Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum chemical calculation of normal vibration frequencies of polyatomic molecules

Xu You-Jie Guo Ying-Chun Wang Bing-Bing

Citation:

Quantum chemical calculation of normal vibration frequencies of polyatomic molecules

Xu You-Jie, Guo Ying-Chun, Wang Bing-Bing
PDF
HTML
Get Citation
  • Quantum calculation of molecular vibrational frequency is important in investigating infrared spectrum and Raman spectrum. In this work, a low computational cost method of calculating the quantum chemistry of vibrational frequencies for large molecules is proposed. Usually, the calculation of vibrational frequency of a molecule containing N atoms needs to deal with the Hessian matrix, which consists of second derivatives of the 3N-dimensional potential hypersurface, and then solve secular equations of the matrix to obtain normal vibration modes and the corresponding frequencies. Larger N implies higher computational cost. Therefore, for a limited computational hardware condition, higher-level computations for large N atomic molecule’s vibrational frequencies cannot be implemented in practice. Here we solve this problem by calculating the vibrational frequency for only one vibrational mode each time instead of calculating the Hessian matrix to obtain all vibrational frequencies. When only one vibrational mode is taken into consideration, the molecular potential hypersurface can be transformed into one-dimensional curve. Hence, we can calculate the curve with high-level computational method, then deduce the expression of one-dimensional curve by using harmonic oscillating approximation and obtain the vibrational frequency by using the expression to fit the curve. It should be noted that this method is applied to vibrational modes whose vibrational coordinates can be completely determined by equilibrium geometry and the molecular symmetry and be independent of the molecular force constants. It requires that there exists no other vibrational mode with the same symmetry but with different frequencies. The lower computational cost for a one-dimensional potential curve than that for 3N-dimensional potential hypersurface’s second derivatives permits us to use higher-level method and larger basis set for a given computational hardware condition to achieve more accurate results. In this paper we take the calculation of B2 vibrational frequency of water molecule for example to illustrate the feasibility of this method. Furthermore, we use this method to deal with the SF6 molecule. It has 7 atoms and 70 electrons, hence there exists a large amount of electronic correlation energy to be calculated. The MRCI is an effective method to calculate the correlation energy. But by now no MRCI result of SF6 vibrational frequencies has been reported. So here we use MRCI/6-311G* to calculate the potential curves of A1g, Eg, T2g and T2u vibrational modes separately, deduce their expressions, then use the expressions to fit the curves, and finally obtain the vibrational frequencies. The results are then compared with those obtained by other theoretical methods including HF, MP2, CISD, CCSD(T) and B3LYP methods through using the same 6-311G* basis set. It is shown that the relative error to experimental result of the MRCI method is the least in the results from all these methods.
      Corresponding author: Guo Ying-Chun, ycguo@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074418, 11774411).
    [1]

    徐光宪, 黎乐民, 王德民 2009 量子化学(中)(第二版) (北京: 科学出版社) 第342, 343页

    Xu G X, Li L M, Wang D M 2009 Quantum Chemistry (Vol. 2) (2nd Ed.) (Beijing: Science Press) pp342, 343 (in Chinese)

    [2]

    李晨曦, 郭迎春, 王兵兵 2017 物理学报 66 103101Google Scholar

    Li C X, Guo Y C, Wang B B 2017 Acta Phys. Sin. 66 103101Google Scholar

    [3]

    Johnson R D Computational Chemistry Comparison and Benchmark Data Base, https://cccbdb.nist.gov/vibs1x.asp [2021-11-10]

    [4]

    周朕蕊, 韩冬, 赵明月, 张国强 2020 电工技术学报 35 4998Google Scholar

    Zhou L R, Han D, Zhao M Y, Zhang G Q 2020 Trans. Chin. Electrotech. Soc. 35 4998Google Scholar

    [5]

    Okubo H, Beroual A 2011 IEEE Electr. Insul. Mag. 27 34Google Scholar

    [6]

    Zhang X, Yu L, Gui Y, Hu W 2016 Appl. Surf. Sci. 367 259Google Scholar

    [7]

    武瑞琪, 郭迎春, 王兵兵 2019 物理学报 68 080201Google Scholar

    Wu R Q, Guo Y C, Wang B B 2019 Acta Phys. Sin. 68 080201Google Scholar

    [8]

    Ferré A, Boguslavskiy A E, Dagan M, Blanchet V, Bruner B D, Burgy F, Camper A, Descamps D, Fabre B, Fedorov N, Gaudin J, Geoffroy G, Mikosch J, Patchkovskii S, Petit S, Ruchon T, Soifer H, Staedter D, Wilkinson I, Stolow A, Dudovich N, Mairesse Y 2015 Nat. Commun. 6 5952Google Scholar

    [9]

    Wagner N L, Wuest A, Christov I P, Popmintchev T, Zhou X, Murnane M M, Kapteyn H C 2006 Proc. Natl. Acad. Sci. U. S. A. 103 13279Google Scholar

    [10]

    Jose J, Lucchese R R 2015 Chem. Phys. 447 64Google Scholar

    [11]

    Nguyen N T, Lucchese R R, Lin C D, Le A T 2016 Phys. Rev. A 93 063419Google Scholar

    [12]

    McDowell, R S, Krohn B J, Flicker H, Vasquez M C 1986 Spectrochim. Acta, Part A 42 351Google Scholar

    [13]

    Chrysos M, Rachet F, Kremer D 2014 J. Chem. Phys. 140 124308Google Scholar

    [14]

    Faye M, Boudon V, Loëte M 2016 J. Mol. Spectrosc. 325 35Google Scholar

    [15]

    Chapados C, Birnbaum G 1988 J. Mol. Spectrosc. 132 323Google Scholar

    [16]

    Kremer D, Rachet F, Chrysos M 2013 J. Chem. Phys. 138 174308Google Scholar

    [17]

    Eisfeld W 2011 J. Chem. Phys. 134 054303Google Scholar

    [18]

    Bin T, Longfei Z, Fangyuan H, Zongchang L, Qinqin L, Chenyao L, Liping Z, Jieming Z 2018 AIP Adv. 8 015016Google Scholar

    [19]

    Watanabe N, Hirayama T, Takahashi M 2019 Phys. Rev. A 99 062708Google Scholar

    [20]

    Werner H J, Knowles P J, Knizia G, Manby F R, Schütz M 2012 Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 242Google Scholar

    [21]

    Werner H J, Knowles P J, Manby F, Black J A, Doll K, Hebelmann A, Kats D, Köhn A, Korona T, Kreplin D A, Ma Q, Miller T F, Mitrushchenkov A, Peterson K A, Polyak I, Rauhut G, Sibaev M R 2020 J. Chem. Phys. 152 144107Google Scholar

    [22]

    巴音贺希格 1996 大学物理 8 12Google Scholar

    Bayanheshig 1996 College Physics 8 12Google Scholar

  • 图 1  水分子的位移坐标系示意图, 其中1为氧核, 2, 3为两个氢核

    Figure 1.  Schematic diagram of the displacement coordinate system of water molecule. 1 represents oxygen nuclei and 2, 3 represent the two hydrogen nucleus.

    图 2  水分子B2振动模式的势能曲线图

    Figure 2.  Potential curve of of H2O molecule for B2 vibrational mode

    图 3  SF6分子结构示意图, 其中 1为S核, 2—7为6个F核

    Figure 3.  Schematic diagram of SF6 molecular structure. 1 represents Sulfur nuclei and 2–7 represent Fluorine nucleus.

    图 4  SF6的势能随S—F键长l的变化曲线

    Figure 4.  Potential curve of SF6 as the function of S—F bond length l.

    图 5  SF6不同振动模式的势能曲线 (a), (b), (c)和(d)分别对应A1g, Eg, T2g和T2u振动模式

    Figure 5.  Potential curves of different vibrational modes of SF6 molecule: (a), (b), (c) and (d) correspond to A1g, Eg, T2g and T2u vibrational modes respectively.

    图 6  不同方法下使用相同基组6-311G*计算的4种振动频率相对于实验值的相对误差

    Figure 6.  Relative errors to the experimental values of the four vibrational frequencies obtained by different methods and same basis set 6-311G*.

    表 1  SF6的A1g, Eg, T2g和T2u振动模式

    Table 1.  A1g, Eg, T2g and T2u vibrational modes of SF6 molecule.

    位移坐标$ {\mathrm{A}}_{1\mathrm{g}} $$ {\mathrm{E}}_{\mathrm{g}} $$ {\mathrm{E}}_{\mathrm{g}} $$ {\mathrm{T}}_{2\mathrm{g}} $$ {\mathrm{T}}_{2\mathrm{g}} $$ {\mathrm{T}}_{2\mathrm{g}} $$ {\mathrm{T}}_{2\mathrm{u}} $$ {\mathrm{T}}_{2\mathrm{u}} $$ {\mathrm{T}}_{2\mathrm{u}} $
    $ {\Delta x}_{1}, \Delta {y}_{1}, \Delta {z}_{1} $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, 0 $
    $ {\Delta x}_{2}, \Delta {y}_{2}, \Delta {z}_{2} $$ r, \mathrm{0, 0} $${r}, \mathrm{0, 0}$$ -r, \mathrm{0, 0} $$ 0, r, 0 $$ \mathrm{0, 0}, r $$ \mathrm{0, 0}, 0 $$ 0, r, 0 $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, r $
    $ {\Delta x}_{3}, {\Delta y}_{3}, \Delta {z}_{3} $$ -r, \mathrm{0, 0} $$ -r, \mathrm{0, 0} $$ \mathrm{r}, \mathrm{0, 0} $$ 0, -r, 0 $$ \mathrm{0, 0}, -r $$ \mathrm{0, 0}, 0 $$ 0, r, 0 $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, r $
    $ {\Delta x}_{4}, \Delta {y}_{4}, \Delta {z}_{4} $$ 0, r, 0 $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 2}r, 0 $$ r, \mathrm{0, 0} $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, r $$ \mathrm{0, 0}, 0 $$ r, \mathrm{0, 0} $$ \mathrm{0, 0}, -r $
    $ \Delta {x}_{5}, \Delta {y}_{5}, \Delta {z}_{5} $$0,-r, 0$$ \mathrm{0, 0}, 0 $$ 0, -2 r, 0 $$ -r, \mathrm{0, 0} $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, -r $$ \mathrm{0, 0}, 0 $$ r, \mathrm{0, 0} $$ \mathrm{0, 0}, -r $
    $ {\Delta x}_{6}, \Delta {y}_{6}, \Delta {z}_{6} $$ \mathrm{0, 0}, r $$ \mathrm{0, 0}, -r $$ \mathrm{0, 0}, -r $$ \mathrm{0, 0}, 0 $$ r, \mathrm{0, 0} $$ 0, r, 0 $$ 0, -r, 0 $$ -r, \mathrm{0, 0} $$ \mathrm{0, 0}, 0 $
    $ {\Delta x}_{7}, \Delta {y}_{7}, \Delta {z}_{7} $$ \mathrm{0, 0}, -r $$ \mathrm{0, 0}, r $$ \mathrm{0, 0}, r $$ \mathrm{0, 0}, 0 $$ -r, \mathrm{0, 0} $$ 0, -r, 0 $$ 0, -r, 0 $$ -r, \mathrm{0, 0} $$ \mathrm{0, 0}, 0 $
    DownLoad: CSV

    表 2  SF6的A1g, Eg, T2g和T2u振动模式的振动频率ω1, ω2, ω3ω4

    Table 2.  Vibrational frequencies ω1, ω2, ω3 and ω4 of the vibrational modes A1g, Eg, T2g and T2u of SF6

    MRCI/6-311G*HF
    /6-311G*
    MP2/6-311G*CISD/6-311G*CCSD(T)/6-311G*B3LYP/6-311g*Expt[12]
    $ {\omega }_{1}/\mathrm{c}{\mathrm{m}}^{-1} $809824726806719706787
    $ {\omega }_{2}/\mathrm{c}{\mathrm{m}}^{-1} $650697625684627611655
    $ {\omega }_{3}/\mathrm{c}{\mathrm{m}}^{-1} $542588502541500467524
    $ {\omega }_{4}/\mathrm{c}{\mathrm{m}}^{-1} $362377335364334311355
    l0/(10–10 m)1.5581.5471.5861.5571.5861.5931.565
    DownLoad: CSV
  • [1]

    徐光宪, 黎乐民, 王德民 2009 量子化学(中)(第二版) (北京: 科学出版社) 第342, 343页

    Xu G X, Li L M, Wang D M 2009 Quantum Chemistry (Vol. 2) (2nd Ed.) (Beijing: Science Press) pp342, 343 (in Chinese)

    [2]

    李晨曦, 郭迎春, 王兵兵 2017 物理学报 66 103101Google Scholar

    Li C X, Guo Y C, Wang B B 2017 Acta Phys. Sin. 66 103101Google Scholar

    [3]

    Johnson R D Computational Chemistry Comparison and Benchmark Data Base, https://cccbdb.nist.gov/vibs1x.asp [2021-11-10]

    [4]

    周朕蕊, 韩冬, 赵明月, 张国强 2020 电工技术学报 35 4998Google Scholar

    Zhou L R, Han D, Zhao M Y, Zhang G Q 2020 Trans. Chin. Electrotech. Soc. 35 4998Google Scholar

    [5]

    Okubo H, Beroual A 2011 IEEE Electr. Insul. Mag. 27 34Google Scholar

    [6]

    Zhang X, Yu L, Gui Y, Hu W 2016 Appl. Surf. Sci. 367 259Google Scholar

    [7]

    武瑞琪, 郭迎春, 王兵兵 2019 物理学报 68 080201Google Scholar

    Wu R Q, Guo Y C, Wang B B 2019 Acta Phys. Sin. 68 080201Google Scholar

    [8]

    Ferré A, Boguslavskiy A E, Dagan M, Blanchet V, Bruner B D, Burgy F, Camper A, Descamps D, Fabre B, Fedorov N, Gaudin J, Geoffroy G, Mikosch J, Patchkovskii S, Petit S, Ruchon T, Soifer H, Staedter D, Wilkinson I, Stolow A, Dudovich N, Mairesse Y 2015 Nat. Commun. 6 5952Google Scholar

    [9]

    Wagner N L, Wuest A, Christov I P, Popmintchev T, Zhou X, Murnane M M, Kapteyn H C 2006 Proc. Natl. Acad. Sci. U. S. A. 103 13279Google Scholar

    [10]

    Jose J, Lucchese R R 2015 Chem. Phys. 447 64Google Scholar

    [11]

    Nguyen N T, Lucchese R R, Lin C D, Le A T 2016 Phys. Rev. A 93 063419Google Scholar

    [12]

    McDowell, R S, Krohn B J, Flicker H, Vasquez M C 1986 Spectrochim. Acta, Part A 42 351Google Scholar

    [13]

    Chrysos M, Rachet F, Kremer D 2014 J. Chem. Phys. 140 124308Google Scholar

    [14]

    Faye M, Boudon V, Loëte M 2016 J. Mol. Spectrosc. 325 35Google Scholar

    [15]

    Chapados C, Birnbaum G 1988 J. Mol. Spectrosc. 132 323Google Scholar

    [16]

    Kremer D, Rachet F, Chrysos M 2013 J. Chem. Phys. 138 174308Google Scholar

    [17]

    Eisfeld W 2011 J. Chem. Phys. 134 054303Google Scholar

    [18]

    Bin T, Longfei Z, Fangyuan H, Zongchang L, Qinqin L, Chenyao L, Liping Z, Jieming Z 2018 AIP Adv. 8 015016Google Scholar

    [19]

    Watanabe N, Hirayama T, Takahashi M 2019 Phys. Rev. A 99 062708Google Scholar

    [20]

    Werner H J, Knowles P J, Knizia G, Manby F R, Schütz M 2012 Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 242Google Scholar

    [21]

    Werner H J, Knowles P J, Manby F, Black J A, Doll K, Hebelmann A, Kats D, Köhn A, Korona T, Kreplin D A, Ma Q, Miller T F, Mitrushchenkov A, Peterson K A, Polyak I, Rauhut G, Sibaev M R 2020 J. Chem. Phys. 152 144107Google Scholar

    [22]

    巴音贺希格 1996 大学物理 8 12Google Scholar

    Bayanheshig 1996 College Physics 8 12Google Scholar

  • [1] Cao Shan, Li Jun, Liu Yuan-Qiong, Wang Kai, Lin Wei, Lei Hai-Le. Effect of local coordination environment on molecule vibration in N2-molecule solid. Acta Physica Sinica, 2016, 65(3): 033103. doi: 10.7498/aps.65.033103
    [2] Hao Dan-Hui, Kong Fan-Jie, Jiang Gang. Structure and potential energy function of PuNO molecules. Acta Physica Sinica, 2015, 64(15): 153103. doi: 10.7498/aps.64.153103
    [3] Xiong Xiao-Ling, Wei Hong-Yuan, Chen Wen. Structure and potential energy function for the ground state (X2)of TiN molecule. Acta Physica Sinica, 2012, 61(1): 013401. doi: 10.7498/aps.61.013401
    [4] Xu Yong-Qiang, Peng Wei-Cheng, Wu Hua. Structures and potential energy functions of the ground states of YH,YD,YT molecules. Acta Physica Sinica, 2012, 61(4): 043105. doi: 10.7498/aps.61.043105
    [5] Xiao Xia-Jie, Han Xiao-Qin, Liu Yu-Fang. Structure and potential energy functionof XF2(X=B,N) molecular ground state. Acta Physica Sinica, 2011, 60(6): 063102. doi: 10.7498/aps.60.063102
    [6] Du Quan, Wang Ling, Chen Xiao-Hong, Wang Hong-Yan, Gao Tao, Zhu Zheng-He. Structure and analytic potential energy function of the molecules BeH, H2 and BeH2. Acta Physica Sinica, 2009, 58(1): 178-184. doi: 10.7498/aps.58.178
    [7] Jiang Li-Juan, Liu Yu-Fang, Liu Zhen-Zhong, Han Xiao-Qin. The structure and potential energy function investigation on SiX2(X=H,F) molecules. Acta Physica Sinica, 2009, 58(1): 201-208. doi: 10.7498/aps.58.201
    [8] Wang Qing-Mei, Ren Ting-Qi, Zhu Ji-Liang. Structure and potential energy function of the ground state of GaH(D,T). Acta Physica Sinica, 2009, 58(8): 5270-5273. doi: 10.7498/aps.58.5270
    [9] Wang Qing-Mei, Ren Ting-Qi, Zhu Ji-Liang. Structure and potential energy function of the ground state of BiH(D,T). Acta Physica Sinica, 2009, 58(8): 5266-5269. doi: 10.7498/aps.58.5266
    [10] Li Quan, Zhu Zheng-He. The potential energy function and thermodynamic properties of AuZn and AuAl for the ground states and low-lying excited states. Acta Physica Sinica, 2008, 57(6): 3419-3424. doi: 10.7498/aps.57.3419
    [11] Xu Guo-Liang, Lü Wen-Jing, Xiao Xiao-Hong, Zhang Xian-Zhou, Liu Yu-Fang, Zhu Zun-Lue, Sun Jin-Feng. Study on the potential energy function for the ground state (X1Σ+)of SiO molecule by density functional theory. Acta Physica Sinica, 2008, 57(12): 7577-7580. doi: 10.7498/aps.57.7577
    [12] Kong Fan-Jie, Du Ji-Guang, Jiang Gang. The structure and potential energy function of PdCO molecule. Acta Physica Sinica, 2008, 57(1): 149-154. doi: 10.7498/aps.57.149
    [13] Zhu Ying-Tao, Yang Chuan-Lu, Wang Mei-Shan, Dong Yong-Mian. First-principles calculations on the electrical structures and vibration frequencies of β-Si3N4. Acta Physica Sinica, 2008, 57(2): 1048-1053. doi: 10.7498/aps.57.1048
    [14] Xu Mei, Wang Rong-Kai, Linghu Rong-Feng, Yang Xiang-Dong. Structures and potential energy functions of the ground states of BeH, BeD, BeT molecules. Acta Physica Sinica, 2007, 56(2): 769-773. doi: 10.7498/aps.56.769
    [15] Shi De-Heng, Sun Jin-Feng, Ma Heng, Zhu Zun-Lue. Investigation of analytic potential energy function, harmonic frequency and vibrational levels for the 23Σ+g state of spin-aligned dimer 7Li2. Acta Physica Sinica, 2007, 56(4): 2085-2091. doi: 10.7498/aps.56.2085
    [16] Li Quan, Zhu Zheng-He. Structure and potential energy function of CH, NH and OH free radical ground and low-lying states. Acta Physica Sinica, 2006, 55(1): 102-106. doi: 10.7498/aps.55.102
    [17] Huang Ping, Zhu Zheng-He. Potentional energy function of CrHn(n=0,+1,+2). Acta Physica Sinica, 2006, 55(12): 6302-6307. doi: 10.7498/aps.55.6302
    [18] Luo De-Li, Meng Da-Qiao, Zhu Zheng-He. Potential energy functions and molecular reaction dynamics for LiH, LiO and LiOH. Acta Physica Sinica, 2003, 52(10): 2438-2442. doi: 10.7498/aps.52.2438
    [19] Xue Wei-Dong, Wang Hong-Yan, Zhu Zheng-He, Zhang Guang-Feng, Zhou Le-Xi, Chen Chang-An, Sun Ying. . Acta Physica Sinica, 2002, 51(11): 2480-2484. doi: 10.7498/aps.51.2480
    [20] LUO DE-LI, SUN YING, LIU XIAO-YA, JIANG GANG, MENG DA-QIAO, ZHU ZHENG-HE. STRUCTURE AND POTENTIAL ENERGY FUNCTION INVESTIGATION ON UH AND UH2 MOLECULES. Acta Physica Sinica, 2001, 50(10): 1896-1901. doi: 10.7498/aps.50.1896
Metrics
  • Abstract views:  8602
  • PDF Downloads:  207
  • Cited By: 0
Publishing process
  • Received Date:  15 November 2021
  • Accepted Date:  14 December 2021
  • Available Online:  26 January 2022
  • Published Online:  05 May 2022

/

返回文章
返回