Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Terahertz coding metasurface based vanadium dioxide

Li Jia-Hui Zhang Ya-Ting Li Ji-Ning Li Jie Li Ji-Tao Zheng Cheng-Long Yang Yue Huang Jin Ma Zhen-Zhen Ma Cheng-Qi Hao Xuan-Ruo Yao Jian-Quan

Citation:

Terahertz coding metasurface based vanadium dioxide

Li Jia-Hui, Zhang Ya-Ting, Li Ji-Ning, Li Jie, Li Ji-Tao, Zheng Cheng-Long, Yang Yue, Huang Jin, Ma Zhen-Zhen, Ma Cheng-Qi, Hao Xuan-Ruo, Yao Jian-Quan
PDF
HTML
Get Citation
  • Terahertz (THz) has the characteristics of non ionization, penetration, water absorption, high resolution, etc. It has shown an important application prospect in many fields, such as non-destructive testing, imaging and communication. However, THz is in the transition frequency band ranges from macro-electronics to micro-photonics, so, it belongs to the interdisciplinary field, forming the “terahertz gap” in electromagnetic wave. In recent years, with the continuous development and improvement of THz radiation source and detection technology, the THz modulation technology has gradually aroused the interest of researchers. Metamaterials with many properties that natural materials do not possess provide a common way to control THz. The two-dimensional structure of a metamaterial is called a metasurface. The coding metasurface encodes the phase digitally so that the electromagnetic wave can be regulated. It is proposed that it is first in the microwave band and then extended to the THz band. In the microwave band, the number, direction and amplitude of the far-field beams can be changed dynamically by programming, which is connected with the integrated circuit such as FPGA by using diodes, but due to the limitation of diode size and micro-nano manufacturing technology, the programmable metasurface in microwave band cannot be well used in THz band. In order to improve the flexibility of THz coding metasurface, in this paper we choose the phase change material vanadium dioxide (VO2) to active modulation coding metasurface. In this paper, we analyze the VO2’s insulating state before the phase transformation and metallic state after the phase transformation. Then designing an active control 1 bit coding metasurface by using the influence of the two states on the amplitude and phase of the unit structure, which is composed of VO2, polyimide and aluminum, can not only realize the basic function of coding metasurface adjusting the electromagnetic wave beams, but alsoimplement the switching of two kinds of far-field beams at 1.1 THz for the same coding sequence by thermal stimulated VO2. The coding metasurface also realizes the switching between two near-field focal points at 1.1 THz for the same coding sequence. Based on the effect of VO2 on the phase, this coding metasurface provides a new way to adjust and control the THz wave flexibly, and will have a great application prospect in THz transmission, imaging and communication.
      Corresponding author: Zhang Ya-Ting, yating@tju.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0700202) and National Natural Science Foundation of China (Grant Nos. 61675147, 61735010, 91838301)
    [1]

    姚建铨 2010 重庆邮电大学学报 22 703Google Scholar

    Yao J Q 2010 J. Chongqing Univ. Posts Telecommun. 22 703Google Scholar

    [2]

    刘盛纲 2006 中国基础科学 1 7Google Scholar

    Liu S G 2006 Chin. Basic Sci. 1 7Google Scholar

    [3]

    李晓楠, 周璐, 赵国忠 2019 物理学报 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [4]

    Zhang Z W, Wang K J, Lei Y, Zhang Z Y, Zhao Y M, Li Y, Li C Y, Gu A, Shi N C, Zhao K, Zhao H L, Zhang C L 2015 Sci. China Phys. Mech. 58 124202Google Scholar

    [5]

    Heljo V P, Nordberg A, Tenho M, Virtanen T, Jouppila K, Salonen J, Maunu S L, Juppo A M 2012 Pharm. Res. 29 2684Google Scholar

    [6]

    Pickwell E, Wallace V P 2006 J. Phys. D: Appl. Phys. 39 R301Google Scholar

    [7]

    Guillet J P, Recur B, Frederique L, Bousquet B, Canioni L, Manek-Honninger I, Desbarats P, Mounaix P 2014 J. Infrared Milli. Terahz Waves 35 382Google Scholar

    [8]

    陈实, 胡伟东 2017 无线电通信技术 43 01Google Scholar

    Chen S, Hu W D 2017 Radio Commun. Technol. 43 01Google Scholar

    [9]

    姚建铨, 迟楠, 杨鹏飞, 崔海霞, 汪静丽, 李九生, 徐德刚, 丁欣 2009 中国激光 36 2213Google Scholar

    Yao J Q, Chi N, Yang P F, Cui H X, Wang J L, Li J S, Xu D G, Ding X 2009 Chin. J. Las. 36 2213Google Scholar

    [10]

    Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C, Rossi F 2002 Nature 417 156Google Scholar

    [11]

    Exter M V, Fattinger C, Grischkowsky D 1989 Appl. Phys. Lett. 55 337Google Scholar

    [12]

    Sinyukov A M, Liu Z W, Hor Y L, Su K, Barat R B, Gary D E, Michalopoulou Z H, Zorych I, Federici J F, Zimdars D 2008 Opt. Lett. 33 1593Google Scholar

    [13]

    Yan F, Yu C, Park H, Parrott E P J, Pickwell-MacPherson E 2013 J. Infrared Milli. Terahz Waves 34 489Google Scholar

    [14]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181Google Scholar

    [15]

    Mendis R, Nag A, Chen F, Mittleman D M 2010 Appl. Phys. Lett. 97 131106Google Scholar

    [16]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304Google Scholar

    [17]

    Zhang H F, Zhang X Q, Xu Q, Tian C X, Wang Q, Xu Y H, Li Y F, Gu J Q, Tian Z, Ouyang C M, Zhang X X, Hu C, Han J G, Zhang W L 2018 Adv. Opt. Mater. 6 1700773Google Scholar

    [18]

    王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军 2018 物理学报 67 097801Google Scholar

    Wang Y, Leng Y B, Wang L, Dong L H, Liu S R, Wang J, Sun Y J 2018 Acta Phys. Sin. 67 097801Google Scholar

    [19]

    周璐, 赵国忠, 李晓楠 2019 物理学报 68 108701Google Scholar

    Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701Google Scholar

    [20]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [21]

    Nemati A, Wang Q, Hong M H, Teng J H 2018 Opto-Electron. Adv. 1 180009Google Scholar

    [22]

    Deng Z L, Deng J H, Zhuang X, Wang S, Li K F, Wang Y, Chi Y H, Ye X, Xu J, Wang G P, Zhao R K, Wang X L, Cao Y Y, Cheng X, Li G X, Li X P 2018 Nano Lett. 18 2885Google Scholar

    [23]

    Deng Z L, Jin M K, Ye X, Wang S, Shi T, Deng J H, Mao N B, Cao Y Y, Guan B O, Alu A, Li G X, Li X P 2020 Adv. Funct. Mater. 30 1910610Google Scholar

    [24]

    Deng Z L, Cao Y Y, Li X P, Wang G P 2018 Photonics Res. 6 443Google Scholar

    [25]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-sci. Appl. 3 e218Google Scholar

    [26]

    Liu S, Zhang L, Yang Q L, Xu Q, Yang Y, Noor A, Zhang Q, Iqbal S, Wan X, Tian Z, Tang W X, Cheng Q, Hang J G, Zhang W L, Cui T J 2016 Adv. Opt. Mater. 4 1965Google Scholar

    [27]

    Li J, Zhang Y T, Li J N, Yan X, Liang L J, Zhang Z, Huang J, Li J H, Yang Y, Yao J Q 2019 Nanoscale 11 5746Google Scholar

    [28]

    Fan F, Gu W H, Chen S, Wang X H, Chang S J 2013 Opt. Lett. 38 1582Google Scholar

    [29]

    Zhu Y H, Zhao Y, Holtz M, Fan Z Y, Bernussi A A 2012 J. Opt. Soc. Am. B 29 2373Google Scholar

    [30]

    Mandal P, Speck A, Ko C, Ramanathan S 2011 Opt. Lett. 36 1927Google Scholar

    [31]

    Liu M K, Hwang H Y, Tao H, Strikwerda A C, Fan K B, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J W, Wolf S A, Omenetto F G, Zhang X, Nelson K A, Averitt R D 2012 Nature 487 345Google Scholar

    [32]

    Zhao Y, Huang Q P, Cai H L, Lin X X, Lu Y L 2018 Opt. Commun. 426 443Google Scholar

    [33]

    Kocer H, Butun S, Banar B, Wang K, Tongay S, Wu J Q, Aydin K 2015 Appl. Phys. Lett. 106 161104Google Scholar

  • 图 1  1 bit编码超表面示意图 (a) 单元“0”的结构示意图; (b) 单元“1”的结构示意图; (c) 单元“0”和“1”的反射振幅; (d) 单元“0”和“1”的反射相位

    Figure 1.  Schematic diagram of 1 bit coding metasurface: (a) Schematic diagram of unit “0”; (b) schematic diagram of unit “1”; (c) reflection amplitude of units “0” and “1”; (d) reflection phase of units “0” and “1”.

    图 2  1 bit编码超表面不同编码序列示意图 (a) 编码序列1010/1010; (b) 编码序列0101/1010; 在1.1 THz(c) 编码序列1010/1010的远场方向图; (d) 编码序列0101/1010的远场方向图

    Figure 2.  Schematic diagram of different coding sequences on coding metasurface: (a) Coding sequence 1010/1010; (b) coding sequence 0101/1010; At 1.1 THz (c) far-field pattern of coding sequence 1010/1010; (d) far-field pattern of coding sequence 0101/1010.

    图 3  1 bit编码超表面示意图 (a) 单元“0”的结构示意图; (b) 单元“1”的结构示意图; (c) 单元“0”和“1”在二氧化钒不同态时的反射振幅; (d) 单元“0”和“1”在二氧化钒不同态时的反射相位

    Figure 3.  Schematic diagram of 1-bit coding metasurface: (a) Schematic diagram of unit “0”; (b) schematic diagram of unit “1”; (c) reflection amplitude of units “0” and “1” in different vanadium dioxide states; (d) reflection phase of units “0” and “1” in different vanadium dioxide states.

    图 4  棋盘序列(0101/1010)在1.1 THz的远场示意图 (a) 二氧化钒为绝缘态时的远场示意图; (b) 二氧化钒为金属态时的远场示意图

    Figure 4.  Far-field diagram of chessboard sequence (0101/1010) at 1.1 THz: (a) Far-field diagram when vanadium dioxide is in insulating state; (b) far-field diagram when vanadium dioxide is in metallic state.

    图 5  1 bit编码超表面示意图 (a) 单元“0”的结构示意图; (b) 单元“1”的结构示意图; (c) 单元“0”和“1”在二氧化钒不同态时的反射振幅; (d)单元“0”和“1”在二氧化钒不同态时的反射相位

    Figure 5.  Schematic diagram of 1 bit coding metasurface: (a) Schematic diagram of unit "0"; (b) schematic diagram of unit "1"; (c) reflection amplitude of units "0" and "1" in differ rent vanadium dioxide states; (d) reflection phase of units "0" and "1" in different vanadium dioxide states.

    图 6  1.1 THz棋盘序列的远场方向图 (a) 二氧化钒为绝缘态; (b) 二氧化钒为金属态

    Figure 6.  Far-field pattern of chessboard sequence at 1.1 THz: (a) Vanadium dioxide is in insulating state; (b) vanadium dioxide is in metallic state.

    图 7  不同编码序列示意图 (a) 编码序列1010/1010; (b) 编码序列0000/1111; 在1.1 THz(c) 编码序列1010/1010的远场方向图; (d) 编码序列0000/1111的远场方向图

    Figure 7.  Schematic diagram of different coding sequences: (a) Coding sequence 1010/1010; (b) coding sequence 0000/1111; At 1.1 THz, (c) far-field pattern of coding sequence 1010/1010; (d) far-field pattern of coding sequence 0000/1111.

    图 8  聚焦的编码和相位示意图 (a) 焦点(xf = 0 μm, yf = 0 μm, zf = 900 μm)的编码图; (b) 焦点(xf = 0 μm, yf = 0 μm, zf = 900 μm)的相位图; (c) 焦点(xf = 600 μm, yf = 600 μm, zf = 800 μm)的编码图; (d) 焦点(xf = 600 μm, yf = 600 μm, zf = 800 μm)的相位图

    Figure 8.  Coding and phase diagram of focus: (a) Coding diagram of focus (xf = 0 μm, yf = 0 μm, zf = 900 μm); (b) phase diagram of focus (xf = 0 μm, yf = 0 μm, zf = 900 μm); (c) coding diagram of focus (xf = 600 μm, yf = 600 μm, zf = 800 μm); (d) phase diagram of focus (xf = 600 μm, yf = 600 μm, zf = 800 μm).

    图 9  整体结构和电场图 二氧化钒为金属态时 (a) 超表面结构; (b)在z = 900 μm平面的x方向的归一化电场的x分量图; (c)在z = 900 μm平面的y方向的归一化电场的x分量图. 二氧化钒为绝缘时 (d) 超表面结构; (e) 在z = 800 μm平面的x方向的归一化电场的x分量图; (f) 在z = 800 μm平面的y方向的归一化电场的x分量图

    Figure 9.  Overall structure and electric field diagram. When vanadium dioxide is metallic state: (a) Metasurface structure; (b) x component diagram of normalized electric field in X direction of z = 900 μm plane; (c) x component diagram of normalized electric field in Y direction of z = 900 μm plane. When vanadium dioxide is insulating state (d) metasurface structure; (E) x component diagram of normalized electric field in X direction of z = 800 μm plane; (f) x component diagram of normalized electric field in Y direction of z = 800 μm plane.

  • [1]

    姚建铨 2010 重庆邮电大学学报 22 703Google Scholar

    Yao J Q 2010 J. Chongqing Univ. Posts Telecommun. 22 703Google Scholar

    [2]

    刘盛纲 2006 中国基础科学 1 7Google Scholar

    Liu S G 2006 Chin. Basic Sci. 1 7Google Scholar

    [3]

    李晓楠, 周璐, 赵国忠 2019 物理学报 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [4]

    Zhang Z W, Wang K J, Lei Y, Zhang Z Y, Zhao Y M, Li Y, Li C Y, Gu A, Shi N C, Zhao K, Zhao H L, Zhang C L 2015 Sci. China Phys. Mech. 58 124202Google Scholar

    [5]

    Heljo V P, Nordberg A, Tenho M, Virtanen T, Jouppila K, Salonen J, Maunu S L, Juppo A M 2012 Pharm. Res. 29 2684Google Scholar

    [6]

    Pickwell E, Wallace V P 2006 J. Phys. D: Appl. Phys. 39 R301Google Scholar

    [7]

    Guillet J P, Recur B, Frederique L, Bousquet B, Canioni L, Manek-Honninger I, Desbarats P, Mounaix P 2014 J. Infrared Milli. Terahz Waves 35 382Google Scholar

    [8]

    陈实, 胡伟东 2017 无线电通信技术 43 01Google Scholar

    Chen S, Hu W D 2017 Radio Commun. Technol. 43 01Google Scholar

    [9]

    姚建铨, 迟楠, 杨鹏飞, 崔海霞, 汪静丽, 李九生, 徐德刚, 丁欣 2009 中国激光 36 2213Google Scholar

    Yao J Q, Chi N, Yang P F, Cui H X, Wang J L, Li J S, Xu D G, Ding X 2009 Chin. J. Las. 36 2213Google Scholar

    [10]

    Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C, Rossi F 2002 Nature 417 156Google Scholar

    [11]

    Exter M V, Fattinger C, Grischkowsky D 1989 Appl. Phys. Lett. 55 337Google Scholar

    [12]

    Sinyukov A M, Liu Z W, Hor Y L, Su K, Barat R B, Gary D E, Michalopoulou Z H, Zorych I, Federici J F, Zimdars D 2008 Opt. Lett. 33 1593Google Scholar

    [13]

    Yan F, Yu C, Park H, Parrott E P J, Pickwell-MacPherson E 2013 J. Infrared Milli. Terahz Waves 34 489Google Scholar

    [14]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181Google Scholar

    [15]

    Mendis R, Nag A, Chen F, Mittleman D M 2010 Appl. Phys. Lett. 97 131106Google Scholar

    [16]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304Google Scholar

    [17]

    Zhang H F, Zhang X Q, Xu Q, Tian C X, Wang Q, Xu Y H, Li Y F, Gu J Q, Tian Z, Ouyang C M, Zhang X X, Hu C, Han J G, Zhang W L 2018 Adv. Opt. Mater. 6 1700773Google Scholar

    [18]

    王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军 2018 物理学报 67 097801Google Scholar

    Wang Y, Leng Y B, Wang L, Dong L H, Liu S R, Wang J, Sun Y J 2018 Acta Phys. Sin. 67 097801Google Scholar

    [19]

    周璐, 赵国忠, 李晓楠 2019 物理学报 68 108701Google Scholar

    Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701Google Scholar

    [20]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [21]

    Nemati A, Wang Q, Hong M H, Teng J H 2018 Opto-Electron. Adv. 1 180009Google Scholar

    [22]

    Deng Z L, Deng J H, Zhuang X, Wang S, Li K F, Wang Y, Chi Y H, Ye X, Xu J, Wang G P, Zhao R K, Wang X L, Cao Y Y, Cheng X, Li G X, Li X P 2018 Nano Lett. 18 2885Google Scholar

    [23]

    Deng Z L, Jin M K, Ye X, Wang S, Shi T, Deng J H, Mao N B, Cao Y Y, Guan B O, Alu A, Li G X, Li X P 2020 Adv. Funct. Mater. 30 1910610Google Scholar

    [24]

    Deng Z L, Cao Y Y, Li X P, Wang G P 2018 Photonics Res. 6 443Google Scholar

    [25]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-sci. Appl. 3 e218Google Scholar

    [26]

    Liu S, Zhang L, Yang Q L, Xu Q, Yang Y, Noor A, Zhang Q, Iqbal S, Wan X, Tian Z, Tang W X, Cheng Q, Hang J G, Zhang W L, Cui T J 2016 Adv. Opt. Mater. 4 1965Google Scholar

    [27]

    Li J, Zhang Y T, Li J N, Yan X, Liang L J, Zhang Z, Huang J, Li J H, Yang Y, Yao J Q 2019 Nanoscale 11 5746Google Scholar

    [28]

    Fan F, Gu W H, Chen S, Wang X H, Chang S J 2013 Opt. Lett. 38 1582Google Scholar

    [29]

    Zhu Y H, Zhao Y, Holtz M, Fan Z Y, Bernussi A A 2012 J. Opt. Soc. Am. B 29 2373Google Scholar

    [30]

    Mandal P, Speck A, Ko C, Ramanathan S 2011 Opt. Lett. 36 1927Google Scholar

    [31]

    Liu M K, Hwang H Y, Tao H, Strikwerda A C, Fan K B, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J W, Wolf S A, Omenetto F G, Zhang X, Nelson K A, Averitt R D 2012 Nature 487 345Google Scholar

    [32]

    Zhao Y, Huang Q P, Cai H L, Lin X X, Lu Y L 2018 Opt. Commun. 426 443Google Scholar

    [33]

    Kocer H, Butun S, Banar B, Wang K, Tongay S, Wu J Q, Aydin K 2015 Appl. Phys. Lett. 106 161104Google Scholar

  • [1] Wei Tao, Zhang Yu-Jie, Ge Hong-Yi, Jiang Yu-Ying, Wu Xu-Yang, Sun Zhen-Yu, Ji Xiao-Di, Bu Yu-Wei, Jia Ke-Ke. Composite phase modulated beam steering controllable reflective metasurface. Acta Physica Sinica, 2024, 73(22): 224201. doi: 10.7498/aps.73.20240764
    [2] Luan Jia-Qi, Zhang Ya-Jie, Chen Yu, Gao Ding-Shan, Li Pei-Li, Li Jia-Qi, Li Jia-Qi. Genetic algorithm based terahertz multifunctional reconfigurable Dirac semi-metallic coded metasurface. Acta Physica Sinica, 2024, 73(14): 144204. doi: 10.7498/aps.73.20240225
    [3] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [4] Jiang Zai-Chao, Gong Zheng, Zhong Yun-Xiang, Cui Bin, Zou Bin, Yang Yu-Ping. Encoding terahertz metasurface reflectors based on geometrical phase modulation. Acta Physica Sinica, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [5] Wang Jing-Li, Yang Zhi-Xiong, Dong Xian-Chao, Yin Liang, Wan Hong-Dan, Chen He-Ming, Zhong Kai. VO2 based terahertz anisotropic coding metasurface. Acta Physica Sinica, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [6] Wang Jing-Li, Dong Xian-Chao, Yin Liang, Yang Zhi-Xiong, Wan Hong-Dan, Chen He-Ming, Zhong Kai. Vanadium dioxide based terahertz dual-frequency multi-function coding metasurface. Acta Physica Sinica, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [7] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [8] Liu Zi-Yu, Qi Li-Mei, Dao Ri-Na, Dai Lin-Lin, Wu Li-Qin. Beam steerable terahertz antenna based on VO2. Acta Physica Sinica, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [9] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [10] Yan Zhong-Bao, Sun Shuai, Zhang Shuai, Zhang Yao, Shi Wei, Sheng Quan, Shi Chao-Du, Zhang Jun-Xiang, Zhang Gui-Zhong, Yao Jian-Quan. Effect of phase transition of vanadium dioxide on resonance characteristics of terahertz anti-resonant fiber and its applications. Acta Physica Sinica, 2021, 70(16): 168701. doi: 10.7498/aps.70.20210084
    [11] Yang Pei-Di, Ouyang Chen, Hong Tian-Shu, Zhang Wei-Hao, Miao Jun-Gang, Wu Xiao-Jun. Study of phase transition of single crystal and polycrystalline vanadium dioxide nanofilms by using continuous laser pump-terahertz probe technique. Acta Physica Sinica, 2020, 69(20): 204205. doi: 10.7498/aps.69.20201188
    [12] Sun Xiao-Ning, Qu Zhao-Ming, Wang Qing-Guo, Yuan Yang, Liu Shang-He. Research progress of metal-insulator phase transition in VO2 induced by electric field. Acta Physica Sinica, 2019, 68(10): 107201. doi: 10.7498/aps.68.20190136
    [13] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [14] Li Shao-He, Li Jiu-Sheng, Sun Jian-Zhong. Terahertz frequency coding metasurface. Acta Physica Sinica, 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
    [15] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [16] Zhang Xue-Jin, Lu Yan-Qing, Chen Yan-Feng, Zhu Yong-Yuan, Zhu Shi-Ning. Terahertz surface polaritons. Acta Physica Sinica, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [17] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [18] Xiong Ying, Wen Qi-Ye, Tian Wei, Mao Qi, Chen Zhi, Yang Qing-Hui, Jing Yu-Lan. Researches on the electrical properties of vanadium oxide thin films on Si substrates. Acta Physica Sinica, 2015, 64(1): 017102. doi: 10.7498/aps.64.017102
    [19] Yan Xin, Liang Lan-Ju, Zhang Ya-Ting, Ding Xin, Yao Jian-Quan. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies. Acta Physica Sinica, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [20] Wang Li-Xia, Li Jian-Ping, He Xiu-Li, Gao Xiao-Guang. Fabrication of vanadium dioxide films at low temperature and researches on properties of the films. Acta Physica Sinica, 2006, 55(6): 2846-2851. doi: 10.7498/aps.55.2846
Metrics
  • Abstract views:  11770
  • PDF Downloads:  492
  • Cited By: 0
Publishing process
  • Received Date:  11 June 2020
  • Accepted Date:  30 June 2020
  • Available Online:  02 December 2020
  • Published Online:  20 November 2020

/

返回文章
返回