-
VO2 is a metal oxide that has a thermally-induced phase-transition. In the vicinity of 341 K, VO2 undergoes a reversible transition from the high-temperature metal phase to the low-temperature insulator phase. Associated with the metal-insulator transition (MIT), there are drastic changes in its optical, electrical and magnetic characteristics. These make VO2 an attractive material for various applications, such as optical and/or electrical switches, smart glass, storage media, etc. Thus, the reversible metal-insulator phase transition in VO2 has long been a research hotspot. However, the metal-insulator transition mechanism in VO2 has been a subject of debate for several decades, and yet there is no unified explanation. This paper first describes changes of the crystal structure and the energy band structure during VO2 phase transition. With regard to the crystal structure, VO2 transforms from the low-temperature monoclinic phase VO2(M) into the high-temperature stable rutile phase VO2(R), and in some special cases, this phase transition process may also involve a metastable monoclinic VO2(B) phase and a tetragonal VO2(A) phase. In respect of the energy band structure, VO2 undergoes a transition from the low-temperature insulator phase into a high-temperature metal phase. In the band structure of low-temperature monoclinic phase, there is a band gap of about 0.7 eV between d// and * bands, and the Fermi level falls exactly into the band gap, which makes VO2 electronically insulating. In the band structure of high-temperature rutile phase, the Fermi level falls into the overlapping portion of the * and d// bands, which makes VO2 electronically metallic. Next, this paper summarizes the current research status of the physical mechanism underlying the VO2 MIT. Three kinds of theoretical perspectives, supported by corresponding experimental results, have been proposed so far, which includes electron-correlation-driven MIT, Peierls-like structure-driven MIT, and MIT driven by the interplay of both electron-correlation and Peierls-like structural phase transition. It is noted that recent reports mostly focus on the controversywhether VO2 is a Mott insulator, and whether the structural phase transition and the MIT accurately occur simultaneously in VO2. Finally, the paper points out the near-future development direction of the VO2 research.
-
Keywords:
- Vanadium dioxide /
- metal-insulator phase transition /
- Mott transition /
- Peierls transition
[1] Morin F J 1959 Phys. Rev. Lett. 3 34
[2] Chain E E 1991 Appl. Opt. 30 2782
[3] Mott N F 1968 Rev. Mod. Phys. 40 677
[4] Adler D 1968 Rev. Mod. Phys. 40 714
[5] Lysenko S, Rua A J, Vikhnin V, Jimenez J, Fernandez F, Liu H 2006 Appl. Surf. Sci. 252 5512
[6] Soltani M, Chaker M, Haddad E, Kruzelesky R 2006 Meas. Sci. Technol. 17 1052
[7] Manning T D, Parkin I P, Pemble M E, Sheel D, Vernardou D 2004 Chem. Mater. 16 744
[8] Lee J S, Ortolani M, Schade U, Chang Y J, Noh T W 2007 Appl. Phys. Lett. 91 133509
[9] Li J G, Hui L F, Feng H, Qin L J, Gong T, An Z W 2015 Chin. J. Vac. Sci. Technol. 35 243 (in Chinese) [李建国, 惠龙飞, 冯昊, 秦利军, 龚婷, 安忠维 2015 真空科学与技术学报 35 243]
[10] Zhu H Q, Li Y, Ye W J, Li C B 2014 Acta Phys. Sin. 63 238101 (in Chinese) [朱慧群, 李毅, 叶伟杰,李春波 2014 物理学报 63 238101]
[11] Aetukuri N B, Gray A X, Drouard M, Cossale M, Gao L, Reid A H, Kukreja R, Ohldag H, Jenkins C A, Arenholz E, Roche K P, Drr H A, Samant M G, Parkin S S P 2013 Nat. Phys. 9 661
[12] Budai J D, Hong J W, Manley M E, Specht E D, Li C W, Tischler J Z, Abernathy D L, Said A H, Leu B M, Boatner L A, McQueeney R J, Delaire O 2014 Nature 515 535
[13] Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383
[14] Gervais F, Kress W 1985 Phys. Rev. B 31 4809
[15] Haverkort M W, Hu Z, Tanaka A, Reichelt W, Streltsov S V, Korotin M A Anisimov V I Hsieh H H Lin H J Chen C T Khomskii D I Tjeng L H 2005 Phys. Rev. Lett. 95 196404
[16] Koethe T C, Hu Z, Haverkort M W, Schler-Langeheine C Venturini F, Brookes N B Tjernberg O Reichelt W Hsieh H H, Lin H J Chen C T, Tjeng L H 2006 Phys. Rev. Lett. 97 116402
[17] Fillingham P J 1967 J Appl Phys 38 4823
[18] Becker M F, Buckman A B, Walser R M 1994 Appl. Phys. Lett. 65 1507
[19] Theobald F 1977 J. Less-Comm. Met. 53 55
[20] Guinneton F, Sauques L, Valmalette J C, Cros F, Gavarri J R 2005 J. Phys. Chem. Solids 66 63
[21] Eyert V 2002 Ann. Phys. 11 650
[22] Mott N F 1949 Proc. Phys. Soc. A 62 416
[23] Goodenough J B, Hong H Y P 1973 Phys. Rev. B 8 1323
[24] Kim H T, Kim B J Lee Y W Chae B G, Yun S J, Kang K Y 2007 Physica C 460-462 1076
[25] Qazilbash M M, Burch K S, Whisler D, Shrekenhamer D, Chae B G, Kim H T, Basov D N 2006 Phys. Rev. B 74 205118
[26] Zhang S X, Chou J Y, Lauhon L J 2009 Nano Lett. 9 4527
[27] Kittiwatanakul S, Wolf S A, Lu J W 2014 Appl. Phys. Lett. 105 073112
[28] Nag J, Haglund Jr. R F, Payzant E A, More K L 2012 J. Appl. Phys. 112 103532
[29] Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Yun S J, Balatsky A V, Maple M B, Keilmann F, Kim H T, Basov D N 2007 Science 318 1750
[30] Kim H T, Lee Y W, Kim B J, Chae B G, Yun S J, Kang K Y, Han K J, Yee K J, Lim Y S 2006 Phys. Rev. Lett. 97 266401
[31] Cavalleri A, Dekorsy T, Chong H H W, Kieffer J C, Schoenlein R W 2004 Phys. Rev. B 70 161102
[32] Biermann S, Poteryaev A, Lichtenstein A I, Georges A 2005 Phys. Rev. Lett. 94 026404
[33] Tanaka A 2004 J. Phys. Soc. Jpn. 73 152
[34] Yao T, Zhang X D, Sun Z H, Liu S J, Huang Y Y Xie Y, Wu C Z, Yuan X, Zhang W Q, Wu Z Y, Pan G Q, Hu F C, Wu L H, Liu Q H, Wei S Q 2010 Phys. Rev. Lett. 105 226405
[35] Hou J W, Zhang J W, Wang Z P, Zhang Z M, Ding Z J 2013 J. Nanosci. Nanotechnol. 13 1543
[36] Tan X G, Yao T, Long R, Sun Z H, Feng Y J, Cheng H, Yuan X, Zhang W Q, Liu Q H, Wu C Z, Xie Y, Wei S Q 2012 Sci. Rep. 2 466
[37] Cao J, Ertekin E, Srinivasan V, Fan W, Huang S, Zheng H, Yim J W L, Khanal D R, Ogletree D F, Grossman J C, Wu J 2009 Nat. Nanotechnol. 4 732
[38] Sohn J I, Joo H J, Ahn D, Lee H H, Porter A E, Kim K, Kang D J, Welland M E 2009 Nano Lett. 9 3392
[39] Wu J Q, Gu Q, Guiton B S, de Leon N P, Ouyang L, Park H 2006 Nano Lett. 6 2313
-
[1] Morin F J 1959 Phys. Rev. Lett. 3 34
[2] Chain E E 1991 Appl. Opt. 30 2782
[3] Mott N F 1968 Rev. Mod. Phys. 40 677
[4] Adler D 1968 Rev. Mod. Phys. 40 714
[5] Lysenko S, Rua A J, Vikhnin V, Jimenez J, Fernandez F, Liu H 2006 Appl. Surf. Sci. 252 5512
[6] Soltani M, Chaker M, Haddad E, Kruzelesky R 2006 Meas. Sci. Technol. 17 1052
[7] Manning T D, Parkin I P, Pemble M E, Sheel D, Vernardou D 2004 Chem. Mater. 16 744
[8] Lee J S, Ortolani M, Schade U, Chang Y J, Noh T W 2007 Appl. Phys. Lett. 91 133509
[9] Li J G, Hui L F, Feng H, Qin L J, Gong T, An Z W 2015 Chin. J. Vac. Sci. Technol. 35 243 (in Chinese) [李建国, 惠龙飞, 冯昊, 秦利军, 龚婷, 安忠维 2015 真空科学与技术学报 35 243]
[10] Zhu H Q, Li Y, Ye W J, Li C B 2014 Acta Phys. Sin. 63 238101 (in Chinese) [朱慧群, 李毅, 叶伟杰,李春波 2014 物理学报 63 238101]
[11] Aetukuri N B, Gray A X, Drouard M, Cossale M, Gao L, Reid A H, Kukreja R, Ohldag H, Jenkins C A, Arenholz E, Roche K P, Drr H A, Samant M G, Parkin S S P 2013 Nat. Phys. 9 661
[12] Budai J D, Hong J W, Manley M E, Specht E D, Li C W, Tischler J Z, Abernathy D L, Said A H, Leu B M, Boatner L A, McQueeney R J, Delaire O 2014 Nature 515 535
[13] Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383
[14] Gervais F, Kress W 1985 Phys. Rev. B 31 4809
[15] Haverkort M W, Hu Z, Tanaka A, Reichelt W, Streltsov S V, Korotin M A Anisimov V I Hsieh H H Lin H J Chen C T Khomskii D I Tjeng L H 2005 Phys. Rev. Lett. 95 196404
[16] Koethe T C, Hu Z, Haverkort M W, Schler-Langeheine C Venturini F, Brookes N B Tjernberg O Reichelt W Hsieh H H, Lin H J Chen C T, Tjeng L H 2006 Phys. Rev. Lett. 97 116402
[17] Fillingham P J 1967 J Appl Phys 38 4823
[18] Becker M F, Buckman A B, Walser R M 1994 Appl. Phys. Lett. 65 1507
[19] Theobald F 1977 J. Less-Comm. Met. 53 55
[20] Guinneton F, Sauques L, Valmalette J C, Cros F, Gavarri J R 2005 J. Phys. Chem. Solids 66 63
[21] Eyert V 2002 Ann. Phys. 11 650
[22] Mott N F 1949 Proc. Phys. Soc. A 62 416
[23] Goodenough J B, Hong H Y P 1973 Phys. Rev. B 8 1323
[24] Kim H T, Kim B J Lee Y W Chae B G, Yun S J, Kang K Y 2007 Physica C 460-462 1076
[25] Qazilbash M M, Burch K S, Whisler D, Shrekenhamer D, Chae B G, Kim H T, Basov D N 2006 Phys. Rev. B 74 205118
[26] Zhang S X, Chou J Y, Lauhon L J 2009 Nano Lett. 9 4527
[27] Kittiwatanakul S, Wolf S A, Lu J W 2014 Appl. Phys. Lett. 105 073112
[28] Nag J, Haglund Jr. R F, Payzant E A, More K L 2012 J. Appl. Phys. 112 103532
[29] Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Yun S J, Balatsky A V, Maple M B, Keilmann F, Kim H T, Basov D N 2007 Science 318 1750
[30] Kim H T, Lee Y W, Kim B J, Chae B G, Yun S J, Kang K Y, Han K J, Yee K J, Lim Y S 2006 Phys. Rev. Lett. 97 266401
[31] Cavalleri A, Dekorsy T, Chong H H W, Kieffer J C, Schoenlein R W 2004 Phys. Rev. B 70 161102
[32] Biermann S, Poteryaev A, Lichtenstein A I, Georges A 2005 Phys. Rev. Lett. 94 026404
[33] Tanaka A 2004 J. Phys. Soc. Jpn. 73 152
[34] Yao T, Zhang X D, Sun Z H, Liu S J, Huang Y Y Xie Y, Wu C Z, Yuan X, Zhang W Q, Wu Z Y, Pan G Q, Hu F C, Wu L H, Liu Q H, Wei S Q 2010 Phys. Rev. Lett. 105 226405
[35] Hou J W, Zhang J W, Wang Z P, Zhang Z M, Ding Z J 2013 J. Nanosci. Nanotechnol. 13 1543
[36] Tan X G, Yao T, Long R, Sun Z H, Feng Y J, Cheng H, Yuan X, Zhang W Q, Liu Q H, Wu C Z, Xie Y, Wei S Q 2012 Sci. Rep. 2 466
[37] Cao J, Ertekin E, Srinivasan V, Fan W, Huang S, Zheng H, Yim J W L, Khanal D R, Ogletree D F, Grossman J C, Wu J 2009 Nat. Nanotechnol. 4 732
[38] Sohn J I, Joo H J, Ahn D, Lee H H, Porter A E, Kim K, Kang D J, Welland M E 2009 Nano Lett. 9 3392
[39] Wu J Q, Gu Q, Guiton B S, de Leon N P, Ouyang L, Park H 2006 Nano Lett. 6 2313
Catalog
Metrics
- Abstract views: 18365
- PDF Downloads: 1590
- Cited By: 0