-
The Si/Ge single interface and superlattice structure with atom mixing interfaces are constructed. The effects of interfacial atomic mixing on thermal conductivity of single interface and superlattice structures are studied by non-equilibrium molecular dynamics simulation. The effects of the number of atomic mixing layers, temperature, total length of the system and period length on the thermal conductivity for different lattice structures are studied. The results show that the mixing of two and four layers of atoms can improve the thermal conductivity of Si/Ge lattice with single interface and the few-period superlattice due to the “phonon bridging” mechanism. When the total length of the system is large, the thermal conductivity of the superlattice with atomic mixing interfaces decreases significantly compared with that of the perfect interface. The interfacial atom mixing will destroy the phonon coherent transport in the superlattice and reduce the thermal conductivity to some extent. The superlattce with perfect interface has obvious temperature effect, while the thermal conductivity of the superlattice with atomic mixing is less sensitive to temperature.
-
Keywords:
- single interface /
- superlattices /
- phonons /
- thermal conductivity
[1] Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A, Maris H J, Merlin R, Phillpot S R 2003 J. Appl. Phys. 93 793Google Scholar
[2] 唐道胜, 曹炳阳 2021 工程热物理学报 42 1546
Tang D S, Cao B Y 2021 J. Eng. Thermophys. 42 1546
[3] Liang Z, Tsai H L 2012 Int. J. Heat Mass Transf. 55 2999Google Scholar
[4] Chen W Y, Yang J K, Wei Z Y, Liu C H, Bi K D, Xu D Y, Li D Y, Chen Y F 2015 Phys. Rev. B 92 134113Google Scholar
[5] Tian Z T, Esfarjani K, Chen G 2014 Phys. Rev. B 89 235307Google Scholar
[6] Kechrakos D 1991 J. Phys. Condens. Matter 3 1443Google Scholar
[7] Liang Z, Tsai H L 2011 J. Phys. Condens. Matter 23 495303Google Scholar
[8] O'Brien P J, Shenogin S, Liu J X, Chow P K, Laurencin D, Mutin P H, Yamaguchi M, Keblinski P, Ramanath G 2013 Nat. Mater. 12 118Google Scholar
[9] English T S, Duda J C, Smoyer J L, Jordan D A, Norris P M, Zhigilei L V 2012 Phys. Rev. B 85 035438Google Scholar
[10] Shao C, Bao H 2015 Int. J. Heat Mass Transf. 85 33Google Scholar
[11] Zhou Y G, Zhang X L, Hu M 2016 Nanoscale 8 1994Google Scholar
[12] Stevens R J, Zhigilei L V, Norris P M 2007 Int. J. Heat Mass Transf. 50 3977Google Scholar
[13] Tian Z T, Esfarjani K, Chen G 2012 Phys. Rev. B 86 235304Google Scholar
[14] Jia L, Ju S H, Liang X G, Zhang X 2016 Mater. Res. Express 3 095024Google Scholar
[15] Merabia S, Termentzidis K 2014 Phys. Rev. B 89 054309Google Scholar
[16] Ravichandran J, Yadav A K, Cheaito R, Rossen P B, Soukiassian A, Suresha S J, Duda J C, Foley B M, Lee C H, Zhu Y, Lichtenberger A W, Moore J E, Muller D A, Schlom D G, Hopkins P E, Majumdar A, Ramesh R, Zurbuchen M A 2014 Nat. Mater. 13 168Google Scholar
[17] Luckyanova M N, Mendoza J, Lu H, Song B, Huang S, Zhou J, Li M, Dong Y, Zhou H, Garlow J, Wu L, Kirby B J, Grutter A J, Puretzky A A, Zhu Y, Dresselhaus M S, Gossard A, Chen G 2018 Sci. Adv. 4 eaat9460Google Scholar
[18] Chakraborty P, Chiu I A, Ma T F, Wang Y 2021 Nanotechnology 32 065401Google Scholar
[19] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[20] 臧毅, 马登科, 杨诺 2017 工程热物理学报 38 2686
Zang Y, Ma D K, Yang N 2017 J. Eng. Thermophys. 38 2686
[21] Qu X L, Gu J J 2020 RSC Adv. 10 1243Google Scholar
[22] Liang T, Zhou M, Zhang P, Yuan P, Yang D G 2020 Int. J. Heat Mass Transf. 151 119395Google Scholar
[23] Chen J, Zhang G, Li B W 2010 Nano Lett. 10 3978Google Scholar
[24] Wang Y, Vallabhaneni A, Hu J N, Qiu B, Chen Y P, Ruan X L 2014 Nano Lett. 14 592Google Scholar
[25] Zhang Z W, Chen Y P, Xie Y E, Zhang S B 2016 Appl. Therm. Eng. 102 1075Google Scholar
[26] Bodapati A, Schelling P K, Phillpot S R, Keblinski P 2006 Phys. Rev. B 74 245207Google Scholar
[27] Sun Y D, Zhou Y G, Han J, Hu M, Xu B, Liu W 2020 J. Appl. Phys. 127 045106Google Scholar
[28] Sääskilahti K, Oksanen J, Tulkki J, Volz S 2014 Phys. Rev. B 90 134312Google Scholar
[29] Ma Y L, Zhang Z W, Chen J G, Sääskilahti K, Volz S, Chen J 2018 Carbon 135 263Google Scholar
[30] Liu Y G, Bian Y Q, Chernatynskiy A, Han Z H 2019 Int. J. Heat Mass Transf. 145 118791Google Scholar
[31] 刘英光, 郝将帅, 任国梁, 张静文 2021 物理学报 70 073101Google Scholar
Liu Y G, Hao J S, Ren G L, Zhang J W 2021 Acta Phys. Sin. 70 073101Google Scholar
[32] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 物理学报 63 074401Google Scholar
Hui Z X, He P F, Dai Y, Wu A H 2014 Acta Phys. Sin. 63 074401Google Scholar
-
图 1 不同界面形式的Si/Ge原子模型结构示意图 (a)完美界面晶格结构; (b)界面具有原子混合晶格结构; (c)完美界面超晶格; (d)具有n层原子混合的超晶格
Figure 1. Schematic diagram of Si/Ge atomic structure with different interface: (a) Single perfect interface; (b) single atomic mixing interface; (c) perfect superlattice; (d) superlattice with n-layer atomic mixing.
-
[1] Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A, Maris H J, Merlin R, Phillpot S R 2003 J. Appl. Phys. 93 793Google Scholar
[2] 唐道胜, 曹炳阳 2021 工程热物理学报 42 1546
Tang D S, Cao B Y 2021 J. Eng. Thermophys. 42 1546
[3] Liang Z, Tsai H L 2012 Int. J. Heat Mass Transf. 55 2999Google Scholar
[4] Chen W Y, Yang J K, Wei Z Y, Liu C H, Bi K D, Xu D Y, Li D Y, Chen Y F 2015 Phys. Rev. B 92 134113Google Scholar
[5] Tian Z T, Esfarjani K, Chen G 2014 Phys. Rev. B 89 235307Google Scholar
[6] Kechrakos D 1991 J. Phys. Condens. Matter 3 1443Google Scholar
[7] Liang Z, Tsai H L 2011 J. Phys. Condens. Matter 23 495303Google Scholar
[8] O'Brien P J, Shenogin S, Liu J X, Chow P K, Laurencin D, Mutin P H, Yamaguchi M, Keblinski P, Ramanath G 2013 Nat. Mater. 12 118Google Scholar
[9] English T S, Duda J C, Smoyer J L, Jordan D A, Norris P M, Zhigilei L V 2012 Phys. Rev. B 85 035438Google Scholar
[10] Shao C, Bao H 2015 Int. J. Heat Mass Transf. 85 33Google Scholar
[11] Zhou Y G, Zhang X L, Hu M 2016 Nanoscale 8 1994Google Scholar
[12] Stevens R J, Zhigilei L V, Norris P M 2007 Int. J. Heat Mass Transf. 50 3977Google Scholar
[13] Tian Z T, Esfarjani K, Chen G 2012 Phys. Rev. B 86 235304Google Scholar
[14] Jia L, Ju S H, Liang X G, Zhang X 2016 Mater. Res. Express 3 095024Google Scholar
[15] Merabia S, Termentzidis K 2014 Phys. Rev. B 89 054309Google Scholar
[16] Ravichandran J, Yadav A K, Cheaito R, Rossen P B, Soukiassian A, Suresha S J, Duda J C, Foley B M, Lee C H, Zhu Y, Lichtenberger A W, Moore J E, Muller D A, Schlom D G, Hopkins P E, Majumdar A, Ramesh R, Zurbuchen M A 2014 Nat. Mater. 13 168Google Scholar
[17] Luckyanova M N, Mendoza J, Lu H, Song B, Huang S, Zhou J, Li M, Dong Y, Zhou H, Garlow J, Wu L, Kirby B J, Grutter A J, Puretzky A A, Zhu Y, Dresselhaus M S, Gossard A, Chen G 2018 Sci. Adv. 4 eaat9460Google Scholar
[18] Chakraborty P, Chiu I A, Ma T F, Wang Y 2021 Nanotechnology 32 065401Google Scholar
[19] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[20] 臧毅, 马登科, 杨诺 2017 工程热物理学报 38 2686
Zang Y, Ma D K, Yang N 2017 J. Eng. Thermophys. 38 2686
[21] Qu X L, Gu J J 2020 RSC Adv. 10 1243Google Scholar
[22] Liang T, Zhou M, Zhang P, Yuan P, Yang D G 2020 Int. J. Heat Mass Transf. 151 119395Google Scholar
[23] Chen J, Zhang G, Li B W 2010 Nano Lett. 10 3978Google Scholar
[24] Wang Y, Vallabhaneni A, Hu J N, Qiu B, Chen Y P, Ruan X L 2014 Nano Lett. 14 592Google Scholar
[25] Zhang Z W, Chen Y P, Xie Y E, Zhang S B 2016 Appl. Therm. Eng. 102 1075Google Scholar
[26] Bodapati A, Schelling P K, Phillpot S R, Keblinski P 2006 Phys. Rev. B 74 245207Google Scholar
[27] Sun Y D, Zhou Y G, Han J, Hu M, Xu B, Liu W 2020 J. Appl. Phys. 127 045106Google Scholar
[28] Sääskilahti K, Oksanen J, Tulkki J, Volz S 2014 Phys. Rev. B 90 134312Google Scholar
[29] Ma Y L, Zhang Z W, Chen J G, Sääskilahti K, Volz S, Chen J 2018 Carbon 135 263Google Scholar
[30] Liu Y G, Bian Y Q, Chernatynskiy A, Han Z H 2019 Int. J. Heat Mass Transf. 145 118791Google Scholar
[31] 刘英光, 郝将帅, 任国梁, 张静文 2021 物理学报 70 073101Google Scholar
Liu Y G, Hao J S, Ren G L, Zhang J W 2021 Acta Phys. Sin. 70 073101Google Scholar
[32] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 物理学报 63 074401Google Scholar
Hui Z X, He P F, Dai Y, Wu A H 2014 Acta Phys. Sin. 63 074401Google Scholar
Catalog
Metrics
- Abstract views: 4868
- PDF Downloads: 91
- Cited By: 0