-
Gallium oxide (Ga2O3) thin films have great potential applications in UV detectors and power devices; the preparation of high-quality films still needs further studying. In this paper, the Ga2O3 epitaxial thin films are grown by physical sputtering on the seed layer under different power conditions, and the growth mechanism of Ga2O3 epitaxial films are investigated. The introduction of a seed layer provides an artificial nucleation point, which effectively alleviates the lattice mismatch between sapphire substrate and Ga2O3 epitaxial films. thereby improving the quality of the epitaxial layer significantly. Through experiments, it is found that as the power of the epitaxial layer film increases during the growth, the crystal grains agglomerate to a certain size and crack. This physical phenomenon is attributed to the fact that the energy carried by sputtered particles is too large under the condition of high power, which leads the number of particle collisions to increase when they diffuse on the growing crystal surface. The X-ray diffraction, atomic force microscope, field emission scanning electron microscope, ultraviolet spectrophotometer, and photo-luminescence spectrum are used to characterize the structure, morphology, and optical properties of the deposited Ga2O3 thin film. The results show that the epitaxial films are β-Ga2O3 with
$ \left( {\bar 2\;0\;1} \right)$ orientation, and the thickness values of thin films are between 202.4 and 292.3 nm. Comparing with the Ga2O3 thin films grown directly on sapphire, the surface particle size increases significantly and the crystal quality is improved greatly under the condition of seed layer. The surface roughness is still maintained at a lower value reaching the device preparation standard. All Ga2O3 epitaxial films show that they have the high transmittance of about 90% in the visible light region (450-800 nm) and drop sharply at 350-400 nm. As the power increases, the absorption edge is blue-shifted and then red-shifted. The estimated band gap is about 4.81-4.96 eV. The PL spectra show that thin films produce blue emission only at 460 nm. It is found that the Ga2O3 films grown on seed layer at a sputtering power of 160 W have the excellent crystal quality. The results should be helpful in implementing the controllable preparation of high-quality β-Ga2O3 thin films in the future.-
Keywords:
- β-Ga2 O3 /
- epitaxy /
- wide band-gap semiconductor /
- magnetron sputtering
[1] Onuma T, Saito S, Sasaki K, Masui T, Yamaguchi T, Honda T, Higashiwaki M 2015 Jpn. J. Appl. Phys. 54 112601Google Scholar
[2] Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S 2014 Phys. Status Solidi A 211 21Google Scholar
[3] Pearton S J, Yang J C, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar
[4] Zinkevich M, Aldinger F 2004 J. Am. Ceram. Soc. 87 683Google Scholar
[5] Playford H Y, Hannon A C, Barney E R, Walton R I 2013 Chem. Eur. J. 19 2803Google Scholar
[6] Gottschalch V, Merker S, Blaurock S, Kneiss M, Teschner U 2019 J. Cryst. Growth 510 76Google Scholar
[7] Ghose S, Rahman S 2016 J. Vac. Sci. Technol., B 34 02L109Google Scholar
[8] Shi F F, Han J, Xing Y H, Li J S, Zhang L, He T, Li T, Deng X G, Zhang X D, Zhang B S 2019 Mater. Lett. 237 105Google Scholar
[9] Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S 2012 Appl. Phys. Lett. 100 013504Google Scholar
[10] Han S, Huang X L, Fang M Z, Zhao W G, Xu S J, Zhu D, Xu W Y, Fang M, Liu W J, Cao P J, Lu Y M 2019 J. Mater. Chem. C 7 11834Google Scholar
[11] Kang H C 2014 Mater. Lett. 119 123Google Scholar
[12] Kalarickal N K, Xia Z B, McGlone J, Krishnamoorthy S, Moore W, Brenner M, Arehart A R, Ringel S A, Rajan S 2019 Appl. Phys. Lett. 115 152106Google Scholar
[13] Orita M, Ohta H, Hirano M 2000 Appl. Phys. Lett. 77 4166Google Scholar
[14] Cai Y C, Zhang K, Feng Q, Zuo Y, Hu Z Z, Feng Z Q, Zhou H, Lu X L, Zhang C F, Tang W H, Zhang J C, Hao Y 2018 Opt. Mater. Express 8 3506Google Scholar
[15] Roberts J W, Jarman J C, Johnstone D N, Midgley P A, Chalker P R, Oliver R A, Massabuau F C 2018 J. Cryst. Growth 487 23Google Scholar
[16] Joishi C, Rafique S, Xia Z B, Han L, Krishnamoorthy S, Zhang Y W, Lodha S, Zhao H P, Rajan S 2018 Appl. Phys. Express 11 031101Google Scholar
[17] Mi W, Ma J, Luan C, Xiao H D 2014 J. Lumin. 146 1Google Scholar
[18] Li S F, Jiao S J, Wang D B, Gao S Y, Wang J Z 2018 J. Alloys Compd. 753 186Google Scholar
[19] Wu J W, Mi W, Yang Z C, Chen Y T, Li P J, Zhao J S, Zhang K L, Zhang X C, Luan C B 2019 Vacuum 167 6Google Scholar
[20] Li Z, An Z Y, Xu Y, Cheng Y L, Cheng Y N, Chen D Z, Feng Q, Xu S R, Zhang J C, Zhang C F, Hao Y 2019 J. Mater. Sci. 54 10335Google Scholar
[21] 马海林, 苏庆 2014 物理学报 63 116701Google Scholar
Ma H L, Su Q 2014 Acta. Phys. Sin. 63 116701Google Scholar
[22] Chen Y P, Liang H W, Xia X C, Tao P C, Shen R S, Liu Y, Feng Y B, Zheng Y H, Li X N, Du G T 2015 J. Mater. Sci.- Mater. Electron. 26 3231Google Scholar
[23] Nakagomi S, Kokubun Y 2012 J. Cryst. Growth 349 12Google Scholar
[24] Ghose S, Rahman S, Hong L, Rojas-Ramirez J S, Jin H, Park K, Klie R, Droopad R 2017 J. Appl. Phys. 122 095302Google Scholar
[25] Jiao S J, Lu H L, Wang X H, Nie Y Y, Wang D B, Gao S Y, Wang J Z 2019 ECS J. Solid State Sci. 8 Q3086Google Scholar
[26] 刘浩, 邓宏, 韦敏, 于永斌, 陈文宇 2015 发光学报 36 906Google Scholar
Liu H, Deng H, Wei M, Yu Y B, Chen W Y 2015 Chin. J. Lumin. 36 906Google Scholar
[27] Liao Y K, Jiao S J, Li S F, Wang J Z, Wang D B, Gao S Y, Yu Q J, Li H T 2018 Crystengcomm 20 133Google Scholar
[28] Oanh V T K, Lee D U, Kim E K 2019 J. Alloys Compd. 806 874Google Scholar
[29] Hu D Q, Zhuang S W, Ma Z Z, Dong X, Du G T, Zhang B L, Zhang Y T, Yin J Z 2017 J. Mater. Sci.- Mater. Electron. 28 10997Google Scholar
[30] Cheng Y, Yang K, Peng Y, Yin Y, Chen J X, Jing B, Liang H W, Du G T 2013 J. Mater. Sci.-Mater. Electron. 24 5122Google Scholar
[31] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳 2020 物理学报 69 108102Google Scholar
Ma T Y, Li W J, He X W, Hu H, Huang L J, Zhang H, Xiong Y Q, Li H L, Ye L J, Kong C Y 2020 Acta Phys. Sin. 69 108102Google Scholar
-
图 2 不同条件下生长的Ga2O3薄膜AFM扫描图及尺寸估算与RMS折线图 (a)无籽晶层140 W溅射生长; (b)籽晶层上140 W溅射生长; (c)籽晶层上160 W溅射生长; (d)籽晶层上180 W溅射生长; (e)籽晶层上200 W溅射生长; (f) 尺寸估算与RMS折线图
Figure 2. AFM scans of Ga2O3 thin films grown under different conditions, particle size and RMS lines chart: (a) 140 W sputter growth without seed layer; (b) 140 W sputter growth on seed layer; (c) 160 W sputter growth on the seed layer; (d) 180 W sputter growth on the seed layer; (e) 200 W sputter growth on the seed layer; (f) particle size and RMS lines chart.
-
[1] Onuma T, Saito S, Sasaki K, Masui T, Yamaguchi T, Honda T, Higashiwaki M 2015 Jpn. J. Appl. Phys. 54 112601Google Scholar
[2] Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S 2014 Phys. Status Solidi A 211 21Google Scholar
[3] Pearton S J, Yang J C, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar
[4] Zinkevich M, Aldinger F 2004 J. Am. Ceram. Soc. 87 683Google Scholar
[5] Playford H Y, Hannon A C, Barney E R, Walton R I 2013 Chem. Eur. J. 19 2803Google Scholar
[6] Gottschalch V, Merker S, Blaurock S, Kneiss M, Teschner U 2019 J. Cryst. Growth 510 76Google Scholar
[7] Ghose S, Rahman S 2016 J. Vac. Sci. Technol., B 34 02L109Google Scholar
[8] Shi F F, Han J, Xing Y H, Li J S, Zhang L, He T, Li T, Deng X G, Zhang X D, Zhang B S 2019 Mater. Lett. 237 105Google Scholar
[9] Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S 2012 Appl. Phys. Lett. 100 013504Google Scholar
[10] Han S, Huang X L, Fang M Z, Zhao W G, Xu S J, Zhu D, Xu W Y, Fang M, Liu W J, Cao P J, Lu Y M 2019 J. Mater. Chem. C 7 11834Google Scholar
[11] Kang H C 2014 Mater. Lett. 119 123Google Scholar
[12] Kalarickal N K, Xia Z B, McGlone J, Krishnamoorthy S, Moore W, Brenner M, Arehart A R, Ringel S A, Rajan S 2019 Appl. Phys. Lett. 115 152106Google Scholar
[13] Orita M, Ohta H, Hirano M 2000 Appl. Phys. Lett. 77 4166Google Scholar
[14] Cai Y C, Zhang K, Feng Q, Zuo Y, Hu Z Z, Feng Z Q, Zhou H, Lu X L, Zhang C F, Tang W H, Zhang J C, Hao Y 2018 Opt. Mater. Express 8 3506Google Scholar
[15] Roberts J W, Jarman J C, Johnstone D N, Midgley P A, Chalker P R, Oliver R A, Massabuau F C 2018 J. Cryst. Growth 487 23Google Scholar
[16] Joishi C, Rafique S, Xia Z B, Han L, Krishnamoorthy S, Zhang Y W, Lodha S, Zhao H P, Rajan S 2018 Appl. Phys. Express 11 031101Google Scholar
[17] Mi W, Ma J, Luan C, Xiao H D 2014 J. Lumin. 146 1Google Scholar
[18] Li S F, Jiao S J, Wang D B, Gao S Y, Wang J Z 2018 J. Alloys Compd. 753 186Google Scholar
[19] Wu J W, Mi W, Yang Z C, Chen Y T, Li P J, Zhao J S, Zhang K L, Zhang X C, Luan C B 2019 Vacuum 167 6Google Scholar
[20] Li Z, An Z Y, Xu Y, Cheng Y L, Cheng Y N, Chen D Z, Feng Q, Xu S R, Zhang J C, Zhang C F, Hao Y 2019 J. Mater. Sci. 54 10335Google Scholar
[21] 马海林, 苏庆 2014 物理学报 63 116701Google Scholar
Ma H L, Su Q 2014 Acta. Phys. Sin. 63 116701Google Scholar
[22] Chen Y P, Liang H W, Xia X C, Tao P C, Shen R S, Liu Y, Feng Y B, Zheng Y H, Li X N, Du G T 2015 J. Mater. Sci.- Mater. Electron. 26 3231Google Scholar
[23] Nakagomi S, Kokubun Y 2012 J. Cryst. Growth 349 12Google Scholar
[24] Ghose S, Rahman S, Hong L, Rojas-Ramirez J S, Jin H, Park K, Klie R, Droopad R 2017 J. Appl. Phys. 122 095302Google Scholar
[25] Jiao S J, Lu H L, Wang X H, Nie Y Y, Wang D B, Gao S Y, Wang J Z 2019 ECS J. Solid State Sci. 8 Q3086Google Scholar
[26] 刘浩, 邓宏, 韦敏, 于永斌, 陈文宇 2015 发光学报 36 906Google Scholar
Liu H, Deng H, Wei M, Yu Y B, Chen W Y 2015 Chin. J. Lumin. 36 906Google Scholar
[27] Liao Y K, Jiao S J, Li S F, Wang J Z, Wang D B, Gao S Y, Yu Q J, Li H T 2018 Crystengcomm 20 133Google Scholar
[28] Oanh V T K, Lee D U, Kim E K 2019 J. Alloys Compd. 806 874Google Scholar
[29] Hu D Q, Zhuang S W, Ma Z Z, Dong X, Du G T, Zhang B L, Zhang Y T, Yin J Z 2017 J. Mater. Sci.- Mater. Electron. 28 10997Google Scholar
[30] Cheng Y, Yang K, Peng Y, Yin Y, Chen J X, Jing B, Liang H W, Du G T 2013 J. Mater. Sci.-Mater. Electron. 24 5122Google Scholar
[31] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳 2020 物理学报 69 108102Google Scholar
Ma T Y, Li W J, He X W, Hu H, Huang L J, Zhang H, Xiong Y Q, Li H L, Ye L J, Kong C Y 2020 Acta Phys. Sin. 69 108102Google Scholar
Catalog
Metrics
- Abstract views: 8221
- PDF Downloads: 202
- Cited By: 0