Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism of electrically driven metal-insulator phase transition in vanadium dioxide nanowires

Wang Ze-Lin Zhang Zhen-Hua Zhao Zhe Shao Rui-Wen Sui Man-Ling

Citation:

Mechanism of electrically driven metal-insulator phase transition in vanadium dioxide nanowires

Wang Ze-Lin, Zhang Zhen-Hua, Zhao Zhe, Shao Rui-Wen, Sui Man-Ling
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Vanadium dioxide (VO2) is well known for its metal-insulator transition (MIT) at 341 K.Normally,the VO2 presents a metallic rutile (R) phase above the Tc,but an insulator (monoclinic,M) phase below the Tc.Besides the thermally driven mode,the phase transition can also be triggered electrically,which is common in electron devices like field effect transistors and actuators.Due to the electron correlation,the Mott transition associated with electronelectron interaction as well as the Peierls transition involving electron-lattice interaction are both believed to drive the transition of VO2,although the actual MIT mechanism is still under debate in condensed matter physics.The Coulomb screening of the electron hopping can be broken by injecting enough carriers.However,the issue is more complicated in the electrically-triggered MIT of VO2 due to the Joule heat of current and the carrier injection of field effect.In this work, we study the electrically induced MIT in VO2 nanowires by in-situ transmission electron microscopy (TEM).We build a closed circuit under the TEM by using in-situ electric TEM holder to capture the changes of VO2 in electron structure and phase structure simultaneously.An alternating bias voltage is applied to the VO2 nanowire while the selected area electron diffraction (SAED) patterns of VO2 nanowire are recorded using Gatan Oneview fast camera.The current rises or drops suddenly in the current-voltage curve (I-V curve),indicating a phase transition,through which the SAED pattern of nanowire is recoded every 5 ms.By correspondence analysis between the SAED patterns and the I-V data at every moment,a transition state of insulating R phase is observed,which is obviously different from the normal state of the metallic R phase or the insulating M phase.The existence of the insulating R phase indicates that electron structure transforms prior to the phase transition.The decoupling phenomenon reveals a predominant role of electron-electron interaction.Moreover,by feedback strategy of the circuit,the current through the metallic nanowire of VO2 remains unchanged,and thus keeping the Joule heating in the nanowire constant,the phase transition from metal to insulator does not happen until the voltage decreases to about 1 V.When phase transition to insulator happens in voltage stepdown,even stronger Joule heating is generated because of the increased resistance of VO2 nanowire.Therefore,the VO2 phase transition is triggered electrically by the carrier injection instead of the Joule heating.The injecting of enough carriers can break the screening effect to activate the electron hopping and initiate the phase transition.The deduction is confirmed by the decoupling phenomenon in the insulating R phase.Additionally,the polarized shift rather than the phase transition of the VO2 nanowire is observed in the non-contact electric field mode,which also supports the cause of the carrier injection for the electric induced MIT.The results prove the electron-correlation-driven MIT mechanism, or so called Mott mechanism,and open the new way for electron microscopy used to study the electron correlated MIT.
      Corresponding author: Sui Man-Ling, mlsui@bjut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0700700), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51621003), and the Key Project of Beijing Natural Science Foundation, China (Grant No. KZ201310005002).
    [1]

    Zhang Z H, Guo H, Ding W Q, Zhang B, Lu Y, Ke X X, Liu W W, Chen F R, Sui M L 2017 Nano Lett. 17 851

    [2]

    Joyeeta N, Haglund Jr R F 2008 J. Phys. Condens. Matter 20 264016

    [3]

    Lopez R, Feldman L C, Haglund Jr R F 2004 Phys. Rev. Lett. 93 177403

    [4]

    Luo M H, Xu M J, Huang Q W, Li P, He Y B 2016 Acta Phys. Sin. 65 047201 (in Chinese)[罗明海, 徐马记, 黄其伟, 李派, 何云斌 2016 物理学报 65 047201]

    [5]

    Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383

    [6]

    Tan X G, Yao T, Long R, Sun Z H, Feng Y J, Cheng H, Yuan X, Zhang W Q, Liu Q H, Wu C Z, Xie Y 2012 Sci. Rep. 2 466

    [7]

    Morrison V R, Chatelain R P, Tiwari K L, Hendaoui A, Bruhcs A, Chaker M, Siwick B J 2014 Science 346 445

    [8]

    Laverock J, Kittiwatanakul S, Zakharov A, Niu Y, Chen B, Wolf S, Lu J, Smith K 2014 Phys. Rev. Lett. 113 216402

    [9]

    Zhang S, Chou J Y, Lauhon L J 2009 Nano Lett. 9 4527

    [10]

    Kumar S, Strachan J P, Pickett M D, Bratkovsky A, Nishi Y, Williams R S 2014 Adv. Mater. 26 7505

    [11]

    Driscoll T, Quinn J, Massimiliano D V, Dimitri N B, Seo G, Lee Y W, Kim H T, David R S 2012 Phys. Rev. B 86 094203

    [12]

    Nakano M, Okuyama D, Shibuya K, Mizumaki M, Ohsumi H, Yoshida M, Takata M, Kawasaki M, Tokura Y, Arima T, Iwasa Y 2015 Adv. Electron. Mater. 1 1500093

    [13]

    Zimmers A, Aigouy L, Mortier M, Sharoni A, Wang S, West K, Ramirez J, Schuller I K 2013 Phys. Rev. Lett. 110 056601

    [14]

    Qiu D H, Wen Q Y, Yang Q H, Chen Z, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 217201 (in Chinese)[邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武 2013 物理学报 62 217201]

    [15]

    Wu B, Zimmers A, Aubin H, Ghosh R, Liu Y, Lopez R 2011 Phys. Rev. B 84 241410

    [16]

    Nakano M, Shibuya K, Okuyama D, Hatano T, Ono S, Kawasaki M, Iwasa Y, Tokura Y 2012 Nature 487 459

    [17]

    Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin S S 2013 Science 339 1402

    [18]

    Ji H, Wei J, Natelson D 2012 Nano Lett. 12 2988

    [19]

    Shibuya K, Sawa A 2016 Adv. Electron. Mater. 2 1500131

    [20]

    Jeong J, Aetukuri N B, Passarello D, Conradson S D, Samant M G, Parkin S S 2015 Proc. Natl. Acad. Sci. 112 1013

    [21]

    Ding W Q, Zhang Z H, Guo Z X, Sui M L 2014 J. Chin. Electron Microsc. Soc. 33 406 (in Chinese)[丁文强, 张振华, 郭振玺, 隋曼龄 2014 电子显微学报 33 406]

    [22]

    Perrine C, Jrme R, Valrie B, Murielle S, Olivier P, Vivian N, Luca O, Jean S, Hazemann J L, Bottero J Y 2007 J. Phys. Chem. B 111 5101

    [23]

    Zhang S X, Kim I S, Lauhon L J 2011 Nano Lett. 11 1443

    [24]

    Gao Y, Cao C, Dai L, Luo H, Kanehira M, Ding Y, Wang Z L 2012 Energy Environ. Sci. 5 8708

    [25]

    Gao P, Kang Z C, Fu W Y, Wang W L, Bai W D, Wang E G 2010 J. Am. Chem. Soc. 132 4197

    [26]

    Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2010 Phys. Rev. B 82 205101

    [27]

    Takeaki Y, Tomonori N, Akira T 2015 Nat. Commun. 6 10104

  • [1]

    Zhang Z H, Guo H, Ding W Q, Zhang B, Lu Y, Ke X X, Liu W W, Chen F R, Sui M L 2017 Nano Lett. 17 851

    [2]

    Joyeeta N, Haglund Jr R F 2008 J. Phys. Condens. Matter 20 264016

    [3]

    Lopez R, Feldman L C, Haglund Jr R F 2004 Phys. Rev. Lett. 93 177403

    [4]

    Luo M H, Xu M J, Huang Q W, Li P, He Y B 2016 Acta Phys. Sin. 65 047201 (in Chinese)[罗明海, 徐马记, 黄其伟, 李派, 何云斌 2016 物理学报 65 047201]

    [5]

    Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383

    [6]

    Tan X G, Yao T, Long R, Sun Z H, Feng Y J, Cheng H, Yuan X, Zhang W Q, Liu Q H, Wu C Z, Xie Y 2012 Sci. Rep. 2 466

    [7]

    Morrison V R, Chatelain R P, Tiwari K L, Hendaoui A, Bruhcs A, Chaker M, Siwick B J 2014 Science 346 445

    [8]

    Laverock J, Kittiwatanakul S, Zakharov A, Niu Y, Chen B, Wolf S, Lu J, Smith K 2014 Phys. Rev. Lett. 113 216402

    [9]

    Zhang S, Chou J Y, Lauhon L J 2009 Nano Lett. 9 4527

    [10]

    Kumar S, Strachan J P, Pickett M D, Bratkovsky A, Nishi Y, Williams R S 2014 Adv. Mater. 26 7505

    [11]

    Driscoll T, Quinn J, Massimiliano D V, Dimitri N B, Seo G, Lee Y W, Kim H T, David R S 2012 Phys. Rev. B 86 094203

    [12]

    Nakano M, Okuyama D, Shibuya K, Mizumaki M, Ohsumi H, Yoshida M, Takata M, Kawasaki M, Tokura Y, Arima T, Iwasa Y 2015 Adv. Electron. Mater. 1 1500093

    [13]

    Zimmers A, Aigouy L, Mortier M, Sharoni A, Wang S, West K, Ramirez J, Schuller I K 2013 Phys. Rev. Lett. 110 056601

    [14]

    Qiu D H, Wen Q Y, Yang Q H, Chen Z, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 217201 (in Chinese)[邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武 2013 物理学报 62 217201]

    [15]

    Wu B, Zimmers A, Aubin H, Ghosh R, Liu Y, Lopez R 2011 Phys. Rev. B 84 241410

    [16]

    Nakano M, Shibuya K, Okuyama D, Hatano T, Ono S, Kawasaki M, Iwasa Y, Tokura Y 2012 Nature 487 459

    [17]

    Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin S S 2013 Science 339 1402

    [18]

    Ji H, Wei J, Natelson D 2012 Nano Lett. 12 2988

    [19]

    Shibuya K, Sawa A 2016 Adv. Electron. Mater. 2 1500131

    [20]

    Jeong J, Aetukuri N B, Passarello D, Conradson S D, Samant M G, Parkin S S 2015 Proc. Natl. Acad. Sci. 112 1013

    [21]

    Ding W Q, Zhang Z H, Guo Z X, Sui M L 2014 J. Chin. Electron Microsc. Soc. 33 406 (in Chinese)[丁文强, 张振华, 郭振玺, 隋曼龄 2014 电子显微学报 33 406]

    [22]

    Perrine C, Jrme R, Valrie B, Murielle S, Olivier P, Vivian N, Luca O, Jean S, Hazemann J L, Bottero J Y 2007 J. Phys. Chem. B 111 5101

    [23]

    Zhang S X, Kim I S, Lauhon L J 2011 Nano Lett. 11 1443

    [24]

    Gao Y, Cao C, Dai L, Luo H, Kanehira M, Ding Y, Wang Z L 2012 Energy Environ. Sci. 5 8708

    [25]

    Gao P, Kang Z C, Fu W Y, Wang W L, Bai W D, Wang E G 2010 J. Am. Chem. Soc. 132 4197

    [26]

    Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2010 Phys. Rev. B 82 205101

    [27]

    Takeaki Y, Tomonori N, Akira T 2015 Nat. Commun. 6 10104

  • [1] Zhou Xuan-Chi, Jiao Yong-Jie. Controllable growth and electronic phase transitions for metastable perovskite rare-earth nickelate films. Acta Physica Sinica, 2024, 73(19): 197102. doi: 10.7498/aps.73.20240584
    [2] Zhou Xuan-Chi, Li Hai-Fan. Research on the electronic phase transitions in strongly correlated oxides and multi-field regulation. Acta Physica Sinica, 2024, 73(11): 117102. doi: 10.7498/aps.73.20240289
    [3] Wang Jing-Li, Dong Xian-Chao, Yin Liang, Yang Zhi-Xiong, Wan Hong-Dan, Chen He-Ming, Zhong Kai. Vanadium dioxide based terahertz dual-frequency multi-function coding metasurface. Acta Physica Sinica, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [4] Ni Yu, Sun Jian, Quan Ya-Min, Luo Dong-Qi, Song Yun. Dynamical mean-field theory of two-orbital Hubbard model. Acta Physica Sinica, 2022, 71(14): 147103. doi: 10.7498/aps.71.20220286
    [5] Fang Xiao-Nan, Wei Qin, Sui Na-Na, Kong Zhi-Yong, Liu Jing, Du Yan-Ling. Spacer-layer-tunable ferromagnetic half-metal-ferromagnetic insulator transition in SrVO3/SrTiO3 superlattice. Acta Physica Sinica, 2022, 71(23): 237301. doi: 10.7498/aps.71.20221765
    [6] Fang Xiao-Nan, Du Yan-Ling, Wu Chen-Yu, Liu Jing. First principle study of tuning metal-insulator transition and magnetic properties of (SrVO3)5/(SrTiO3)1 (111) heterostructures. Acta Physica Sinica, 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [7] Li Yun, Lu Wen-Jian. Tuning metal-insulator transition in δ-doped La:SrTiO3 superlattice by varying doping dimensionality and concentration. Acta Physica Sinica, 2021, 70(22): 227102. doi: 10.7498/aps.70.20210830
    [8] Yan Zhong-Bao, Sun Shuai, Zhang Shuai, Zhang Yao, Shi Wei, Sheng Quan, Shi Chao-Du, Zhang Jun-Xiang, Zhang Gui-Zhong, Yao Jian-Quan. Effect of phase transition of vanadium dioxide on resonance characteristics of terahertz anti-resonant fiber and its applications. Acta Physica Sinica, 2021, 70(16): 168701. doi: 10.7498/aps.70.20210084
    [9] Sun Xiao-Ning, Qu Zhao-Ming, Wang Qing-Guo, Yuan Yang. Voltage induced phase transition of polyethene glycol composite film filled with VO2 nanoparticles. Acta Physica Sinica, 2020, 69(24): 247201. doi: 10.7498/aps.69.20200834
    [10] Li Jia-Hui, Zhang Ya-Ting, Li Ji-Ning, Li Jie, Li Ji-Tao, Zheng Cheng-Long, Yang Yue, Huang Jin, Ma Zhen-Zhen, Ma Cheng-Qi, Hao Xuan-Ruo, Yao Jian-Quan. Terahertz coding metasurface based vanadium dioxide. Acta Physica Sinica, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [11] Yang Pei-Di, Ouyang Chen, Hong Tian-Shu, Zhang Wei-Hao, Miao Jun-Gang, Wu Xiao-Jun. Study of phase transition of single crystal and polycrystalline vanadium dioxide nanofilms by using continuous laser pump-terahertz probe technique. Acta Physica Sinica, 2020, 69(20): 204205. doi: 10.7498/aps.69.20201188
    [12] Sun Xiao-Ning, Qu Zhao-Ming, Wang Qing-Guo, Yuan Yang, Liu Shang-He. Research progress of metal-insulator phase transition in VO2 induced by electric field. Acta Physica Sinica, 2019, 68(10): 107201. doi: 10.7498/aps.68.20190136
    [13] Jiao Yuan-Yuan, Sun Jian-Ping, Prashant Shahi, Liu Zhe-Hong, Wang Bo-Sen, Long You-Wen, Cheng Jin-Guang. Effect of Pb doping on metallic state of cubic pyrochlore Cd2Ru2O7. Acta Physica Sinica, 2018, 67(12): 127402. doi: 10.7498/aps.67.20180343
    [14] Gu Yan-Ni, Wu Xiao-Shan. Oxygen vacancy induced band gap narrowing of the low-temperature vanadium dioxide phase. Acta Physica Sinica, 2017, 66(16): 163102. doi: 10.7498/aps.66.163102
    [15] Luo Ming-Hai, Xu Ma-Ji, Huang Qi-Wei, Li Pai, He Yun-Bin. Research progress of metal-insulator phase transition mechanism in VO2. Acta Physica Sinica, 2016, 65(4): 047201. doi: 10.7498/aps.65.047201
    [16] Xiong Ying, Wen Qi-Ye, Tian Wei, Mao Qi, Chen Zhi, Yang Qing-Hui, Jing Yu-Lan. Researches on the electrical properties of vanadium oxide thin films on Si substrates. Acta Physica Sinica, 2015, 64(1): 017102. doi: 10.7498/aps.64.017102
    [17] Wang Chang-Lei, Tian Zhen, Xing Qi-Rong, Gu Jian-Qiang, Liu Feng, Hu Ming-Lie, Chai Lu, Wang Qing-Yue. Photo-induced insulator-metal transition of silicon-based VO2 nanofilm by THz time domain spectroscopy. Acta Physica Sinica, 2010, 59(11): 7857-7862. doi: 10.7498/aps.59.7857
    [18] Peng Zhen-Sheng, Tang Yong-Gang, Yan Guo-Qing, Guo Huan-Yin, Mao Qiang. Peculiar transport properties and CMR effect of La0.67Sr0.08Na0.25MnO3. Acta Physica Sinica, 2007, 56(3): 1707-1712. doi: 10.7498/aps.56.1707
    [19] Chen Chang-Hong, Huang De-Xiu, Zhu Peng. Infrared absorption of VO2 based Mott transition field effect transistor dependent on optical phonon in α-SiN: H films. Acta Physica Sinica, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
    [20] Wang Li-Xia, Li Jian-Ping, He Xiu-Li, Gao Xiao-Guang. Fabrication of vanadium dioxide films at low temperature and researches on properties of the films. Acta Physica Sinica, 2006, 55(6): 2846-2851. doi: 10.7498/aps.55.2846
Metrics
  • Abstract views:  7987
  • PDF Downloads:  250
  • Cited By: 0
Publishing process
  • Received Date:  26 April 2018
  • Accepted Date:  20 May 2018
  • Published Online:  05 September 2018

/

返回文章
返回