Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of metal-insulator phase transition in VO2 induced by electric field

Sun Xiao-Ning Qu Zhao-Ming Wang Qing-Guo Yuan Yang Liu Shang-He

Citation:

Research progress of metal-insulator phase transition in VO2 induced by electric field

Sun Xiao-Ning, Qu Zhao-Ming, Wang Qing-Guo, Yuan Yang, Liu Shang-He
PDF
HTML
Get Citation
  • Vanadium dioxide (VO2) is a typical representative of strongly correlated electronic systems, which undergoes a reversible transition from the insulator phase to metal phase, induced by a certain threshold for each of temperature, electric field, illumination and pressure. The crystal structure of VO2 will undergo a reversible transition from monoclinic structure to tetragonal rutile structure when the phase transition happens, which is considered as the microscopic mechanism of VO2 metal-insulator transition (MIT). The conductivity of VO2 can be increased by 2—5 orders of magnitude when the MIT is induced by electric field, which makes VO2 possess good application prospects in the fields of restructurable slot antenna, terahertz radiation, intelligent electromagnetic protection materials, etc. Therefore, the reversible metal-insulator phase transition in VO2, induced by electric field, has long been a research hotspot, which however, has been seldom reported. Firstly, in this paper, the changes of the crystal structure and energy band structure of VO2 during MIT are introduced briefly. The methods of regulating the phase transition are given, including temperature control, bandwidth and band-filling control. Then, the important discovery and research progress of VO2 MIT induced by electric field based on the research method, response time, critical threshold field and phase transition mechanism are summarized and reviewed comprehensively. The method of studying the VO2 phase transition relates to its structure, including planar structure, three-terminal gated ?eld effect switch and sandwiched layer structure. The sandwich layer structure is more suitable for investigating the MIT characteristics of VO2 in experimental stage because of its structural advantage of preparation and test. The response time of VO2 MIT can be completed in nanoseconds, of which the substantial parameter has been revealed by many reports, also including the excellent reversibility of VO2 MIT. The MIT critical threshold field of the VO2 film can be tuned by element doping, coexistence of multivalent vanadium oxides and multiple physical field synergism effectively. The MIT mechanism of VO2 induced by electric field has been proposed so far, which includes joule heating mechanism and pure electric field mechanism, and the latter is considered to be more likely to give a reasonable explanation. Finally, in the paper the current problems of the VO2 MIT research and the near-future development direction of the VO2 MIT materials are also pointed out.
      Corresponding author: Qu Zhao-Ming, iamqzm3990@163.com ; Liu Shang-He, liushh@cae.cn
    • Funds: Project supported by the Foundation of National Key Laboratory on Electromagnetic Environment Effects, China (Grant No. 614220504030617).
    [1]

    Mott N F 1949 Proc. Phys. Soc. 62 416Google Scholar

    [2]

    Morin F 1959 Phys. Rev. Lett. 3 34Google Scholar

    [3]

    Fuls E, Hensler D, Ross A 1967 Appl. Phys. Lett. 10 199Google Scholar

    [4]

    陈培祖, 李毅, 蒋蔚, 徐婷婷, 伍征义, 张娇, 刘志敏 2017 纳米技术 42 387

    Chen P Z, Li Y, Jiang W, Xu T T, Wu Z Y, Zhang J, Liu Z M 2017 Semiconductor Technology 42 387

    [5]

    Tashman J, Lee J, Paik H, Moyer J, Misra R, Mundy J, Spila T, Merz T, Schubert J, Muller D 2014 Appl. Phys. Lett. 104 063104Google Scholar

    [6]

    Chae B G, Kim H T, Yun S J 2008 Electrochem. Solid-State Lett. 11 D53Google Scholar

    [7]

    Youn D H, Lee J W, Chae B G, Kim H T, Maeng S L, Kang K Y 2004 J. Appl. Phys. 95 1407Google Scholar

    [8]

    Chae B G, Youn D H, Kim H T, Maeng S, Kang K Y 2003 Mater. Sci. 103 11616

    [9]

    王泽霖, 张振华, 赵喆, 邵瑞文, 隋曼龄 2018 物理学报 67 177201Google Scholar

    Wang Z L, Zhang Z H, Zhao Z, Shao R W, Sui M L 2018 Acta Phys. Sin. 67 177201Google Scholar

    [10]

    Golan G, Axelevitch A, Sigalov B, Gorenstein B 2003 Microelectron. J. 34 255Google Scholar

    [11]

    Chen S, Ma H, Dai J, Yi X 2007 Appl. Phys. Lett. 101 117

    [12]

    邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武 2013 物理学报 62 217201Google Scholar

    Qiu D H, Wen Q Y, Yang Q H, Chen Z, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 217201Google Scholar

    [13]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337Google Scholar

    [14]

    罗明海, 徐马记, 黄其伟, 李派, 何云斌 2016 物理学报 65 047201Google Scholar

    Luo M H, Xu M J, Huang Q W, Li P, He Y B 2016 Acta Phys. Sin. 65 047201Google Scholar

    [15]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys.: Condens. Matter 12 8837Google Scholar

    [16]

    Anagnostou D E, Teeslink T S, Torres D, Sepúlveda N 2016 IEEE International Symposium on Antenna and Propagation Pajardo, June 26-July 1 2016, p1055

    [17]

    Ding F, Zhong S M, Bozhevolnyi S I 2018 Adv.Optical Mater. 2018 1701204

    [18]

    Anagnostou D E, Goussetis G, Torres D, Sepulveda N 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT) Athens, Greece, May 01, 2017 p146

    [19]

    Solyankin P M, Esaulkov M N, Sidoro A Y, Shkurinov A P, Luo Q, Zhang X C 2015 40th International Conference on Infrared Milimeter and Terahertz Waves(IRMMW-THz) Fajardo, Aug. 23—28 2015, p2162

    [20]

    孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 物理学报 62 017202Google Scholar

    Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202Google Scholar

    [21]

    Vitale W A, Tamagnone M, Émond N, Drogoff B L, Capdevila S, Skrivervik A, Chaker M, Mosig J R, Ionescu A M 2017 Nature 7 41546

    [22]

    Hashemi M R, Yang S, Jarra M, Wang T Y, Sepulveda N 2015 IEEE International Symposium on Antennas and Propagation&USNC/URSI National Radio Science Meeting Vancouver, BC, Canada, July 19-24 2015 p77

    [23]

    Zhou Y, Chen X, Ko C, Yang Z, Mouli C, Ramanathan S 2013 IEEE Electron Dev. Lett. 34 220Google Scholar

    [24]

    Valle J, Kalcheim Y, Trastoy J, Charnukha A, Basov D N, Schuller I K 2017 Phys. Rev. Applied 8 054041Google Scholar

    [25]

    Won S, Lee S Y, Hwang J, Park J, Seo H 2017 Electron. Mater. Lett. 14 14

    [26]

    Lu P, Qu Z M, Wang Q G, Wang Y, Cheng W 2018 e-Polymers 18 85Google Scholar

    [27]

    Qu Z M, Lu P, Yuan Y, Wang Q G 2018 IOP Conference Series: Materials Science and Engineering 301 012013Google Scholar

    [28]

    雷忆三, 孙丽君 2012 现代工业经济和信息化 18 74

    Lei Y S, Sun L J 2012 Modern Industrial Economy and Informationization 18 74

    [29]

    刘嘉玮, 王建江, 许宝才 2017 功能材料 48 10029

    Liu J W, Wang J J, Xu B C 2017 Journal of Functional Materals 48 10029

    [30]

    Stefanovich G, Pergament A, Kazakova E 2000 Tech. Phys. Lett. 26 478Google Scholar

    [31]

    Karakotsou C, Kalomiros J, Hanias M, Anagnostopoulos A, Spyridelis J 1992 Phys. Rev. B: Condens. Matter 45 11627Google Scholar

    [32]

    Baum P, Yang D S, Zewail A H 2007 Science 318 788Google Scholar

    [33]

    Wu B, Zimmers A, Aubin H, Ghosh R, Liu Y, Lopez R 2011 Phys. Rev. B: Condens. Matter 84 241410Google Scholar

    [34]

    Kim H T, Chae B G, Youn D H, Kim G, Kang K Y, Lee S J, Kim K, Lim Y S 2005 Appl. Phys. Lett. 86 242101Google Scholar

    [35]

    Kim H T, Kim B J, Choi S, Chae B G, Lee Y W, Driscoll T, Qazilbash M M, Basov D 2010 J. Appl. Phys. 107 023702Google Scholar

    [36]

    Leroy J, Crunteanu A, Bessaudou A, Cosset F, Champeaux C, Orlianges J C 2012 Appl. Phys. Lett. 100 213507Google Scholar

    [37]

    李昂, 王庆国, 王腾, 王研, 成伟 2016 兵器材料科学与工程 39 52

    Li A, Wang Q G, Wang T, Wang Y, Cheng W 2016 Ordnance Material Science and Engineering 39 52

    [38]

    Shan S H, Wang Q G, Qu Z M, Cheng W, Li A 2017 Advances in Engineering Research 110 129

    [39]

    Sun X N, Wang Q G, He C A, Qu Z M 2018 3rd International Conference on Materials Science Resource and Environment Engineering Chongqing, October 26-28, 2018 p030001-1

    [40]

    Nakano M, Shibuya K, Okuyama D, Hatano T, Ono S, Kawasaki M, Iwasa Y, Tokura Y 2012 Nature 487 459Google Scholar

    [41]

    Chu Q Q, Song Z Y, Liu Q H 2018 Appl. Phys. Express 11 082203

    [42]

    张娇, 李毅, 刘志敏, 李政鹏, 黄雅琴, 裴江恒, 方宝英, 王晓华, 肖寒 2017 物理学报 66 238101Google Scholar

    Zhang J, Li Y, Liu Z M, Li Z P, Huang Y Q, Pei J H, Fang B Y, Wang X H, Xiao H 2017 Acta Phys. Sin. 66 238101Google Scholar

    [43]

    Cho C R, Cho S, Vadim S, Jung R, Yoo I 2006 Thin Solid Films 495 375Google Scholar

    [44]

    Ruzmetov D, Gopalakrishnan G, Deng J, Narayanamurti V, Ramanathan S 2009 J. Appl. Phys. 106 50

    [45]

    Hao R, Li Y, Liu F, Sun Y, Tang J, Chen P, Jiang W, Wu Z, Xu T, Fang B 2016 Infrared Phys. Tech. 75 82Google Scholar

    [46]

    He X F, Xu J, Xu X, Gu C, Chen F, Wu B, Wang C, Xing H, Chen X, Chu J 2015 Appl. Phys. Lett. 106 093106Google Scholar

    [47]

    Chae B G, Kim H T, Youn D H, Kang K Y 2005 Physica B 369 76Google Scholar

    [48]

    Michael F B, Buckman A B, Rodger M W, Thierny L, Patrick G, Alain B 1995 J. Appl. Phys. 79 2404

    [49]

    山世浩, 王庆国, 曲兆明, 成伟, 李昂 2018 材料导报 32 870Google Scholar

    Shan S H, Wang Q G, Qu Z M, Cheng W, Li A 2018 Mater. Rev. 32 870Google Scholar

    [50]

    王庆国, 何长安, 曲兆明, 山世浩, 李昂, 成伟, 王妍 2018 安全与电磁兼容 4 14

    Wang Q G, He C A, Qu Z M, Shan S H, Li A, Cheng W, Wang Y 2018 Safety and EMC 4 14

    [51]

    陈飞, 黄康, 顾聪聪, 徐晓峰 2016 东华大学学报(自然科学版) 42 131Google Scholar

    Chen F, Huang K, Gu C C, Xu X F 2016 Journal of Donghua University, Natural Sciences 42 131Google Scholar

    [52]

    付学成, 李金华, 谢建生, 袁宁一 2010 红外技术 32 173Google Scholar

    Fu X C, Li J H, Xie J S, Yuan N Y 2010 Infrared Technology 32 173Google Scholar

    [53]

    Ji C H, Wu Z M, Wua X F, Wang J, Liu X C, Gou J, Zhou H X, Yao W, Jiang Y D 2018 Appl. Surf. Sci. 455 622Google Scholar

    [54]

    Dai L, Chen S, Liu J J, Gao Y F, Zhou J D, Chen Z, Cao C X, Luo H J, Kanehira M 2013 Phys.Chem. Chem.Phys. 15 11723Google Scholar

    [55]

    吕维忠, 黄德贞, 罗仲宽, 刘 波 2015 深圳大学学报理工版 32 385

    Lv W Z, Huang D Z, Luo Z K, Liu B 2015 Journal of Shenzhen University Science and Engineering 32 385

    [56]

    Lu S W, Hou L S, Gan F X 1999 Thin Solid Films 353 40Google Scholar

    [57]

    Jin P, Nakao S, Tanemura S 1998 Thin Solid Films 324 151Google Scholar

    [58]

    Zhang K K, Pan G Y, Dang Y Y, Qi W Y, Liu Q, Li Y B, Liu J C 2017 3rd Annual 2017 International Conference on Sustainable Development (ICSD2017) Tianjin, China, July 14-16, 2017 p164

    [59]

    Rajeswaran B, Umarji A M 2016 AIP Advances 6 035215Google Scholar

    [60]

    山世浩, 王庆国, 曲兆明 2017 兵器材料科学与工程 40 40

    Shan S H, Wang Q G, Qu Z M 2017 Ordnance Material Science and Engineering 40 40

    [61]

    Liao G M, Chen S, Fan L L, Chen Y L, Wang X Q, Ren H, Zhang Z M, Zou C W 2016 AIP Advances 6 045014−1

    [62]

    Kumar S, Pickett M D, Strachan J P, Gibson G, Nishi Y, Williams R S 2013 J. Adv. Mater. 25 6128Google Scholar

    [63]

    Freeman E, Stone G, Shukla N, Paik H, Moyer J A, Cai Z, Wen H, Engel-Herbert R, Schlom D G, Gopalan V 2013 Appl. Phys. Lett. 103 263109Google Scholar

    [64]

    Singh S, Horrocks G, Marley P M, Shi Z, Banerjee S, Sambandamurthy G 2015 Phys. Rev. B: Condens. Matter 92 155121Google Scholar

    [65]

    Bongjin S M, Yoon J, Mo S K, Chen K, Nobumichi T, Dejoie C, Kunz M, Liu Z, Park C, Moon K, Ju H 2013 Appl. Phys. Lett. 103 061902Google Scholar

    [66]

    Li D, Sharma A A, Gala D K, Shukla N, Paik H, Datta S, Schlom D G, Bain J A, Skowronski M 2016 ACS Appl. Mater. Inter. 8 12908Google Scholar

    [67]

    Stoliar P, Rozenberg M, Janod E, Corraze B, Tranchant J, Cario L 2014 Phys. Rev. B 90 045146Google Scholar

    [68]

    Gray A X, Hoffmann M C, Jeong J, Aetukuri N P, Zhu D, Hwang H Y, Brandt N C, Wen H, Sternbach A J, Bonetti S, Reid A H, Kukreja R, Graves C, Wang T, Granitzka P, Chen Z, Higley D J, Chase T, Jal E, Abreu E, Liu M K, Weng T C, Sokaras D, Nordlund D, Chollet M, Alonso-Mori R, Lemke H, Glownia J M, Trigo M, Zhu Y, Ohldag H, Freeland J W, Samant M G, Berakdar J, Averitt R D, Nelson K A, Parkin S S P, Dürr H A 2018 Phys. Rev. B: Condens. Matter 98 045104Google Scholar

    [69]

    Rozen J, Lopez R, Haglund R F, Feldman L C 2006 Appl. Phys. Lett. 88 081902Google Scholar

    [70]

    Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Sun J Y, Balatsky A V, Maple M B, Keilmann F, Kim H T, Basov D N 2007 Science 318 1750Google Scholar

    [71]

    梁继然, 胡明, 阚强, 后顺保, 梁秀琴, 陈弘达 2012 纳米技术与精密工程 10 160Google Scholar

    Liang J R, Hu M, Kan Q, Hou S B, Liang X Q, Chen H D 2012 Nanotechnology and Precision Engineering 10 160Google Scholar

    [72]

    Matsunami D, Fujita A 2015 Appl. Phys. Lett. 106 4494

    [73]

    Shi Y, Chen L Q 2019 Phys. Rev. Appl. 11 014059Google Scholar

    [74]

    Zhang Y, Ramanathan S 2011 Solid-State Electron. 62 161Google Scholar

    [75]

    Gopalakrishnan G, Ruzmetov D, Ramanathan S 2009 J. Mater. Sci. Lett. 44 5345Google Scholar

    [76]

    Sakai J, Kurisu M 2008 Phys. Rev. B: Condens. Matter 78 033106Google Scholar

    [77]

    Joushaghani A, Jeong J, Paradis S, Alain D, Stewart Aitchison J, Poon J K 2014 Appl. Phys. Lett. 104 221904Google Scholar

  • 图 1  VO2晶体结构图[32] (a) M相; (b) R相

    Figure 1.  Crystal structure of VO2: (a) M phase; (b) R phase.

    图 2  电场作用下VO2薄膜中的电流变化曲线[8]

    Figure 2.  Changes of currents by application ofthe electric field to VO2 thin films[8].

    图 3  VO2器件结构示意图 (a)平面结构[36]; (b)三端场效应管结构[7]; (c)三明治结构[45]

    Figure 3.  Diagram of VO2 device structure: (a) Planar structure[36]; (b) three-terminal gated field effect switches[7]; (c) layered structure[45].

    图 4  量子阱结构示意图(内嵌图为量子阱结构的电容器件模型[46]

    Figure 4.  Schematic of quantum well structure (inset shows a capacitance device model for the quantum well structure)[46].

    图 5  短脉冲响应曲线[36]

    Figure 5.  Response curve of short pulse[36].

    图 6  (a) Sawyer-Tower测试电路; (b)方波脉冲电压与峰值电流关系图(内嵌图为加载7 V和10 V开关电压时的电压和电流曲线)[47]

    Figure 6.  (a) Sawyer-Tower test circuit; (b) peak current as a function of square wave pulse voltage (the inset illustrates voltage and current curves using applied switching pulses of 7 V and 10 V)[47].

    图 7  VO2薄膜温度调控相变电场曲线图(电极间距5 mm)[60]

    Figure 7.  MIT electric field curve controlled by temperature for VO2 thin film (the electrode spacing is 5 mm) [60].

    图 8  电场强度调控相变温度的关系图[60]

    Figure 8.  MIT temperature curve controlled by electric field intensity[60].

    图 9  (a) VO2纳米纤维; (b)测试器件; (c)温度响应曲线[64]

    Figure 9.  (a) VO2 nanofibers; (b) test device; (c) curve of temperature response.[64]

  • [1]

    Mott N F 1949 Proc. Phys. Soc. 62 416Google Scholar

    [2]

    Morin F 1959 Phys. Rev. Lett. 3 34Google Scholar

    [3]

    Fuls E, Hensler D, Ross A 1967 Appl. Phys. Lett. 10 199Google Scholar

    [4]

    陈培祖, 李毅, 蒋蔚, 徐婷婷, 伍征义, 张娇, 刘志敏 2017 纳米技术 42 387

    Chen P Z, Li Y, Jiang W, Xu T T, Wu Z Y, Zhang J, Liu Z M 2017 Semiconductor Technology 42 387

    [5]

    Tashman J, Lee J, Paik H, Moyer J, Misra R, Mundy J, Spila T, Merz T, Schubert J, Muller D 2014 Appl. Phys. Lett. 104 063104Google Scholar

    [6]

    Chae B G, Kim H T, Yun S J 2008 Electrochem. Solid-State Lett. 11 D53Google Scholar

    [7]

    Youn D H, Lee J W, Chae B G, Kim H T, Maeng S L, Kang K Y 2004 J. Appl. Phys. 95 1407Google Scholar

    [8]

    Chae B G, Youn D H, Kim H T, Maeng S, Kang K Y 2003 Mater. Sci. 103 11616

    [9]

    王泽霖, 张振华, 赵喆, 邵瑞文, 隋曼龄 2018 物理学报 67 177201Google Scholar

    Wang Z L, Zhang Z H, Zhao Z, Shao R W, Sui M L 2018 Acta Phys. Sin. 67 177201Google Scholar

    [10]

    Golan G, Axelevitch A, Sigalov B, Gorenstein B 2003 Microelectron. J. 34 255Google Scholar

    [11]

    Chen S, Ma H, Dai J, Yi X 2007 Appl. Phys. Lett. 101 117

    [12]

    邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武 2013 物理学报 62 217201Google Scholar

    Qiu D H, Wen Q Y, Yang Q H, Chen Z, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 217201Google Scholar

    [13]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337Google Scholar

    [14]

    罗明海, 徐马记, 黄其伟, 李派, 何云斌 2016 物理学报 65 047201Google Scholar

    Luo M H, Xu M J, Huang Q W, Li P, He Y B 2016 Acta Phys. Sin. 65 047201Google Scholar

    [15]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys.: Condens. Matter 12 8837Google Scholar

    [16]

    Anagnostou D E, Teeslink T S, Torres D, Sepúlveda N 2016 IEEE International Symposium on Antenna and Propagation Pajardo, June 26-July 1 2016, p1055

    [17]

    Ding F, Zhong S M, Bozhevolnyi S I 2018 Adv.Optical Mater. 2018 1701204

    [18]

    Anagnostou D E, Goussetis G, Torres D, Sepulveda N 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT) Athens, Greece, May 01, 2017 p146

    [19]

    Solyankin P M, Esaulkov M N, Sidoro A Y, Shkurinov A P, Luo Q, Zhang X C 2015 40th International Conference on Infrared Milimeter and Terahertz Waves(IRMMW-THz) Fajardo, Aug. 23—28 2015, p2162

    [20]

    孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 物理学报 62 017202Google Scholar

    Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202Google Scholar

    [21]

    Vitale W A, Tamagnone M, Émond N, Drogoff B L, Capdevila S, Skrivervik A, Chaker M, Mosig J R, Ionescu A M 2017 Nature 7 41546

    [22]

    Hashemi M R, Yang S, Jarra M, Wang T Y, Sepulveda N 2015 IEEE International Symposium on Antennas and Propagation&USNC/URSI National Radio Science Meeting Vancouver, BC, Canada, July 19-24 2015 p77

    [23]

    Zhou Y, Chen X, Ko C, Yang Z, Mouli C, Ramanathan S 2013 IEEE Electron Dev. Lett. 34 220Google Scholar

    [24]

    Valle J, Kalcheim Y, Trastoy J, Charnukha A, Basov D N, Schuller I K 2017 Phys. Rev. Applied 8 054041Google Scholar

    [25]

    Won S, Lee S Y, Hwang J, Park J, Seo H 2017 Electron. Mater. Lett. 14 14

    [26]

    Lu P, Qu Z M, Wang Q G, Wang Y, Cheng W 2018 e-Polymers 18 85Google Scholar

    [27]

    Qu Z M, Lu P, Yuan Y, Wang Q G 2018 IOP Conference Series: Materials Science and Engineering 301 012013Google Scholar

    [28]

    雷忆三, 孙丽君 2012 现代工业经济和信息化 18 74

    Lei Y S, Sun L J 2012 Modern Industrial Economy and Informationization 18 74

    [29]

    刘嘉玮, 王建江, 许宝才 2017 功能材料 48 10029

    Liu J W, Wang J J, Xu B C 2017 Journal of Functional Materals 48 10029

    [30]

    Stefanovich G, Pergament A, Kazakova E 2000 Tech. Phys. Lett. 26 478Google Scholar

    [31]

    Karakotsou C, Kalomiros J, Hanias M, Anagnostopoulos A, Spyridelis J 1992 Phys. Rev. B: Condens. Matter 45 11627Google Scholar

    [32]

    Baum P, Yang D S, Zewail A H 2007 Science 318 788Google Scholar

    [33]

    Wu B, Zimmers A, Aubin H, Ghosh R, Liu Y, Lopez R 2011 Phys. Rev. B: Condens. Matter 84 241410Google Scholar

    [34]

    Kim H T, Chae B G, Youn D H, Kim G, Kang K Y, Lee S J, Kim K, Lim Y S 2005 Appl. Phys. Lett. 86 242101Google Scholar

    [35]

    Kim H T, Kim B J, Choi S, Chae B G, Lee Y W, Driscoll T, Qazilbash M M, Basov D 2010 J. Appl. Phys. 107 023702Google Scholar

    [36]

    Leroy J, Crunteanu A, Bessaudou A, Cosset F, Champeaux C, Orlianges J C 2012 Appl. Phys. Lett. 100 213507Google Scholar

    [37]

    李昂, 王庆国, 王腾, 王研, 成伟 2016 兵器材料科学与工程 39 52

    Li A, Wang Q G, Wang T, Wang Y, Cheng W 2016 Ordnance Material Science and Engineering 39 52

    [38]

    Shan S H, Wang Q G, Qu Z M, Cheng W, Li A 2017 Advances in Engineering Research 110 129

    [39]

    Sun X N, Wang Q G, He C A, Qu Z M 2018 3rd International Conference on Materials Science Resource and Environment Engineering Chongqing, October 26-28, 2018 p030001-1

    [40]

    Nakano M, Shibuya K, Okuyama D, Hatano T, Ono S, Kawasaki M, Iwasa Y, Tokura Y 2012 Nature 487 459Google Scholar

    [41]

    Chu Q Q, Song Z Y, Liu Q H 2018 Appl. Phys. Express 11 082203

    [42]

    张娇, 李毅, 刘志敏, 李政鹏, 黄雅琴, 裴江恒, 方宝英, 王晓华, 肖寒 2017 物理学报 66 238101Google Scholar

    Zhang J, Li Y, Liu Z M, Li Z P, Huang Y Q, Pei J H, Fang B Y, Wang X H, Xiao H 2017 Acta Phys. Sin. 66 238101Google Scholar

    [43]

    Cho C R, Cho S, Vadim S, Jung R, Yoo I 2006 Thin Solid Films 495 375Google Scholar

    [44]

    Ruzmetov D, Gopalakrishnan G, Deng J, Narayanamurti V, Ramanathan S 2009 J. Appl. Phys. 106 50

    [45]

    Hao R, Li Y, Liu F, Sun Y, Tang J, Chen P, Jiang W, Wu Z, Xu T, Fang B 2016 Infrared Phys. Tech. 75 82Google Scholar

    [46]

    He X F, Xu J, Xu X, Gu C, Chen F, Wu B, Wang C, Xing H, Chen X, Chu J 2015 Appl. Phys. Lett. 106 093106Google Scholar

    [47]

    Chae B G, Kim H T, Youn D H, Kang K Y 2005 Physica B 369 76Google Scholar

    [48]

    Michael F B, Buckman A B, Rodger M W, Thierny L, Patrick G, Alain B 1995 J. Appl. Phys. 79 2404

    [49]

    山世浩, 王庆国, 曲兆明, 成伟, 李昂 2018 材料导报 32 870Google Scholar

    Shan S H, Wang Q G, Qu Z M, Cheng W, Li A 2018 Mater. Rev. 32 870Google Scholar

    [50]

    王庆国, 何长安, 曲兆明, 山世浩, 李昂, 成伟, 王妍 2018 安全与电磁兼容 4 14

    Wang Q G, He C A, Qu Z M, Shan S H, Li A, Cheng W, Wang Y 2018 Safety and EMC 4 14

    [51]

    陈飞, 黄康, 顾聪聪, 徐晓峰 2016 东华大学学报(自然科学版) 42 131Google Scholar

    Chen F, Huang K, Gu C C, Xu X F 2016 Journal of Donghua University, Natural Sciences 42 131Google Scholar

    [52]

    付学成, 李金华, 谢建生, 袁宁一 2010 红外技术 32 173Google Scholar

    Fu X C, Li J H, Xie J S, Yuan N Y 2010 Infrared Technology 32 173Google Scholar

    [53]

    Ji C H, Wu Z M, Wua X F, Wang J, Liu X C, Gou J, Zhou H X, Yao W, Jiang Y D 2018 Appl. Surf. Sci. 455 622Google Scholar

    [54]

    Dai L, Chen S, Liu J J, Gao Y F, Zhou J D, Chen Z, Cao C X, Luo H J, Kanehira M 2013 Phys.Chem. Chem.Phys. 15 11723Google Scholar

    [55]

    吕维忠, 黄德贞, 罗仲宽, 刘 波 2015 深圳大学学报理工版 32 385

    Lv W Z, Huang D Z, Luo Z K, Liu B 2015 Journal of Shenzhen University Science and Engineering 32 385

    [56]

    Lu S W, Hou L S, Gan F X 1999 Thin Solid Films 353 40Google Scholar

    [57]

    Jin P, Nakao S, Tanemura S 1998 Thin Solid Films 324 151Google Scholar

    [58]

    Zhang K K, Pan G Y, Dang Y Y, Qi W Y, Liu Q, Li Y B, Liu J C 2017 3rd Annual 2017 International Conference on Sustainable Development (ICSD2017) Tianjin, China, July 14-16, 2017 p164

    [59]

    Rajeswaran B, Umarji A M 2016 AIP Advances 6 035215Google Scholar

    [60]

    山世浩, 王庆国, 曲兆明 2017 兵器材料科学与工程 40 40

    Shan S H, Wang Q G, Qu Z M 2017 Ordnance Material Science and Engineering 40 40

    [61]

    Liao G M, Chen S, Fan L L, Chen Y L, Wang X Q, Ren H, Zhang Z M, Zou C W 2016 AIP Advances 6 045014−1

    [62]

    Kumar S, Pickett M D, Strachan J P, Gibson G, Nishi Y, Williams R S 2013 J. Adv. Mater. 25 6128Google Scholar

    [63]

    Freeman E, Stone G, Shukla N, Paik H, Moyer J A, Cai Z, Wen H, Engel-Herbert R, Schlom D G, Gopalan V 2013 Appl. Phys. Lett. 103 263109Google Scholar

    [64]

    Singh S, Horrocks G, Marley P M, Shi Z, Banerjee S, Sambandamurthy G 2015 Phys. Rev. B: Condens. Matter 92 155121Google Scholar

    [65]

    Bongjin S M, Yoon J, Mo S K, Chen K, Nobumichi T, Dejoie C, Kunz M, Liu Z, Park C, Moon K, Ju H 2013 Appl. Phys. Lett. 103 061902Google Scholar

    [66]

    Li D, Sharma A A, Gala D K, Shukla N, Paik H, Datta S, Schlom D G, Bain J A, Skowronski M 2016 ACS Appl. Mater. Inter. 8 12908Google Scholar

    [67]

    Stoliar P, Rozenberg M, Janod E, Corraze B, Tranchant J, Cario L 2014 Phys. Rev. B 90 045146Google Scholar

    [68]

    Gray A X, Hoffmann M C, Jeong J, Aetukuri N P, Zhu D, Hwang H Y, Brandt N C, Wen H, Sternbach A J, Bonetti S, Reid A H, Kukreja R, Graves C, Wang T, Granitzka P, Chen Z, Higley D J, Chase T, Jal E, Abreu E, Liu M K, Weng T C, Sokaras D, Nordlund D, Chollet M, Alonso-Mori R, Lemke H, Glownia J M, Trigo M, Zhu Y, Ohldag H, Freeland J W, Samant M G, Berakdar J, Averitt R D, Nelson K A, Parkin S S P, Dürr H A 2018 Phys. Rev. B: Condens. Matter 98 045104Google Scholar

    [69]

    Rozen J, Lopez R, Haglund R F, Feldman L C 2006 Appl. Phys. Lett. 88 081902Google Scholar

    [70]

    Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Sun J Y, Balatsky A V, Maple M B, Keilmann F, Kim H T, Basov D N 2007 Science 318 1750Google Scholar

    [71]

    梁继然, 胡明, 阚强, 后顺保, 梁秀琴, 陈弘达 2012 纳米技术与精密工程 10 160Google Scholar

    Liang J R, Hu M, Kan Q, Hou S B, Liang X Q, Chen H D 2012 Nanotechnology and Precision Engineering 10 160Google Scholar

    [72]

    Matsunami D, Fujita A 2015 Appl. Phys. Lett. 106 4494

    [73]

    Shi Y, Chen L Q 2019 Phys. Rev. Appl. 11 014059Google Scholar

    [74]

    Zhang Y, Ramanathan S 2011 Solid-State Electron. 62 161Google Scholar

    [75]

    Gopalakrishnan G, Ruzmetov D, Ramanathan S 2009 J. Mater. Sci. Lett. 44 5345Google Scholar

    [76]

    Sakai J, Kurisu M 2008 Phys. Rev. B: Condens. Matter 78 033106Google Scholar

    [77]

    Joushaghani A, Jeong J, Paradis S, Alain D, Stewart Aitchison J, Poon J K 2014 Appl. Phys. Lett. 104 221904Google Scholar

  • [1] Wang Jing-Li, Dong Xian-Chao, Yin Liang, Yang Zhi-Xiong, Wan Hong-Dan, Chen He-Ming, Zhong Kai. Vanadium dioxide based terahertz dual-frequency multi-function coding metasurface. Acta Physica Sinica, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [2] Che Jia-Yin, Chen Chao, Li Wei-Yan, Li Wei, Chen Yan-Jun. Advances in response time of strong-field ionization of atoms. Acta Physica Sinica, 2023, 72(19): 193301. doi: 10.7498/aps.72.20230983
    [3] Ding Fei-Xiang, Rong Xiao-Hui, Wang Hai-Bo, Yang Yang, Hu Zi-Lin, Dang Rong-Bin, Lu Ya-Xiang, Hu Yong-Sheng. Phase transitions of Na-ion layered oxide materials and their influence on properties. Acta Physica Sinica, 2022, 71(10): 108801. doi: 10.7498/aps.71.20220291
    [4] Yan Zhong-Bao, Sun Shuai, Zhang Shuai, Zhang Yao, Shi Wei, Sheng Quan, Shi Chao-Du, Zhang Jun-Xiang, Zhang Gui-Zhong, Yao Jian-Quan. Effect of phase transition of vanadium dioxide on resonance characteristics of terahertz anti-resonant fiber and its applications. Acta Physica Sinica, 2021, 70(16): 168701. doi: 10.7498/aps.70.20210084
    [5] Li Jia-Hui, Zhang Ya-Ting, Li Ji-Ning, Li Jie, Li Ji-Tao, Zheng Cheng-Long, Yang Yue, Huang Jin, Ma Zhen-Zhen, Ma Cheng-Qi, Hao Xuan-Ruo, Yao Jian-Quan. Terahertz coding metasurface based vanadium dioxide. Acta Physica Sinica, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [6] Sun Xiao-Ning, Qu Zhao-Ming, Wang Qing-Guo, Yuan Yang. Voltage induced phase transition of polyethene glycol composite film filled with VO2 nanoparticles. Acta Physica Sinica, 2020, 69(24): 247201. doi: 10.7498/aps.69.20200834
    [7] Yang Pei-Di, Ouyang Chen, Hong Tian-Shu, Zhang Wei-Hao, Miao Jun-Gang, Wu Xiao-Jun. Study of phase transition of single crystal and polycrystalline vanadium dioxide nanofilms by using continuous laser pump-terahertz probe technique. Acta Physica Sinica, 2020, 69(20): 204205. doi: 10.7498/aps.69.20201188
    [8] Wang Ze-Lin, Zhang Zhen-Hua, Zhao Zhe, Shao Rui-Wen, Sui Man-Ling. Mechanism of electrically driven metal-insulator phase transition in vanadium dioxide nanowires. Acta Physica Sinica, 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [9] Gu Yan-Ni, Wu Xiao-Shan. Oxygen vacancy induced band gap narrowing of the low-temperature vanadium dioxide phase. Acta Physica Sinica, 2017, 66(16): 163102. doi: 10.7498/aps.66.163102
    [10] Luo Ming-Hai, Xu Ma-Ji, Huang Qi-Wei, Li Pai, He Yun-Bin. Research progress of metal-insulator phase transition mechanism in VO2. Acta Physica Sinica, 2016, 65(4): 047201. doi: 10.7498/aps.65.047201
    [11] Xiong Ying, Wen Qi-Ye, Tian Wei, Mao Qi, Chen Zhi, Yang Qing-Hui, Jing Yu-Lan. Researches on the electrical properties of vanadium oxide thin films on Si substrates. Acta Physica Sinica, 2015, 64(1): 017102. doi: 10.7498/aps.64.017102
    [12] Yu Hai-Ling, Zhu Jia-Qi, Cao Wen-Xin, Han Jie-Cai. Process in preparation of metal-catalyzed graphene. Acta Physica Sinica, 2013, 62(2): 028201. doi: 10.7498/aps.62.028201
    [13] Lu Zhi-Peng, Zhu Wen-Jun, Lu Tie-Cheng. Ab initio study of the bcc-to-hcp transition mechanism in Fe under pressure. Acta Physica Sinica, 2013, 62(5): 056401. doi: 10.7498/aps.62.056401
    [14] Zheng Ya-Jian, Xuan Wen-Tao, Lu Da-Quan, Ouyang Shi-Gen, Hu Wei, Guo Qi. Power controlled short-range interactions between strongly nonlocal spatial soliton. Acta Physica Sinica, 2010, 59(2): 1075-1081. doi: 10.7498/aps.59.1075
    [15] Hou Li-Fei, Li Fang, Yuan Yong-Teng, Yang Guo-Hong, Liu Shen-Ye. Chemical vapor deposited diamond detectors for soft X-ray power measurement. Acta Physica Sinica, 2010, 59(2): 1137-1142. doi: 10.7498/aps.59.1137
    [16] Wang Chang-Lei, Tian Zhen, Xing Qi-Rong, Gu Jian-Qiang, Liu Feng, Hu Ming-Lie, Chai Lu, Wang Qing-Yue. Photo-induced insulator-metal transition of silicon-based VO2 nanofilm by THz time domain spectroscopy. Acta Physica Sinica, 2010, 59(11): 7857-7862. doi: 10.7498/aps.59.7857
    [17] Chen Chang-Hong, Huang De-Xiu, Zhu Peng. Infrared absorption of VO2 based Mott transition field effect transistor dependent on optical phonon in α-SiN: H films. Acta Physica Sinica, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
    [18] Tan Song-Lin, Zhang Hui, Cui Wen-Dong, Yuan Yuan, Zhang Peng-Xiang. Laser induced thermoelectric voltage effect in La0.67Pb0.33MnO3 thin films doped with Ag. Acta Physica Sinica, 2006, 55(8): 4226-4231. doi: 10.7498/aps.55.4226
    [19] Wang Li-Xia, Li Jian-Ping, He Xiu-Li, Gao Xiao-Guang. Fabrication of vanadium dioxide films at low temperature and researches on properties of the films. Acta Physica Sinica, 2006, 55(6): 2846-2851. doi: 10.7498/aps.55.2846
    [20] CHEN CHANG-HONG, YI XIN-JIAN, XIONG BI-FENG. INFRARED RESPONSIVITY OF UNCOOLED VO2-BASED THIN FILMS BOLOMETER. Acta Physica Sinica, 2001, 50(3): 450-452. doi: 10.7498/aps.50.450
Metrics
  • Abstract views:  14690
  • PDF Downloads:  513
  • Cited By: 0
Publishing process
  • Received Date:  24 January 2019
  • Accepted Date:  14 March 2019
  • Available Online:  01 May 2019
  • Published Online:  20 May 2019

/

返回文章
返回