军 2016 物理学报 65 107201Google Scholar

    Zhang Y, Wu L H, Zengli J K, Liu Y F, Zhang J Y, Xing J J, Luo J 2016 Acta. Phys. Sin 65 107201Google Scholar

    [7]

    Lin K H, Strachan A 2013 Phys. Rev. B 87 115302Google Scholar

    [8]

    Chen Y F, Li D Y, Lukes J R, Ni Z H, Chen M H 2005 Phys. Rev. B 72 174302Google Scholar

    [9]

    Giri A, Hopkins P E, Wessel J G, Duda J C 2015 J. Appl. Phys. 118 165303Google Scholar

    [10]

    Zhou K K, Xu N, Xie G F 2018 Chin. Phys. B 27 026501Google Scholar

    [11]

    Xiong R, Yang C, Wang Q, Zhang Y, Li X 2019 Int. J. Thermophys. 40 86Google Scholar

    [12]

    Zhang C W, Zhou H, Zeng Y, Zheng L, Zhan Y L, Bi K D 2019 Int. J. Heat Mass Transf. 132 681Google Scholar

    [13]

    Samaraweera N, Larkin J M, Chan K L, Mithraratne K 2018 J. Appl. Phys. 123 244303Google Scholar

    [14]

    Juntunen T, Vanska O, Tittonen I 2019 Phys. Rev. Lett. 122 105901Google Scholar

    [15]

    Wang Y, Huang H X, Ruan X L 2014 Phys. Rev. B 90 165406Google Scholar

    [16]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [17]

    Dickey J M, Paskin A 1969 Phys. Rev. 188 1407Google Scholar

    [18]

    Xie G F, Ding D, Zhang G 2018 Adv. Phys.-X 3 1480417Google Scholar

    [19]

    Ravichandran J, Yadav A K, Cheaito R, Rossen P B, Soukiassian A, Suresha S J, Duda J C, Foley B M, Lee C-H, Zhu Y, Lichtenberger A W, Moore J E, Muller D A, Schlom D G, Hopkins P E, Majumdar A, Ramesh R, Zurbuchen M A 2014 Nat. Mater. 13 168Google Scholar

    [20]

    Simkin M V, Mahan G D 2000 Phys. Rev. Lett. 84 927Google Scholar

    [21]

    Maldovan M 2015 Nat. Mater. 14 667Google Scholar

    [22]

    Chernatynskiy A, Grimes R W, Zurbuchen M A, Clarke D R, Phillpot S R 2009 Appl. Phys. Lett. 95 161906Google Scholar

    [23]

    Chen X K, Xie Z X, Zhou W X, Tang L M, Chen K Q 2016 Appl. Phys. Lett. 109 023101Google Scholar

    [24]

    Luckyanova M N, Mendoza J, Lu H, Song B, Huang S, Zhou J, Li M, Dong Y, Zhou H, Garlow J, Wu L, Kirby B J, Grutter A J, Puretzky A A, Zhu Y, Dresselhaus M S, Gossard A, Chen G 2018 Sci. Adv. 338 936Google Scholar

    [25]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306Google Scholar

    [26]

    刘英光, 边永庆, 韩中合 2020 物理学报 69 033101Google Scholar

    Liu Y G, Bian Y Q, Han Z H 2020 Acta. Phys. Sin. 69 033101Google Scholar

    [27]

    Chen J, Zhang G, Li B W 2010 Nano Lett. 10 3978Google Scholar

    [28]

    Liang T, Zhou M, Zhang P, Yuan P, Yang D G 2020 Int. J. Heat Mass Transf. 151 119395Google Scholar

    [29]

    Zhang Z W, Chen Y P, Xie Y, Zhang S B 2016 Appl. Therm. Eng. 102 1075Google Scholar

    [30]

    Wang Y, Vallabhaneni A, Hu J, Qiu B, Chen Y P, Ruan X L 2014 Nano Lett. 14 592Google Scholar

    [31]

    Bodapati A, Schelling P K, Phillpot S R, Keblinski P 2006 Phys. Rev. B 74 245207Google Scholar

Metrics
  • Abstract views:  5224
  • PDF Downloads:  121
  • Cited By: 0
Publishing process
  • Received Date:  28 October 2020
  • Accepted Date:  16 November 2020
  • Available Online:  29 March 2021
  • Published Online:  05 April 2021

/

返回文章
返回