Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Voltage induced phase transition of polyethene glycol composite film filled with VO2 nanoparticles

Sun Xiao-Ning Qu Zhao-Ming Wang Qing-Guo Yuan Yang

Citation:

Voltage induced phase transition of polyethene glycol composite film filled with VO2 nanoparticles

Sun Xiao-Ning, Qu Zhao-Ming, Wang Qing-Guo, Yuan Yang
PDF
HTML
Get Citation
  • In this paper, the voltage induced metal-insulator phase transition (MIT) of polyethene glycol (PEG) composite film is investigated based on VO2 nanoparticles prepared by the hydrothermal method and vacuum annealing process. High purity VO2 (B) nanoparticles are obtained after being treated in a hydrothermal reactor at 180 ℃ for 12 h by using vanadium pentoxide (V2O5) and oxalic acid (H2C2O4·2H2O) as raw materials. The X-ray diffraction (XRD) pattern shows that the prepared nano-powders are free of impurities, and the scanning electron microscope (SEM) pictures confirm that the micro-morphology is of a band-shaped nano-structure. Next, these products are heated in a vacuum quartz tube at 500 ℃ for different times. The XRD and differential scanning calorimeter (DSC) curves of the annealed samples prove that the VO2 (M) with MIT performance is successfully prepared. And the content of M phase in the sample increases with preparation time increasing. When the annealing time is longer than 60 min, all the samples are converted into materials with M phase. The SEM images show that the average length of the nano-powders decreases with the annealing time increasing from 10 min to 300 min. Then PEG coating containing VO2 (M) nanoparticles is applied between two electrodes with a pitch of 1 mm on printed circuit board (PCB). The V-I test is carried out after a 20 kΩ resistor has been connected in the circuit. The results display repeatable non-linear V-I curves indicating that the composite film undergoes an MIT phase transition under voltage. After it is activated for the first test, the MIT voltage and non-linear coefficient increase exponentially as the length of VO2 decreases. Besides, it is also found that the voltage across the material is maintained at around 10 V after the resistance has changed suddenly, which is similar to the behavior of diode clamping voltage. We believe that the phase transition voltage and non-linear coefficient of the VO2 composite film are influenced by the intra-particle potential barrier and the inter-layer potential barrier. The longer the average length of the nanoparticles, the higher the potential barrier between the interfaces in the conductive channels is, and thus increasing the phase transition voltage and phase transition coefficient. The activation phenomenon of the thin film is caused by reducing the barrier between particles during the first test. Furthermore, the results can prove that the electric field is the determinant of the phase transition during the VO2 composite film electrical field induced MIT of the VO2 composite film. However, after the phase transition, Joule heat plays a significant role in maintaining the low resistance state.
      Corresponding author: Wang Qing-Guo, qwang1964@163.com
    • Funds: Project supported by the Foundation of National Key Laboratory on Electromagnetic Environment Effects, China (Grant No. 614220504030617)
    [1]

    Surnev S, Ramsey M G, Netzer F P 2003 Prog. Surf. Sci. 73 117Google Scholar

    [2]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys. Condens. Matter 12 8837Google Scholar

    [3]

    Karakotsou C, Anagnostopoulos A N, Kambas K, Spyridelis J 1992 Phys. Rev. B 46 16144Google Scholar

    [4]

    Morin F J 1959 Phys. Rev. Lett. 3 34Google Scholar

    [5]

    王庆国, 何长安, 曲兆明, 山世浩, 李昂, 成伟, 王妍 2018 安全与电磁兼容 2018 14

    Wang Q G, He C A, Qu Z M, Shan S H, Li A, Cheng W, Wang Y 2018 Safety & EMC 2018 14

    [6]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337Google Scholar

    [7]

    Becker M F, Buckman A B, Walser R M, Lépine T, Georges P, Brun A 1996 J. Appl. Phys. 79 2404Google Scholar

    [8]

    Ji S, Zhao Y, Zhang F, Jin P 2010 J. Cryst. Growth 312 282Google Scholar

    [9]

    Zhang Y, Zhang J, Zhang X, Mo S, Wu W, Niu F, Zhong Y, Liu X, Huang C, Liu X 2013 J. Alloys Compd. 570 104Google Scholar

    [10]

    Zhang K F, Bao S J, Liu X, Shi J, Su Z X, Li H L 2006 Mater. Res. Bull. 41 1985Google Scholar

    [11]

    Song Z D, Zhang L M, Xia F, Webster N A, Song J, Liu B, Luo H, Gao Y 2016 Inorg. Chem. Front. 3 1035Google Scholar

    [12]

    Ji S, Zhang F, Jin P 2011 J. Solid State Chem. 184 2285Google Scholar

    [13]

    张娇, 李毅, 刘志敏, 李政鹏, 黄雅琴, 裴江恒, 方宝英, 王晓华, 肖寒 2017 物理学报 66 238101Google Scholar

    Zhang J, Li Y, Liu Z M, Li Z P, Huang Y Q, Pei J H, Fang B Y, Wang X H, Xiao H 2017 Acta Phys. Sin. 66 238101Google Scholar

    [14]

    覃源, 李毅, 方宝英, 佟国香, 王晓华, 丁杰, 王峰, 严梦, 梁倩, 陈少娟 2013 光学学报 33 343Google Scholar

    Qin Y, Li Y, Fang B Y, Tong G X, Wang X H, Ding J, Wang F, Yan M, Liang Q, Chen S J 2013 Acta Opt. Sin. 33 343Google Scholar

    [15]

    Chen L, Wang X, Wan D, Cui Y, Liu B, Shi S, Luo H, Gao Y 2016 RSC Adv. 6 73070Google Scholar

    [16]

    Ji S, Zhang F, Jin P 2011 Sol. Energy Mater. Sol. Cells 95 3520Google Scholar

    [17]

    Rathi S, Lee I y, Park J H, Kim B J, Kim H T, Kim G H 2014 ACS Appl. Mater. Interfaces 6 19718Google Scholar

    [18]

    Kozo T, Li Z C, Wang Y Q, Ni J, Hu Y, Zhang Z J 2009 Front. Mater. Sci. Chin. 3 48Google Scholar

    [19]

    Kumar M, Singh J P, Chae K H, Park J, Lee H H 2020 Superlattices Microstruct. 137 106335Google Scholar

    [20]

    Meng Y F, Sang J X, Liu Z, Xu X F, Tan Z Y, Wang C R, Wu B H, Wang C, Cao J C, Chen X S 2019 Appl. Surf. Sci. 470 168Google Scholar

    [21]

    Rathi S, Park J H, Lee I, Jin Kim M, Min Baik J, Kim G H 2013 Appl. Phys. Lett. 103 203114Google Scholar

    [22]

    Xu H Y, Huang Y H, Liu S, Xu K W, Ma F, Chu P K 2016 RSC Adv. 137 79383Google Scholar

    [23]

    Afify H H, Hassan S A, Obaida M, Abouelsayed A 2019 Physica E 114 113610Google Scholar

    [24]

    罗明海, 徐马记, 黄其伟, 李派, 何云斌 2016 物理学报 65 047201Google Scholar

    Luo M H, Xu M J, Huang Q W, Li P, He Y B 2016 Acta Phys. Sin. 65 047201Google Scholar

    [25]

    Dai L, Cao C, Gao Y, Luo H 2011 Sol. Energy Mater. Sol. Cells 95 712Google Scholar

    [26]

    Wu C, Zhang X, Dai J, Yang J, Wu Z, Wei S, Xie Y 2011 J. Mater. Chem. 21 4509Google Scholar

    [27]

    Antonova K V, Kolbunov V R, Tonkoshkur A S 2014 J. Polym. Res. 21 422Google Scholar

    [28]

    Pillai S C, Kelly J M, Ramesh R, McCormack D E 2013 J. Mater. Chem. C 1 3268Google Scholar

    [29]

    Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Yun S J, Balatsky A V, Maple M B, Keilmann F, Kim H T, Basov D N 2007 Science 318 1750Google Scholar

    [30]

    Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383Google Scholar

    [31]

    Gervais F, Kress W 1985 Phys. Rev. B 31 4809Google Scholar

    [32]

    孙肖宁, 曲兆明, 王庆国, 袁扬, 刘尚合 2019 物理学报 68 107201Google Scholar

    Sun X N, Qu Z M, Wang Q G, Yuan Y, Liu S H 2019 Acta Phys. Sin. 68 107201Google Scholar

    [33]

    Rozen J, Lopez R, Haglund R F, Feldman L C 2006 Appl. Phys. Lett. 88 081902Google Scholar

    [34]

    He X F, Xu J, Xu X F, Gu C C, Chen F, Wu B H, Wang C R, Xing H Z, Chen X S, Chu J H 2015 Appl. Phys. Lett. 106 093106Google Scholar

    [35]

    Kumar S, Pickett M D, Strachan J P, Gibson G, Nishi Y, Williams R S 2013 Adv. Mater. 25 6128Google Scholar

    [36]

    Singh S, Horrocks G, Marley P M, Shi Z, Banerjee S, Sambandamurthy G 2015 Phys. Rev. B 92 155121Google Scholar

    [37]

    Joushaghani A, Jeong J, Paradis S, Alain D, Stewart Aitchison J, Poon J K S 2014 Appl. Phys. Lett. 105 231904Google Scholar

    [38]

    Zeng W, Chen N, Xie W G 2020 Cryst. Eng. Comm. 22 851Google Scholar

    [39]

    Whittaker L, Jaye C, Fu Z, Fischer D A, Banerjee S 2009 J. Am. Chem. Soc. 131 8884Google Scholar

    [40]

    Wang Z S, Zeng F, Yang J, Chen C, Pan F 2012 ACS Appl. Mater. Interfaces 4 447Google Scholar

    [41]

    Mamunya E P, Davidenko V V, Lebedev E V 1996 Compos. Interfaces 4 169Google Scholar

    [42]

    Yang W, Wang J, Luo S, Yu S, Huang H, Sun R, Wong C P 2016 ACS Appl. Mater. Interfaces 8 35545Google Scholar

  • 图 1  VO2晶体结构图 (a) B相; (b) M相; (c) R相.

    Figure 1.  Crystal structure diagrams of VO2: (a) B phase; (b) M phase; (c) R phase

    图 2  VO2纳米粉末的XRD曲线

    Figure 2.  XRD patterns of VO2 nano-powders.

    图 3  VO2 (B) 颗粒SEM图 (a) 放大倍率为2万倍; (b) 放大倍率为10万倍; (c) X射线能谱分析图

    Figure 3.  SEM images of VO2 (B) particles: (a) The magnification is 20000 times; (b) the magnification is 100000 times; (c) EDS spectrum.

    图 4  不同退火时间样品的XRD图

    Figure 4.  XRD patterns of samples after different annealing times.

    图 5  4#样品(退火时间t = 60 min)的变温XRD曲线

    Figure 5.  Variable-temperature XRD patterns of sample 4# (annealing time t = 60 min)

    图 6  不同退火时间样品的SEM图 (a)退火时间为5 min; (b)退火时间为20 min; (c)退火时间为30 min; (d)退火时间为60 min; (e)退火时间为90 min; (f)退火时间为300 min

    Figure 6.  SEM images of samples with different annealing times: (a) Annealing time is 5 min; (b) annealing time is 20 min; (c) annealing time is 30 min; (d) annealing time is 60 min; (e) annealing time is 90 min; (f) annealing time is 300 min

    图 7  不同退火时间制备样品的DSC测试曲线(下半部分为升温曲线, 上半部分为降温曲线)

    Figure 7.  DSC curves of samples prepared at different annealing times (The lower is the heating curves, and the upper is the cooling curves)

    图 8  VO2-PEG复合薄膜V-I曲线(下插图为测试连接示意图(两电极之间间距为1 mm, 电极宽度为2 mm), 上插图为薄膜SEM图)

    Figure 8.  V-I curves of VO2-PEG composite film. The inset at the bottom is the schematic diagram of the test connection (The distance between the two electrodes is 1 mm, and the electrode width is 2 mm), and the inset at the top is the SEM image of the film.

    图 9  (a)−(f)样品1#−6#的变温电阻曲线(红色为升温曲线, 蓝色为降温曲线)

    Figure 9.  Temperature-dependent resistance curves of (a)−(f) samples 1#−6# (The red lines are the heating curves; the blue lines are the cooling curves).

    图 10  复合薄膜典型测试曲线分析图 (a)输入电压Vi与电流I曲线; (b)输入电压Vi与材料电阻R0曲线; (c)材料两端电压V0与电流I曲线; (d)输入电压Vi与材料两端电压V0曲线

    Figure 10.  Analysis of the second test curve of the composite film: (a) Input voltage Vi vs. current I; (b) input voltage Vi vs. material resistance R0 curve; (c) voltage across the material V0 vs. current I curve; (d) input voltage Vi vs. voltage across the material V0 curve

    图 11  不同退火时间样品的相变电压变化曲线

    Figure 11.  MIT voltage curves of samples with different annealing times.

    图 12  相变电压(a)及非线性系数(b)随纳米颗粒长度的变化曲线(红色为拟合曲线)

    Figure 12.  MIT voltage (a) and nonlinear coefficient (b) with the nanoparticle length change curves (The red lines are the fitting curves).

    图 13  VO2复合薄膜中导电通道模型(a)和电路简化模型(b)

    Figure 13.  The conductive channel model (a) and the simplified circuit model (b) in the VO2 composite film.

    图 14  对比样品DSC曲线(插图为样品7#SEM图) (a)和 V-I测试曲线 (b)

    Figure 14.  DSC curve (a) of the comparative sample (the inset is the SEM of sample 7#) and the V-I test curves (b).

    表 1  不同退火时间薄膜的电压响应数据表

    Table 1.  Voltage response data table of films with different annealing times.

    Annealing
    time/min
    Length of VO2
    belt/nm
    Nonlinear
    coefficient
    $ {R}_{0}^{1} $ at Vi = 5 V/kΩ$ {R}_{0}^{2} $ at Vi = 100 V/ΩLimit voltage/V
    1#5202679.9780.33362.6612.71
    2#201324150.50119.99208.638.88
    3#301274154.11105.66225.659.16
    4#601023189.19114.80224.0011.30
    5#90802240.6477.60236.9310.23
    6#300783245.7994.33231.4810.56
    DownLoad: CSV
  • [1]

    Surnev S, Ramsey M G, Netzer F P 2003 Prog. Surf. Sci. 73 117Google Scholar

    [2]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys. Condens. Matter 12 8837Google Scholar

    [3]

    Karakotsou C, Anagnostopoulos A N, Kambas K, Spyridelis J 1992 Phys. Rev. B 46 16144Google Scholar

    [4]

    Morin F J 1959 Phys. Rev. Lett. 3 34Google Scholar

    [5]

    王庆国, 何长安, 曲兆明, 山世浩, 李昂, 成伟, 王妍 2018 安全与电磁兼容 2018 14

    Wang Q G, He C A, Qu Z M, Shan S H, Li A, Cheng W, Wang Y 2018 Safety & EMC 2018 14

    [6]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337Google Scholar

    [7]

    Becker M F, Buckman A B, Walser R M, Lépine T, Georges P, Brun A 1996 J. Appl. Phys. 79 2404Google Scholar

    [8]

    Ji S, Zhao Y, Zhang F, Jin P 2010 J. Cryst. Growth 312 282Google Scholar

    [9]

    Zhang Y, Zhang J, Zhang X, Mo S, Wu W, Niu F, Zhong Y, Liu X, Huang C, Liu X 2013 J. Alloys Compd. 570 104Google Scholar

    [10]

    Zhang K F, Bao S J, Liu X, Shi J, Su Z X, Li H L 2006 Mater. Res. Bull. 41 1985Google Scholar

    [11]

    Song Z D, Zhang L M, Xia F, Webster N A, Song J, Liu B, Luo H, Gao Y 2016 Inorg. Chem. Front. 3 1035Google Scholar

    [12]

    Ji S, Zhang F, Jin P 2011 J. Solid State Chem. 184 2285Google Scholar

    [13]

    张娇, 李毅, 刘志敏, 李政鹏, 黄雅琴, 裴江恒, 方宝英, 王晓华, 肖寒 2017 物理学报 66 238101Google Scholar

    Zhang J, Li Y, Liu Z M, Li Z P, Huang Y Q, Pei J H, Fang B Y, Wang X H, Xiao H 2017 Acta Phys. Sin. 66 238101Google Scholar

    [14]

    覃源, 李毅, 方宝英, 佟国香, 王晓华, 丁杰, 王峰, 严梦, 梁倩, 陈少娟 2013 光学学报 33 343Google Scholar

    Qin Y, Li Y, Fang B Y, Tong G X, Wang X H, Ding J, Wang F, Yan M, Liang Q, Chen S J 2013 Acta Opt. Sin. 33 343Google Scholar

    [15]

    Chen L, Wang X, Wan D, Cui Y, Liu B, Shi S, Luo H, Gao Y 2016 RSC Adv. 6 73070Google Scholar

    [16]

    Ji S, Zhang F, Jin P 2011 Sol. Energy Mater. Sol. Cells 95 3520Google Scholar

    [17]

    Rathi S, Lee I y, Park J H, Kim B J, Kim H T, Kim G H 2014 ACS Appl. Mater. Interfaces 6 19718Google Scholar

    [18]

    Kozo T, Li Z C, Wang Y Q, Ni J, Hu Y, Zhang Z J 2009 Front. Mater. Sci. Chin. 3 48Google Scholar

    [19]

    Kumar M, Singh J P, Chae K H, Park J, Lee H H 2020 Superlattices Microstruct. 137 106335Google Scholar

    [20]

    Meng Y F, Sang J X, Liu Z, Xu X F, Tan Z Y, Wang C R, Wu B H, Wang C, Cao J C, Chen X S 2019 Appl. Surf. Sci. 470 168Google Scholar

    [21]

    Rathi S, Park J H, Lee I, Jin Kim M, Min Baik J, Kim G H 2013 Appl. Phys. Lett. 103 203114Google Scholar

    [22]

    Xu H Y, Huang Y H, Liu S, Xu K W, Ma F, Chu P K 2016 RSC Adv. 137 79383Google Scholar

    [23]

    Afify H H, Hassan S A, Obaida M, Abouelsayed A 2019 Physica E 114 113610Google Scholar

    [24]

    罗明海, 徐马记, 黄其伟, 李派, 何云斌 2016 物理学报 65 047201Google Scholar

    Luo M H, Xu M J, Huang Q W, Li P, He Y B 2016 Acta Phys. Sin. 65 047201Google Scholar

    [25]

    Dai L, Cao C, Gao Y, Luo H 2011 Sol. Energy Mater. Sol. Cells 95 712Google Scholar

    [26]

    Wu C, Zhang X, Dai J, Yang J, Wu Z, Wei S, Xie Y 2011 J. Mater. Chem. 21 4509Google Scholar

    [27]

    Antonova K V, Kolbunov V R, Tonkoshkur A S 2014 J. Polym. Res. 21 422Google Scholar

    [28]

    Pillai S C, Kelly J M, Ramesh R, McCormack D E 2013 J. Mater. Chem. C 1 3268Google Scholar

    [29]

    Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Yun S J, Balatsky A V, Maple M B, Keilmann F, Kim H T, Basov D N 2007 Science 318 1750Google Scholar

    [30]

    Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383Google Scholar

    [31]

    Gervais F, Kress W 1985 Phys. Rev. B 31 4809Google Scholar

    [32]

    孙肖宁, 曲兆明, 王庆国, 袁扬, 刘尚合 2019 物理学报 68 107201Google Scholar

    Sun X N, Qu Z M, Wang Q G, Yuan Y, Liu S H 2019 Acta Phys. Sin. 68 107201Google Scholar

    [33]

    Rozen J, Lopez R, Haglund R F, Feldman L C 2006 Appl. Phys. Lett. 88 081902Google Scholar

    [34]

    He X F, Xu J, Xu X F, Gu C C, Chen F, Wu B H, Wang C R, Xing H Z, Chen X S, Chu J H 2015 Appl. Phys. Lett. 106 093106Google Scholar

    [35]

    Kumar S, Pickett M D, Strachan J P, Gibson G, Nishi Y, Williams R S 2013 Adv. Mater. 25 6128Google Scholar

    [36]

    Singh S, Horrocks G, Marley P M, Shi Z, Banerjee S, Sambandamurthy G 2015 Phys. Rev. B 92 155121Google Scholar

    [37]

    Joushaghani A, Jeong J, Paradis S, Alain D, Stewart Aitchison J, Poon J K S 2014 Appl. Phys. Lett. 105 231904Google Scholar

    [38]

    Zeng W, Chen N, Xie W G 2020 Cryst. Eng. Comm. 22 851Google Scholar

    [39]

    Whittaker L, Jaye C, Fu Z, Fischer D A, Banerjee S 2009 J. Am. Chem. Soc. 131 8884Google Scholar

    [40]

    Wang Z S, Zeng F, Yang J, Chen C, Pan F 2012 ACS Appl. Mater. Interfaces 4 447Google Scholar

    [41]

    Mamunya E P, Davidenko V V, Lebedev E V 1996 Compos. Interfaces 4 169Google Scholar

    [42]

    Yang W, Wang J, Luo S, Yu S, Huang H, Sun R, Wong C P 2016 ACS Appl. Mater. Interfaces 8 35545Google Scholar

  • [1] Wang Jing-Li, Dong Xian-Chao, Yin Liang, Yang Zhi-Xiong, Wan Hong-Dan, Chen He-Ming, Zhong Kai. Vanadium dioxide based terahertz dual-frequency multi-function coding metasurface. Acta Physica Sinica, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [2] Yan Zhong-Bao, Sun Shuai, Zhang Shuai, Zhang Yao, Shi Wei, Sheng Quan, Shi Chao-Du, Zhang Jun-Xiang, Zhang Gui-Zhong, Yao Jian-Quan. Effect of phase transition of vanadium dioxide on resonance characteristics of terahertz anti-resonant fiber and its applications. Acta Physica Sinica, 2021, 70(16): 168701. doi: 10.7498/aps.70.20210084
    [3] Li Jia-Hui, Zhang Ya-Ting, Li Ji-Ning, Li Jie, Li Ji-Tao, Zheng Cheng-Long, Yang Yue, Huang Jin, Ma Zhen-Zhen, Ma Cheng-Qi, Hao Xuan-Ruo, Yao Jian-Quan. Terahertz coding metasurface based vanadium dioxide. Acta Physica Sinica, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [4] Yang Pei-Di, Ouyang Chen, Hong Tian-Shu, Zhang Wei-Hao, Miao Jun-Gang, Wu Xiao-Jun. Study of phase transition of single crystal and polycrystalline vanadium dioxide nanofilms by using continuous laser pump-terahertz probe technique. Acta Physica Sinica, 2020, 69(20): 204205. doi: 10.7498/aps.69.20201188
    [5] Sun Xiao-Ning, Qu Zhao-Ming, Wang Qing-Guo, Yuan Yang, Liu Shang-He. Research progress of metal-insulator phase transition in VO2 induced by electric field. Acta Physica Sinica, 2019, 68(10): 107201. doi: 10.7498/aps.68.20190136
    [6] Wang Ze-Lin, Zhang Zhen-Hua, Zhao Zhe, Shao Rui-Wen, Sui Man-Ling. Mechanism of electrically driven metal-insulator phase transition in vanadium dioxide nanowires. Acta Physica Sinica, 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [7] Gu Yan-Ni, Wu Xiao-Shan. Oxygen vacancy induced band gap narrowing of the low-temperature vanadium dioxide phase. Acta Physica Sinica, 2017, 66(16): 163102. doi: 10.7498/aps.66.163102
    [8] Zhang Jiao, Li Yi, Liu Zhi-Min, Li Zheng-Peng, Huang Ya-Qin, Pei Jiang-Heng, Fang Bao-Ying, Wang Xiao-Hua, Xiao Han. Characteristics of electrically-induced phase transition in tungsten-doped vanadium dioxide film. Acta Physica Sinica, 2017, 66(23): 238101. doi: 10.7498/aps.66.238101
    [9] Luo Ming-Hai, Xu Ma-Ji, Huang Qi-Wei, Li Pai, He Yun-Bin. Research progress of metal-insulator phase transition mechanism in VO2. Acta Physica Sinica, 2016, 65(4): 047201. doi: 10.7498/aps.65.047201
    [10] Hao Ru-Long, Li Yi, Liu Fei, Sun Yao, Tang Jia-Yin, Chen Pei-Zu, Jiang Wei, Wu Zheng-Yi, Xu Ting-Ting, Fang Bao-Ying, Wang Xiao-Hua, Xiao Han. Optical modulation characteristics of VO2 thin film due to electric field induced phase transition in the FTO/VO2/FTO structure. Acta Physica Sinica, 2015, 64(19): 198101. doi: 10.7498/aps.64.198101
    [11] Xiong Ying, Wen Qi-Ye, Tian Wei, Mao Qi, Chen Zhi, Yang Qing-Hui, Jing Yu-Lan. Researches on the electrical properties of vanadium oxide thin films on Si substrates. Acta Physica Sinica, 2015, 64(1): 017102. doi: 10.7498/aps.64.017102
    [12] Liu Bai-Quan, Lan Lin-Feng, Zou Jian-Hua, Peng Jun-Biao. A novel organic light-emitting diode by utilizing double hole injection layer. Acta Physica Sinica, 2013, 62(8): 087302. doi: 10.7498/aps.62.087302
    [13] Qiu Dong-Hong, Wen Qi-Ye, Yang Qing-Hui, Chen Zhi, Jing Yu-Lan, Zhang Huai-Wu. Growth of vanadium dioxide thin films on Pt metal film and the electrically-driven metal–insulator transition characteristics of them. Acta Physica Sinica, 2013, 62(21): 217201. doi: 10.7498/aps.62.217201
    [14] Wang Chang-Lei, Tian Zhen, Xing Qi-Rong, Gu Jian-Qiang, Liu Feng, Hu Ming-Lie, Chai Lu, Wang Qing-Yue. Photo-induced insulator-metal transition of silicon-based VO2 nanofilm by THz time domain spectroscopy. Acta Physica Sinica, 2010, 59(11): 7857-7862. doi: 10.7498/aps.59.7857
    [15] Chen Xing, Xia Yun-Jie. The scattering of two-mode squeezed vacuum state and entangled coherent state through a one-dimensional potential barrier. Acta Physica Sinica, 2010, 59(1): 80-86. doi: 10.7498/aps.59.80
    [16] Chen Chang-Hong, Huang De-Xiu, Zhu Peng. Infrared absorption of VO2 based Mott transition field effect transistor dependent on optical phonon in α-SiN: H films. Acta Physica Sinica, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
    [17] Su Liang-Bi, Zhang Dan, Li Hong-Jun, Qian Xiao-Bo, Shen Jiong, Zhou Guo-Qing, Xu Jun. Crystal growth, color centers and spectra properties of V3+∶YAG grown by TGT. Acta Physica Sinica, 2006, 55(11): 5987-5990. doi: 10.7498/aps.55.5987
    [18] Wang Li-Xia, Li Jian-Ping, He Xiu-Li, Gao Xiao-Guang. Fabrication of vanadium dioxide films at low temperature and researches on properties of the films. Acta Physica Sinica, 2006, 55(6): 2846-2851. doi: 10.7498/aps.55.2846
    [19] Cai Chun-Lin, Teng Jiao, Yu Guang-Hua, Zhu Feng-Wu, Lai Wu-Yan, Xian Ji-Mei. . Acta Physica Sinica, 2002, 51(8): 1846-1850. doi: 10.7498/aps.51.1846
    [20] Huang Feng, Cheng Shan-Hua, Ning Zhao-Yuan, Yang Shen-Dong, Ye Chao. . Acta Physica Sinica, 2002, 51(6): 1383-1387. doi: 10.7498/aps.51.1383
Metrics
  • Abstract views:  7542
  • PDF Downloads:  98
  • Cited By: 0
Publishing process
  • Received Date:  02 June 2020
  • Accepted Date:  18 August 2020
  • Available Online:  04 December 2020
  • Published Online:  20 December 2020

/

返回文章
返回